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Abstract: NAND Flash memories have gained tremendous attention owing to the increasing demand
for storage capacity. This implies that NAND cells need to scale continuously to maintain the pace
of technological evolution. Even though NAND Flash memory technology has evolved from a
traditional 2D concept toward a 3D structure, the traditional reliability problems related to the tunnel
oxide continue to persist. In this paper, we review several recent techniques for separating the effects
of the oxide charge and tunneling current flow on the endurance characteristics, particularly the
transconductance reduction (∆Gm,max) statistics. A detailed analysis allows us to obtain a model
based on physical measurements that captures the main features of various endurance testing
procedures. The investigated phenomena and results could be useful for the development of both
conventional and emerging NAND Flash memories.
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1. Introduction

The emergence of NAND Flash memories has revolutionized the data storage industry
over the last few decades. NAND Flash devices are used in a wide range of applications in
everyday consumer electronics such as laptops, tablets, and smart wearable devices. The
first NAND-structured cell was invented in 1987 by Masuoka et al. [1] at Toshiba Corp.
Since then, several improvements have been proposed to lower the power consumption of
these cells and to enable the contents of the entire chip to be erased at once [2–7]. More
recently, its application range has been expanded such that it has become the main stor-
age element, in that solid-state drives (SSDs) are gradually replacing hard disk drives
(HDDs) [8,9]. Furthermore, it is increasingly adopted for enterprise-class storage systems.
As a result, the size of NAND cells has aggressively shrunk to continuously promote this
evolution. However, the ever-shrinking dimensions of the NAND cell create additional chal-
lenges in terms of the endurance and retention characteristics, such as random telegraph
noise (RTN) fluctuations of the threshold voltage (VT) [10–12], charge trapping/detrapping
mechanisms [13–15], electron injection statistics [16,17], and VT distribution widening due
to parasitic coupling effects [18,19].

Three-dimensional (3D) NAND Flash memories can be considered as a breakthrough
to continue to deliver increasing bit density and reduce the bit cost [20]. 3D NAND
Flash technology can utilize either floating gate (FG)- or charge trapping (CT)-type cells.
Most of the 3D NAND reported to date are CT-type, owing to the simpler fabrication
process [21]. The 3D NAND array architecture can be categorized into the following two
classes depending on the direction of channel, as schematically shown in Figure 1: vertical
gate 3D NAND architecture, which was proposed by Samsung Electronics in 2009 [22]; and
vertical channel 3D NAND architecture. There are two main cell structure types that use
vertical channels, namely bit cost scalable (BiCS), which was proposed by Toshiba Corp. in
2007 [23,24], and terabit cell array transistor (TCAT), which was developed by Samsung
Electronics in 2009 [25]. TCAT subsequently evolved into V-NAND architecture, which has
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32-stacked word line (WL) layers [26–28]. The industry has moved beyond 12x-stacked WL
layers and achieved a 17x-stacked V-NAND [29,30]. As the memory industry transitions
from planar to 3D scaling, traditional device reliability issues must still be considered. The
Fowler Nordheim (FN) tunneling mechanism is commonly used in both planar and 3D
NAND cells during programming and erasing (P/E) operations [31]. This mechanism
leads to the formation of trap states in the tunneling oxide, and thus degrades the oxide
reliability. Therefore, overcoming the reliability problems related to the oxide trap is
critically important for the development of future advanced NAND Flash memories.

Figure 1. Schematic diagrams of 3D NAND architecture: (a) vertical gate and (b) vertical channel.

2. Shift in the Midgap Voltage

Generally, the midgap voltage (∆VMG) during P/E operations is described by a set of
two components [32]: the first is the electrostatic shift (ES) that is caused by the creation
of oxide trapped charges (QT), and the other is the tunneling shift (TS) that is related to
the change in the number of floating-gate charges (QFG). Notably, these two components
mutually influence each other. The former deforms the tunneling barrier for P/E operations
and thus reduces the number of storage electrons. ∆VMG can be expressed as the sum of
these two components.

∆VMG =
QT
Ci

+
∆QFG
CIPD

(1)

where Ci and CIPD are the tunneling oxide and the interpoly dielectric capacitance, respectively.
Several approaches have been proposed to separate the ES and TS values from ∆VMG.

