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Abstract: The purpose of this study was to propose an effective model for recognizing the detailed
mood of classical music. First, in this study, the subject classical music was segmented via MFCC
analysis by tone, which is one of the acoustic features. Short segments of 5 s or under, which are not
easy to use in mood recognition or service, were merged with the preceding or rear segment using
an algorithm. In addition, 18 adjective classes that can be used as representative moods of classical
music were defined. Finally, after analyzing 19 kinds of acoustic features of classical music segments
using XGBoost, a model was proposed that can automatically recognize the music mood through
learning. The XGBoost algorithm that is proposed in this study, which uses the automatic music
segmentation method according to the characteristics of tone and mood using acoustic features, was
evaluated and shown to improve the performance of mood recognition. The result of this study will
be used as a basis for the production of an affect convergence platform service where the mood is
fused with similar visual media when listening to classical music by recognizing the mood of the
detailed section.

Keywords: classical music segmentation; classical music mood; mood recognition model; machine
learning; emotional intelligence

1. Introduction

Music of various moods has been shown to enrich the listener’s emotions and pro-
mote psychological and mental stability [1–5]. Classical music is longer than other music
genres, so it contains various detailed mood changes in one song [6]. If a specific classical
music mood can be recognized accurately, it can be applied to various objectives, such as
expanding from a single appreciation of music and fusing with visual media of a similar
mood to expand the emotional experience.

The recent development of music streaming services, such as YouTube and Spotify, is
linked to the rapid development of music information retrieval (MIR) technology which
efficiently retrieves the required information from among vast amounts of music data. In
MIR, in addition to the basic metadata of music, many technologies for pattern recognition,
clustering, extraction automation, and the advancement of acoustic features are being
developed through the analysis of music signals [7–10].

In addition, many studies are being performed in the field of music emotion recogni-
tion (MER) to classify or recommend music based on emotion. MER recognizes emotions
for the whole or segmented music. In the case of music with lyrics, there is also a study
addressing the recognition of emotions by interpreting the lyrics [11,12]. However, as there
are cases in which there are no lyrics or the structural characteristics of music are more
related to emotions rather than the lyrics, many studies are being conducted to recognize
the emotions of music by analyzing the acoustic features of the music. In addition, various
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studies related to the service application fields, tailored to the sensibility of music, are
being conducted [13–16].

Conventional MER studies for the purpose of searching for the emotion of music, were
mainly conducted to grasp the overall emotion of the music rather than the emotion for each
sub-section of the music. On the other hand, Wu et al. (2014) [17] and Xiao et al. (2008) [18]
conducted a study on the sensibility of sub-sections of music in order to understand the
mood of the music. This is because, in the case of long music, it is possible to clearly derive
the mood by understanding the emotions of the detailed sections of the music rather than
understanding the overall emotions.

In previous research for recognizing the flow of a detailed music mood, the music
segmentation was comprehensively executed in similar intervals and the study focused
on a mood analysis based on this type of segmentation [6,19]. However, in order to
clearly distinguish the units for recognizing the detailed mood of the music, studies on
recognizing the mood after extracting the sections of similar acoustic features are also being
conducted [20,21].

The direction of this research study is to create the capability of combining the specific
detailed aesthetics of mood that constitute classical music and apply them to other media
which contain similar moods. Therefore, in this study, an effective model is proposed that
can automatically recognize the detailed mood of classical music, so that a foundation can
be established per the direction of the study. To accomplish this, it is necessary to increase
the specificity of the detailed mood recognition in classical music, and the specificity must
satisfy the following detailed conditions. The segmentation of the music segment, which
is the analytical unit of the detailed mood, must be reasonable. The performance of the
segment’s mood analysis must be high, and the music segment unit and the mood analysis
result must have appropriate criteria to ensure that a service can have the ability to combine
with various future media.

In order to derive results that satisfy these conditions, this study intends to be con-
ducted in the following steps. Section 2 establishes a theoretical foundation based on
previous studies. After the theoretical assessment, Section 3 involves activities in music
data segmentation, model learning among music segments, and finally the execution of
mood training data labeling by a music expert. Based on the data from these activities, we
create a mood recognition model (MRM) of classical music. In Section 4, the performance of
the music segment extraction method in the proposed MRM in this study and the validity
of the algorithm selected for use in the model are evaluated. Finally, Section 5 provides
conclusions to the study as well as directions for future research.