The first category of methods is based on indirect measurements. For example, the ∆VMG
in the programming and erasing states combined with tunneling-based modeling is com-
monly monitored to extract the QT distribution from QFG in NAND Flash memories.
QT has been presented by a sheet charge located at fixed distance from the channel in
the majority of the literature [32–34]. Under this assumption, the tunneling current is
calculated straightforwardly along the direction perpendicular to the channel by using
the Wentzel–Kramers–Brillouin (WKB) approximation, as schematically shown in Figure
2a. However, as the cell sizes are aggressively shrunk to the nanoscale regime, they are
adversely affected by the discrete nature of QT . Thus, we must consider all possible tunnel-
ing paths across the defective oxide [35,36], as schematically shown in Figure 2b, which
increases the computational time and complexity of the method.

Figure 2. Schematic diagrams of all the possible tunneling paths by the (a) continuous and (b) discrete
QT during P/E cycles.
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The second category of methods is based on the direct extraction of QT and QFG
using a special test device [37,38]. The cross-sectional view and equivalent circuit of the
test structure are shown in Figure 3. The device is composed of two memory cells: one
with a thick tunneling oxide, referred to as a high-voltage (HV) cell, and the other with
a thin tunneling oxide, referred to as a low-voltage (LV) cell. Notably, these two cells
have a common FG/common control gate (CG) configuration. During P/E operations, FN
tunneling occurs only through the oxide of the LV cell, thus degrading the oxide of this cell.
The ES resulting from QT is expressed as [38]:

ES = γ[∆VT(LV)− ∆VT(HV)]= − 1
εox

∫ TOX

0
ρ·xdx (2)

where γ is the coupling ratio between the FG and CG, ρ is the density of QT , and ∆VT(LV)
and ∆VT(HV) are the VT shifts of the LV and HV cells after P/E cycles, respectively.
Unfortunately, the size of the test device (L = 4 µm) is relatively large compared to that of
conventional NAND Flash memories, yet it is necessary to continuously evaluate these
miniaturized and new device structures. Moreover, this approach can only provide average
information for a relatively large sample region rather than statistical information.

Figure 3. Schematic cross-section view (a) and equivalent circuit (b) of the test device. Adapted
from [37,38].

3. ∆Gm, max Statistics

To overcome the limitations of the above-mentioned approaches, we proposed a
statistical transconductance reduction (∆Gm,max) method [39], which enables the extraction
of QT from QFG in both 2D and 3D NAND memories.

3.1. Experimental Setup

Experiments are carried out in 2D FG-type NAND Flash memory chip. In the NAND
array, a string is composed of 32-unit cells, a source-select transistor, and a drain-select
transistor, as schematically shown in Figure 4a. The control gates, source-select transistors,
and drain-select transistors are connected across different strings to constitute the wordline
(WL), source select line (SSL), and drain select (DSL), respectively. The strings are connected
to a common sourceline (SL) and bitlines (BLs). The channel length (L) and width (W) are
both 42 mm, and the tunneling oxide thickness (Tox) is 8 nm. The measurement scheme
was as follows: the program operation is performed by adopting the incremental step pulse
programming (ISPP) technique [40] with a starting CG voltage (VCG,0) in increments of
0.2 V with a duration of 10 µs, as schematically shown in Figure 4b, driving the selected
cells to the desired VT level. The erase operation is performed on blocks by adopting
the incremental step pulse erasing (ISPE; similar to the ISPP) technique. Because it is not
possible to apply high negative voltages in NAND chips, a high positive voltage is applied
to the p-well. As a result, all cells in the block were erased simultaneously. During the
read operation, the CG gate voltage was swept from 0 V to 5 V to harvest the maximum
transconductance reduction (∆Gm,max). Figure 5a shows the ID −VCG characteristics of the
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200 randomly selected cells on WL15 in NAND strings before cycling and after 1 k, 3 k,
and 30 k P/E cycles, respectively. Then, the corresponding ∆Gm,max distribution can be
obtained, as shown in Figure 5b. Notably, the endurance test and ∆Gm,max monitoring were
performed at room temperature. The mean value of ∆Gm,max (∆Gm,max) is clearly observed
to increase, and the distribution to become wider, as the number of cycles increases.
This suggests that the ∆Gm,max distribution will be a good parameter for evaluating the
oxide degradation.

Figure 4. Schematic view of (a) NAND Flash array and (b) ISPP operation. Adapted from [39].

Figure 5. (a) ID −VCG Characteristics and (b) cumulative ∆Gm,max statistics of the read cells on WL15
as a function of the number of P/E cycles. Adapted from [39].

3.2. Simulation Methodology

Monte Carlo simulations have been used in an attempt to extract information about
QT from the measured ∆Gm,max distribution. A NAND string can be modeled to have a se-
lected cell with equivalent source and drain resistances (RS and RD), as shown in Figure 6a.
The equivalent RS and RD can be extracted from the monitoring of the transconductance
of the read cells for different positions along the NAND string [41]. The equivalent RS and
RD are 130 kΩ and 138.2 kΩ, respectively. The TCAD simulations used a 3D drift-diffusion
equation and coupled with the Shockley–Read–Hall model for generation/recombination
and mobility models (including the electric field dependence, doping-dependent modifi-
cation, and surface mobility degradation). To determine the ∆Gm,max statistics accurately,
the simulated ID − VCG characteristic of the fresh cell is calibrated with experimental
data at a probability level p = 50%, as shown in Figure 6b. The simulation was in good
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agreement with the experimental results. After calibrating the equivalent resistances, the
Monte-Carlo-based method was adopted to evaluate the concentration of QT (QC

T) after
P/E cycles, as schematically shown in Figure 7. The step-by-step procedure is as follows:
First, discrete QT is randomly generated following a uniform distribution in a cuboid
volume 420 nm × 840 nm × 8 nm in size (i.e., 20 L × 10 W × Tox), with an equivalent QC

T .
Notably, the discrete QT is treated as a negative point charge corresponding to one electron
because the electron mobility is degraded by the Coulomb repulsion.

Figure 6. (a) Schematic circuit diagram of a NAND string and an equivalent model when cells on WL15 are read.
(b) Comparison between measured and simulated ID −VCG curve of cells on WL15 at p = 50%, plotted on the linear and
logarithmic scales. Adapted from [39].

Figure 7. Schematic diagram of the random discrete QT generating algorithm. Adapted from [39].

Second, the cuboid is partitioned into 200 sub-cuboids and then mapped into the
tunneling oxide region. Thus, the numbers of discrete QT in these 200 cases approximately
follow a Poisson distribution, as shown in Figure 7. Finally, a comparison of the simulated
and measured ∆Gm,max statistics allowed us to evaluate the QC

T during P/E cycles.
Moreover, even though the simulation does not directly account for interface trap (Dit)

generation, the effect thereof is reflected in the model. The measured ID −VCG characteris-
tics indicated that the transconductance reached a maximum when VCG slightly exceeded
VT ; therefore, the occupied Dit can be considered as a fixed QT located at the silicon/oxide
interface because the bending of the surface potential remains almost unchanged [42]
(see Figure 8).
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Figure 8. Band diagram and trap occupation of interface trap states at different biases. Reprinted
from [39].

4. Endurance Characteristics

4.1. QT Extraction
Figure 9 indicates that simulations can reproduce the experimental results satisfacto-

rily, where the extracted equivalent QC
T for 1 k, 10 k, and 30 k P/E cycles are 2.6× 1018 cm−3,

5× 1018 cm−3, and 1.9× 1019 cm−3, respectively. Furthermore, the proposed approach can
be extended to include the array effect on ∆Gm,max statistics. Figure 10a shows the ∆Gm,max
distribution as a function of the position of the WLs in a NAND string after 10 k P/E cycles.
The simulations correspond well with the measurements when the following appropriate
parameters are adopted: WL1, RS = 16.3 kΩ and RD = 251.9 kΩ; WL15, RS = 130 kΩ
and RD = 138.1 kΩ; WL30, RS = 251.7 kΩ and RD = 16.3 kΩ. Clearly, RS increases as
the position of the WLs changes from WL0 to WL31 owing to the increase in the number
of pass cells. Figure 10b shows the ∆Gm,max distribution as a function of Vpass after 10 k
cycles. Again, a good agreement between the simulation and experimental results is found.
The equivalent resistances of the pass cells are 8.2 kΩ/cell, 6.5 kΩ/cell, and 5.1 kΩ/cell
for Vpass of 4 V, 5 V, and 6 V, respectively. It is clear that the pass-cell bias with a higher
Vpass has a smaller equivalent resistance but a larger ∆Gm,max. As a final verification, the
∆Gm,max statistics of two different VT levels of the read cells were compared under the
same cycling conditions. As shown in Figure 10c, the ∆Gm,max distributions almost overlap,
indicating that QFG causes a simple parallel shift of the ID −VCG curve.
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Figure 9. Simulated ∆Gm,max statistics for different number of P/E cycles. The simulations and
experimental measurements are in good agreement. Reprinted from [39].