2. Related Works
2.1. Emotional Representation

Researches in psychology on feeling and the inner state of humans are representatively
explained by the basic emotional model and affective dimensional model. First, James [22]
and Ekman [23], who researched the basic emotional model, defined individual emotions
as independent beings between emotions. A basic emotional model by Ekman, which is
widely used in various fields, defined emotions as anger, disgust, fear, enjoyment, sadness,
and surprise. Moreover, emotions form unique features as humans have evolved and
each emotion has apparent features of an independent signal, physiologic expression, and
antecedent event. In particular, interculturally featured basic feelings which are apparent
signals apart from other feelings are shown by facial expressions. Therefore, basic emotions
of the basic emotional model have obvious features that are useful in general apparent
feeling recognitions and expression fields [24–31].

Russell [32] is a representative researcher of the dimensional model related to “Affect”.
Russell suggested an affective dimensional model with affect adjectives in 6–12 bipolar
circular dimensional arrangements. The researcher established pleasure–misery as a hori-
zontal dimension and arousal–sleepiness as a perpendicular dimension. He then selected
28 words describing mood, feeling, affect, and emotion as representative affect adjectives,
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and suggested a 2-dimensional model in a circular arrangement. This affective dimensional
model is used for classification and interpretation based on the axes and thereby trending
an inner state.

Yang et al. (2008) [33] used the values of ‘Arousal’ and ‘Valence’ of music samples to
conduct research for music emotion recognition (MER) by using the dimensional model.
The research allowed effective browsing of music samples when the subject selected a
specific coordinate value on the Arousal-Valence plane with Arousal-Valence (AV) as axes.
The Arousal-Valence Affective Dimensional Model used a regression approach to defining
feelings by AV values to improve the ambiguity of the categorization of conventional feelings.

Thayer (1989) [34] is another representative researcher of the Dimensional Model
who researched a simplified and organized Dimensional Model by using mood words to
improve overlapping and ambiguous mood adjectives from the Russell model. Thayer
referred to Russell’s Affective Model to define a 2-dimensional mood by establishing ‘Stress’
and ‘Energy’ as categories to dictate the extent of pleasure to displeasure by plotting the
extent of ‘Stress’ and the extent of calm to energetic by plotting the extent of ‘Energy.’ In
addition, moods are divided into quadrants of ‘Exuberance’, ‘Contentment’, ‘Anxious’, and
‘Depression’ based on the corresponding plotted coordinates on this 2-dimensional plane.
If Thayer’s Mood System is applied to music, ‘Energy’ equates to the strength and intensity
of the music and ‘Stress’ equates to the tone and tempo of the music. The advantage to this
system was the capability of distinguishing mood adjectives by categorization.

On one hand, Lu et al. (2006) [6] emphasized that Thayer’s mood adjectives were
rational in expressing the mood of the music and therefore studied classifying moods of
music by using these adjectives. However, Yang et al. (2007) [35] proposed in a study
on group-wise music emotion recognition (GWMER) and personalized music emotion
recognition (PMER) that Thayer’s Mood system lacked numbers of mood adjectives that
would subjectively express an individual’s personal preference and identity as shown
in Figure 1.

Figure 1. Two-Dimensional Structure of Thayer’s Mood System.

Meanwhile, in various psychological studies, terms such as ‘mood’, ‘emotion’ and
‘affect’ are used to describe human feeling or inner state. These words contain similar,
or related concepts. ‘Affect’ is used as a word to include emotion and mood. Emotion
and affect have a shorter duration than mood and are immediately revealed by facial
expressions, whereas mood has a long duration and is void of expression. Emotion and
affect do not affect changes in human behavior or nature, but mood is considered to have a
potential impact on them [23]. Mood is generally used quite frequently as a term related to
human feeling through music. This is because, rather than the characteristics expressed
through facial expressions in a short period of time, it is interpreted in conjunction with the



Electronics 2021, 10, 2489 4 of 20

characteristics of music that can affect the inner state of human beings for a longer period
of time and ultimately affect the nature or behavior in the long run.

This research intends to use mood adjectives for a study related to the feeling of
classical music. In addition to defining words with clear individual characteristics between
adjectives, which is the strength of the individual emotion model in the existing field
of psychology, this study intends to increase the number of representative adjectives to
effectively represent the feeling of the music. We additionally intend to define the mood by
using a dimensional model that is good for explaining the organic relationship between
words. First, in order to collect various mood adjectives in music, we intend to use the
mood tag [36], which is used in the music service ‘All music’. ‘All music’ provides users
with music albums labeled by music experts with 289 different mood adjectives related
to music. Music mood adjectives used in the service can be used as data for selecting
adjectives specialized in classical music in this study. However, since the number of
adjectives with similar meanings is large and the range of adjectives to express various
music genres is vast, clustering and selection processes of adjectives are necessary to utilize
them in this study.

2.2. Acoustic Features

In general, music has unique acoustic features such as rhythm, harmony, pitch, tone,
and tempo. The acoustic feature can be derived through the analysis of audio signals, which
are being dealt with through various studies such as clustering similar sections of music or
using them as a unit to search for music. For the definition of acoustic features, Tzanetakis
and Cook (2002) [37] classified classical music into three major categories, namely timbral
texture features, rhythmic content features, and pitch content features.

Weihs et al. (2007) [38] divided the acoustic features into short-term features and
long-term features according to the length of the music section to be extracted. Among the
acoustic features, features such as a specific tempo and instrument, which are intuitively
easy to explain, were separately classified as semantic features. Scaringella et al. (2006) [39]
defined three groups of acoustic features related to the major dimensions of music: timbre,
rhythm, and pitch information.

On the other hand, Fu et al. (2010) [40] took the acoustic feature from the work of
Weihs et al. (2007) [38] and Scaringella et al. (2006) [39] and integrated the taxonomy of
those two studies to hierarchically classify and define them, as shown in Figure 2. The low-
level feature consists of timbre features that capture tone and temporal features that capture
the change and evolution of tone over time. The low-level feature is composed of various
other features in detail, and the extraction performance is excellent even with a simple
procedure, so it is mainly used for recognizing the mood, genre, and instruments of music.
The mid-level feature is a feature that the listener can recognize, and the acoustic features
are classified systematically in an integrated way by including mainly three features:
rhythm, pitch, and harmony.

2.3. Audio Signal Analysis & Feature Extraction

The increase in users’ needs for music content and the rapid growth of music-related
streaming service markets, such as YouTube and Spotify, are closely related to the advance-
ment of the MIR field. In order to efficiently perform MIR, it is necessary to analyze audio
signals that can automate and advance the extraction of acoustic features from music data.
For this purpose, various acoustic feature extraction frameworks, such as Marsyas [7],
PsySound3 [8], MIRtoolbox [9], and LibROSA [10], have been proposed. These frameworks
recognize and analyze audio signals, extracts acoustic features, such as pitch, harmonic-
ity, spectral centroid, spectral moments, mel-frequency cepstral coefficients (MFCC), and
analyzes acoustic features to provide pattern recognition or clustering function. The Li-
bROSA [10] framework was developed under a python environment with good expansion
by being optimized to big data and machine learning, deep learning, and other related
environments. LibROSA [10] uses short time Fourier transform (STFT) to extract audio
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features, such as chroma, melspectrogram, MFCC, RMS, and tempogram, from audio
signals. An algorithm is provided by analyzing this extracted acoustic features to perform
clustering between the same intervals with the same characteristics. Bayu et al. (2019) [41]
used LibROSA to extract acoustic features to create a model for classifying music emotions.
And in Babu et al. (2021) [42]’s Speech Emotion Recognition System construction study, Li-
bROSA was used by utilizing the LibROSA Library in a Python environment. In this study,
when receiving new classical music data, we are also building a model that automatically
recognizes the music mood for a detailed section in real time. In order for the research
derived model to be utilized as various AI-based application services, it was considered to
be efficient to build a model in a Python environment. Therefore, in this study, the structure
of music based on acoustic features of classical music data is analyzed and the LibROSA
Framework is used for mood recognition.

Figure 2. Hierarchical Classification of Acoustic Features [40].

2.4. Music Emotion Recognition

Among the previous studies on MER, many studies have been conducted to recognize
and classify the emotion to a piece of music. However, the emotion of music has a time-
varying characteristic that is dependent on the flow of playback time. In particular, as the
length of music becomes longer, as in classical music, recognizing and classifying the whole
music as a single emotion may have low classification accuracy and may be ambiguous.
In addition, in order to link music to various services or media, there may be a limit to
searching for detailed music emotions. Therefore, in this study, in order to recognize the
detailed emotions of classical music as mood adjectives, it is necessary to study the mood
emotion recognition method for each segment based on the segment extraction of music.