Figure 10. ∆Gm,max distributions for (a) different selected WLs in the string. All cells in the string with Vpass = 6 V,
(b) WL15 selected with different values of Vpass, and (c) WL15 selected with different VT levels. Except for the read cells, the
others are in the erased state. Reprinted from [39].

4.1. Endurance Degradation Model

We start this section with a description of an endurance degradation model that
captures the features of the measurement. The evolution of QC

T can be conveniently
described by the following modified power-law equation [39]:

QC
T =

Q0

1 + (k·N)−α (3)

k = k0· exp(−EA,G/kBT) (4)

where Q0 is the saturated value of QC
T , k is the reaction constant, N is the number of P/E

cycles, α is the exponential coefficient, EA,G is the activation energy of QT creation, and kBT
is the thermal energy. Figure 11 compares the results obtained with the endurance model and
with the experimental results. The adopted parameters are as follows: Q0 = 1.5× 1020 cm−3,
k = 1.0× 10−6, and α = 0.58. When N is small (≤ 30 k cycles), the exponential term in
Equation (3) is much greater than 1, and Equation (3) can simply be expressed as a power law.
On the other hand, when N is large (> 30 k cycles), QC

T gradually approaches the saturated
value Q0. Overall, the proposed model is able to successfully describe the endurance
characteristics over a wide range of N (up to 100 k cycles). Notably, Q0 is supposed to be
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related to the process condition, which determines the amount of weak Si-O or Si-H bonds
that can be broken [43,44].

Figure 11. Comparison between extracted values (symbols) and model calculations (lines) according
to Equation (3). Reprinted from [39].

To evaluate EA,G in Equation (4), we performed the experiments at various cycling
temperatures. Figure 12 shows that ∆Gm,max increases as the cycling temperature (Tcyc)
increases, suggesting that a higher Tcyc causes more oxide damage. The temperature-
accelerated QT evaluations can be derived by using Equations (3) and (4) as follows [39]:

QC
T
(
Tcyc

)
= QC

T(TR)·exp
[

α·EA,G

(
1

kBTR
− 1

kBTH

)]
(5)

where TR is the cycling performed at room temperature. A good linear relationship between
the logarithm of QC

T and the reciprocal temperature was observed, and EA,G was evaluated,
as shown in Figure 13. Ultimately, the theoretical result fitted the experimental results
well, and the yield EA,G was approximately 100 mV, which agreed with that obtained by
monitoring the stress-induced gate leakage current [13,45,46].

Figure 12. ∆Gm,max distributions for cells on WL15. Selected measured (symbols) and simulated (lines) at Tcyc of (a) 25 °C,
(b) 55 °C, and (c) 85 °C are shown. Reprinted from [39].
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Figure 13. QC
T obtained by fitting experimental data using Equation (5) for different values of Tcyc.

Reprinted from [29].

4.2. Effect of the Time Delay between P/E Cycles

Reportedly, the time delay (twait) between P/E cycles is an important factor that affects
the endurance characteristics [47–51]. Figure 14 shows that the ∆Gm,max statistics become
larger as twait increases when the endurance test is performed at TR; however, when Tcyc
increases to 85 °C, the trend is completely the opposite due to recovery from oxide damage
through thermal excitation. This suggests that, at high Tcyc, the endurance model should
not only take into consideration the creation of damage but also the recovery from damage.
The time-dependent damage recovery during twait can be described by a rate equation
given by [52,53]

f = exp(−twait/τ) (6)

= τ0· exp
(
EA,R/kBTcyc

)
(7)

where f is the occupation function, τ is the time constant, and EA,R is the activation energy
for the recovery from the oxide damage. Therefore, Equation (3) can be rewritten as
follows [37]:

QC
T =

Q0

1 + (k·N)−α · f (8)

when twait is sufficiently short, for example, 0.1 s, Equation (8) tends to Equation (3)
because the mechanism according to which recovery from oxide damage takes place plays
a negligible role. Accordingly, we can extract the parameters (i.e., Q0, α, k0, and EA,G)
by using the approach described in Section 4.1. However, when twait becomes longer,
the damage creation and recovery effects are mixed, which complicates the simultaneous
extraction of EA,G and EA,R. To simplify the situation, we assume that under the condition
of Tcyc = 25 °C, Equation (8) approaches Equation (3) because the thermal excitation of
QT is not noticeable. This allows us to evaluate the EA,G for longer twait values of 2 s and
4 s. Figure 15a shows that, by calibrating the EA,G values, Equation (3) can reproduce the
characteristics of the extracted QC

T with different twait values. The relationship between
the logarithm of twait and EA,G is linear, as shown in Figure 15b. Moreover, EA,G is in the
approximate range of 60–100 meV, which agrees with the results obtained by monitoring the
VT transients after experiments at different Tcyc [13]. Once the value of EA,G is determined
for different values of twait, the remaining parameters EA,R can be determined by using
the change rate of the celebrated τ at different Tcyc. Figure 16 shows the experimental
measurements fit the curve calculated with Equation (8).
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Figure 14. (a) Different values of twait introduced between P/E cycles. ∆Gm,max distributions for cells on WL15 selected
measured (symbols) and simulated (lines) for different values of twait at Tcyc of (b) 25 °C, (c) 55 °C, and (d) 85 °C. Reprinted
from [47].

Figure 15. (a) QC
T obtained by fitting experimental data using Equation (3) for different values of twait. (b) Extracted EA,G

for different values of twait. Reprinted from [47].
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Figure 16. QC
T obtained by fitting experimental data using Equation (8) for different values of twait under Tcyc of (a) 55 °C

and (b) 85 °C. Reprinted from [47].

Clearly, if the damage-recovery mechanism is not taken into account, Equation (3)
overestimates the experiment, and the discrepancy between them increases with twait.
The optimized τ values were 150 s, 22 s, and 12 s for Tcyc of 25 °C, 55 °C, and 85 °C,
respectively. Figure 17 shows that the relationship between the logarithm of τ and the
reciprocal temperature is linear, and EA,R ' 0.4 eV is obtained. Notably, EA,R ' 0.4 eV
is similar to the values reported in the literature for charge detrapping through thermal
emission [54]. It is also easily verifiable that the assumption that f approaches one under
the condition of Tcyc of 25 °C and twait of 0.1 s is satisfied.

Figure 17. EA,R obtained using Equation (7) for different values of Tcyc. Reprinted from [47].

Although the above-mentioned model successfully describes the endurance character-
istics, it still does not account for certain features according to more recent research [55].
A comparative analysis of the respective influence of twait from program to erase (P-to-E)
and of that from erase to program (E-to-P) on the median ∆Gm,max (∆Gm,max) after 30 k
P/E cycles was reported [55] and is plotted in Figure 18, normalized to its initial value
(Gm0,max). The E-to-P twait clearly had a more significant impact on the normalized ∆Gm,max
than P-to-E twait. Moreover, it is also shown that the normalized ∆Gm,max increases as VCG,0
increases. As a result, adopting ISPP with a lower VCG,0 would be better for improving the
oxide quality. The physical mechanism is graphically illustrated in Figure 19. Energetic
electrons injected from the cathode result in anode hole injection during the P/E operations.
During E-to-P twait, these holes drift near the silicon surface, where they recombine with
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channel electrons [48,56]. This could create additional trap states, and subsequently, these
traps are occupied by electrons.

Figure 18. (a) Different P-to-E and E-to-P values of twait are introduced between P/E cycles. (b) Dependence of normalized
∆Gm,max on P-to-E and E-to-P values of twait after 30 k cycles. Reprinted from [55].

Figure 19. (a) Schematic diagram of anode hole injection during P/E cycles. During E-to-P twait, QT

is generated via two possible physical mechanisms: (b) the holes migrate toward the silicon/oxide
interface and recombine with inversion electrons, creating additional trap states. (c) Subsequently,
electrons are trapped in these trap states. Reprinted from [55].

5. Conclusions

A method for characterizing the endurance characteristics of NAND Flash memories
by monitoring the ∆Gm,max statistics is described. The discrete QT , gradually generated
with P/E cycles, results in the reduction of ∆Gm,max, and broadening of the distribution.
Based on Monte Carlo simulations, an analytical model for the generation of QT , including
the effects of Tcyc and twait, is then described. The model represents a powerful tool for the
investigation and predictive analysis of next-generation NAND Flash technologies.
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