Among previous studies on recognizing music segments, Li and Ogihara et al. (2006) [13]
and Han et al. (2010) [14] defined mood adjectives. First, Li and Ogihara et al. (2006) [13]
divided classical music into several segments, extracted the timbre features of each segment,
and conducted a study on mood recognition.

In this study, using the SVM model, three bipolar adjectives were defined as mood
adjectives to be used in the study, mood was predicted by binary classification, and an
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accuracy of about 70% was achieved. Moreover, Han et al. (2010) [14] conducted a study
on recommending suitable music to evoke the user’s desired emotional state. On the
other hand, although classification using SVM can classify only one class at a time, SVM
is used because it has the strength of SVM performance and simplicity of expression of
verification results.

Lee et al. (2010) [15] conducted a study to discriminate the mood of each segment
to recommend music suitable for the user’s situation, after segmenting a section with
structurally similar acoustic features in music. For mood recognition by segment, the
individual subjective mood was modeled by using Thayer’s Mood System through a
regression analysis method.

Seo et al. (2019) [16] also used Thayer’s Mood System. This study proposed a
method of classifying music moods based on the Thayer’s Mood System to automatically
recommend music according to people’s emotions in music-related applications. In the
aforementioned studies, acoustic features were extracted for each segment of music and
used as training data for a model predicting mood for each segment of music.

In this study, a total of 19 acoustic features, including rhythm, harmony, pitch, and
timbre, among the acoustic features of classical music are extracted based on previous
studies related to MER. Based on this, we intend to create a model that recognizes mood.
For a model that recognizes the music mood, we intend to use XGBoost, which has a better
performance than SVM used in the existing MER studies.

3. Method

In this study, we are going to study a model that automatically recognizes the detailed
mood of classical music so that the detailed mood can be used for application services
by fusing them to media of various moods. For the purposes of studying the model, the
study is executed according to the study method and transitions shown in Figure 3. First,
classical music and emotional adjective data are prepared. Subsequently, a long classical
music data segmentation is created. Then, when the mood training data labeling of the
music segments is completed, the Mood Classification Model learning is performed.

To prepare for the classical music research, 12,305 classical music data in total were
collected from 5 organizations, such as FMA (Free Music Archive) [43], Musopen [44],
Musicnet [45], KkachilhanClassic [46], and URMP [47]. In this study, music data must un-
dergo segmentation processing, so the music data collection criteria were defined as audio
data that can be used commercially, CC0 1.0 Universal, which is a license for secondary
processing, and Public Domain Mark 1.0.

3.1. Music Data Segmentation
3.1.1. Acoustic Features Extraction and Music Data Segmentation

Classical music is composed of various acoustic features according to the flow of
playing time, so that various detailed moods can be defined. For the unit to analyze
the detailed mood of classical music, it is necessary to analyze the mood of the segment
of classical music. There are two methods of segmenting classical music. One is the
segmentation of the flow of music at regular time intervals. The other is the automatic
segmentation of sections with similar acoustic features which can be a factor in affecting
mood changes in music. A music Dataset A segmented at regular intervals of 30 s a music
Dataset B segmented for structural characteristics of music are generated.

In general, classical music has a long playback time and includes countless audio
spectrum analysis data, so an efficient method for analyzing the structure and segmentation
is needed. In addition, effective acoustic features are required for segmentation according
to the structural characteristics of music. In the case of MFCC, it is an audio feature that well
represents the tone of music and is defined as the main acoustic feature of the emotional
classification and genre classification models. In this study, to prepare dataset B, we use
the Librosa framework to facilitate the extraction of music segment data.
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Figure 3. Introduction of Research Method per Stage.

MFCC uses a logarithmic scale at high frequencies to reflect the characteristics of
human hearing organs by performing fine spectral decomposition at low frequencies in a
linear low frequency subband [40]. After extracting these MFCC and by using the difference
of features between previous frames, audio signals go through agglomerative clustering
and audio signals with a large difference between feature values are determined to be the
point of change, so data segmentation is processed.
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Agglomerative clustering is one of the hierarchical clustering algorithm methods that
assigns each data point as one cluster and combines two similar clusters until a designated
number of clusters remains. In other words, the clustering method can detect a point
where MFCC characteristic changes by the segment.agglomerative function. Moreover, the
agglomerative clustering algorithm divides an input which is used to define designated
k numbers of continuous components. In this study, since one piece of classical music
should be divided into k segments, k was determined as the quotient obtained by dividing
the length of classical music by 10. Therefore, segments are produced as a quotient of the
length of classical music divided by 10 from one piece of classical music. The reason for the
division by a factor of 10 is because it was considered appropriate to show visual media for
one hour divided into 10 equal parts, considering that visual media with a mood similar to
the music segment and visual media with a similar mood can be combined and serviced
later. However, if all music is divided into 10 sections, a very short section can be created.
We attempted to solve this case through the music segment clustering algorithm, as shown
in Figure 4.

Figure 4. Dataset B Production Process by MFCC Feature Extraction and Music Segment Clustering.

Using a total of 12,305 classical music data collected for this study, Dataset A is
segmented at regular intervals of 30 s and Music Dataset B is segmented according to the
structural characteristics of music.

1. Dataset A Segements created by regularly dividing 30 s (data size: 1644 pieces).
2. Dataset B Segments created by dividing according to the proposed method (data size:

12,305 pieces).

Figure 5 shows Edward Elgar’s ‘Pomp and Circumstance—March No. 1 in D major
op. 39-1′. The example shows a part of Dataset A in which 39-1′ is uniformly divided for
30 s and a part of Dataset B in which the segment is created by clustering between sections
in which the MFCC features of the method proposed in this paper are similar. In the case
of Edward Elgar’s ‘Pomp and Circumstance—March No. 1 in D major op. 39-1′, although
it is the same classical music, the number of segments generated was 9 when performing
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the segment using the Dataset A method, and 13 music segments were generated when
performing the segmentation using the Dataset B method.

Figure 5. Music Data Segmentation Overview of Dataset A and Dataset B.

3.1.2. Clustering Algorithm

When music data is segmented by the segment extraction method using MFCC to
produce dataset B, in the case of a song performed by an actual classical music performance,
a segment of 5 s or under may be created. An example of such a short segment would
be data that only contain applauding sounds. Since each segment must be an affectively
meaningful interval, it is necessary to process a very short interval. This research added
music segment short term clustering algorithm to cluster data 5 s or under to other clusters
referring to the research of Xiao et al. (2008) [18], who suggested the length of aa music
segment in which the mood of the music feels stable is 8 s and 16 s. In this study, the
music segment short term clustering algorithm is added based on the fact that Xiao et al.
(2008) [18] found that the stable music segment lengths that can effectively convey the
music atmosphere are 8 s and 16 s.

The music segment short term clustering algorithm is an algorithm for merging music
segments with other segments if the length of the music segment is 5 s or under. Since
the first segment has no previous section, it is merged with the next segment. As a result,
among all segments of the music, music segments of 5 s or under are merged with the
previous or next segment to have a length of more than 5 s. By adding the music segment
short term clustering algorithm, it is possible to stably match the mood for each music
segment. Figure 6 below shows the process of clustering segments of 5 s or under using the
music segment short term clustering algorithm in addition to the method of automatically
segmenting music according to the MFCC feature when creating Dataset B.
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Figure 6. Overview of Music Segment Short Term Clustering Algorithm.

3.2. Training Data Mood Labelling

For the emotional labeling of the segmented classical music training data, the mood
adjective class definition should be first established. This is to define the final class by
performing the mood adjective clustering task through the affect, music expert group. By
using mood adjectives defined on music training data which are each music segments
in Dataset A and Dataset B by classical music panels, labelling is performed. As such,
we intend to use the music labeling data generated through classical music experts as
training data for the mood classification model of the music segment. Meanwhile, the
mood labelling work of music segment data is performed by experts not by laymen to
reduce the bias of data and provide clarity for mood extraction.

3.2.1. Definition of Classical Music Mood Adjective Class

In order to label the mood adjectives for each segment of the classical music segment
data Dataset A and Dataset B prepared earlier, first, it is necessary to define an adjective
class that reflects the characteristics of classical music well and considers the linkage of
the affect convergence service of classical music in the future. There is a basic emotion
model that proposes Ekman’s basic emotional adjectives (anger, disgust, fear, enjoyment,
sadness, surprise), the strength of which is to be clearly distinguished based on general
emotions. For this model, there may be less music data collection for certain emotional
adjective classes, such as disgust. Moreover, since it is an adjective that is faithful to the
basic emotion connected to the expression, there are few options to reveal the mood in
classical music, so there may be a limit to labeling the music mood. There is a need for an
adjective class that can broaden the choice of affect adjectives, minimize overlapping or
ambiguous adjectives, and effectively label the mood of music.

For this reason, this research used 289 mood tag adjectives used in music services,
selected by music experts in ‘All Music’ which is an actual music streaming service to
collect mood adjectives suggested for classical music mood. Among the 289 musical mood
adjectives collected from ‘All Music’, similar mood adjectives are clustered except for those
not related to classical music. Through this, the division between adjectives is reduced, but
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the choice of adjectives is wider than the basic emotional adjectives, and it can be used
efficiently for a mood suitable for listening to and expressing classical music.

For the definition of mood adjectives, two affect research experts used 289 mood
adjective cards, referring to Russell’s [32] affect model study correlation analysis results,
Collins English Thesaurus [48], and Oxford Thesaurus [49]. Based on the thesaurus,
68 mood adjectives were first clustered. In this process. In this process, 68 adjectives are
derived by excluding those related to hip-hop, drugs, and profanity that do not fit the
classical music genre. And 68 adjectives were secondarily clustered into 19 adjectives.
Figure 7 shows the clustering method of classical music mood adjectives and the finally
drawn classical music mood adjective class.

Figure 7. Classical Music Mood Adjective Clustering process.

3.2.2. Music Expert Data Labeling Method

In order to aid a model in learning to classify the mood of the classical music segment,
we proceed with mood adjective labeling on the segment data. In this research, 3 classical
music major experts labelled 1644 Dataset A segments and 12,305 Dataset B segments.
After randomly selecting each interval of segment data per each classical music song
from Dataset A and Dataset B that were prepared to verify a suitable music as training
data, the labelled data are used as a training data for the mood classification model of the
music segment.

The labelling of Dataset A and Dataset B is performed via the same method. The
mix of Dataset A and Dataset B was handed over to be labelled by 3 music experts on
25 February 2021 and the experts were allowed to label multiple moods felt from the music
interval using 18 mood adjectives selected for classical music. By allowing all moods to
be selected after listening to a section of music, it was possible to classify the emotions
of a section of music into a complex mood rather than a single mood. The music experts
completed labelling all 13,949 music segments in total for 4 months from 25 February 2021
to 7 July 2021.
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Table 1 shows a part of the results labelled by music experts on music segment data.
The results include the music title, labelled segment number, start second and end second
of the segment, segment length, and labelling information of segment.

Table 1. Classical Music Segment Data Labelling Result Paper of Classical Music Experts (part).

Music Title Seg
Time

(Start Second,
End Second)

Length
Emotion

Energetic Powerful Joyous Scary

Cello Sonata in G minor op. 65:
II. Scherzo—Allegro con brio 9 [105.5, 113.5] 8 2� 2�

12 Etudes op. 10:
No. 2 in A minor, Allegro 3 [45, 50.2] 5.2 2� 2�

Nocturnes:
No. 5 in F sharp major op. 15-2 14 [136.5, 152.6] 16.1

Symphony No. 1 in C major op. 21:
III. Menuetto. Allegro molto e vivace 16 [193.4, 209.5] 16.1 2� 2� 2�

3.3. Classical Music Mood Recognition Model Production

In order to automatically recognize the various detailed moods that change in classical
music, classical music has to be segmented. Based on this, a model that can automatically
perform mood recognition for data is produced, as shown in Figure 8. In order for the
classical music mood recognition model to learn mood recognition, the following processes
must be conducted. First, acoustic features are extracted, which will be used for analyzing
mood recognition from segment data. Next, a classical music mood recognition model is
produced using the XGBoost algorithm.

Figure 8. Classical Music Mood Recognition Model.

3.3.1. Extraction of 19 Acoustic Features for Mood Analysis

First, the acoustic features to be used for signal analysis for mood recognition of
segment data are by using Librosa to extract a total of 19 acoustic features (tempo, beats,
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chroma stft, chroma cq, chroma cens, melspectrogram, mfcc, mfcc delta, rmse, spectral
bandwidth, cent, contrast, rolloff, poly features, tonnetz, zero crossing rate, harmonic,
percussive, frame etc.). Among the features provided by Librosa, low-level features like
MFCC and ZCR are the most used in the MIR system [50], and mid-level features like
chroma represent a meaningful classification of pitch. Not only is this useful for music
analysis, but it is also suitable as a feature for effect classification or recognition models [51].

3.3.2. Music Mood Recognition Learning Based on XGBoost Algorithm and Model Production

XGBoost [52] uses a boosting method that utilizes several shallow depth determination
tree classifiers. After producing many determination tree classifiers which process the
learning method to increase classification accuracy while finding acoustic features which
can well classify the moods among acoustic features extracted from classical music segment
data, learning is processed in the order of each determination tree. If the result of learning
the first decision tree classifier does not classify the mood well, the second decision tree
is learned by utilizing a weighted factor. After reflecting the weighted factor according
to the test result of the secondary decision-making tree. Then, a third decision making
tree is learned by reinforcement. According to the above stipulated process, XGBoost has
excellent recognition performance, gradually lowering errors by sequentially reinforcing
training data in order. In addition, XGBoost accelerates the learning speed with parallel
and distributed computing, so it performs a model search faster to aid a faster processing
of large datasets. This study uses XGBoost to create 18 binary classification models for each
mood class that is classified as a positive class or a negative class. Since the listener should
feel a rich mood, i.e., a complex mood after listening to the music segment, the music
segment should be multi-label classified into different class labels of mood. Therefore, in
this study, multi-label classification was found to be more useful by using a classification
model for each affect rather than recognizing the mood of the whole music.

4. Evaluation

In order to improve the performance of recognizing the detailed mood flow of classical
music, in the previous chapter, the music segment extraction method, which is the unit of
mood recognition, was applied and a model capable of classifying 18 moods was produced.
In this section, from the model we made earlier, the performance evaluation (of the model)
to assess the music segmentation method that can improve the model’s mood recognition
performance and the evaluation to secure the validity of using the XGBoost algorithm are
carried out.

The proposed mood classification model in this study is a binary classification model
which performs a five-fold cross validation to prevent overfitting for performance evalua-
tion. The performance evaluation results of the model are, validated by the representative
performance evaluation indicators of accuracy, precision, recall, F1 score, and ROC AUC.
The receiver operating characteristic (ROC) is an index showing a pair of the percentage of
samples predicted to be positive among all positive samples and the percentage of samples
that were incorrectly predicted to be positive among all negative samples as a curve. Area
under the curve (AUC) is an index indicating the area under the ROC curve, and the closer
to 1.0, the better the performance. In this study, performance evaluation is conducted based
on the ROC AUC score, which is mainly used as an indicator of the performance of the
binary classification.

4.1. Performance Evaluation of Segment Method
4.1.1. Experiment 1: Performance Evaluation Method

In order to confirm the difference in performance according to the difference in music
segment data extraction method, an experiment was conducted to compare the performance
of dataset A and dataset B. Dataset A generated from segments which is a unit of specific
mood recognition of classical music in constant intervals of 30 s. Dataset B was generated
by adding an algorithm of combining segments of 5 s or under, front and back, which is
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considered to be difficult in terms of mood recognition after segmenting music based on
MFCC acoustic features analysis.

As the mood class per labelled music segment is not balanced, the data size is selected
based on mood class data with the fewest labels so that the experiment can be conducted in
similar conditions. The ratio of positive and negative classes of training data for each mood
is configured to be a 1:1 ratio to establish a balanced data. The threshold of the model is
set to 0.5. If the performance of each model is 0.5 or higher, it is classified as a positive
class. In this way, one segment can be classified into several moods such as “Energetic”
and “Powerful”. Next, to verify the performance of the mood recognition algorithm, the
optimal algorithm is selected based on the average of the AUC values among the results
classified in each fold using the K-fold cross validation algorithm.

4.1.2. Experiment 1: Result and Discussion

After comparing the Area Under the Curve (AUC) points to assess the performance
of Dataset A and Dataset B in Table 2 and Figure 9, Dataset B had higher AUC points at
15 classes (energetic, powerful, joyous, aroused, scary, tense, sad, soft, restrained, happy,
mysterious, elegant, tuneful, majestic, reverent) among the 18 mood classes. However, in
three mood classes (relaxed, calm, warm), the results of Dataset A were higher. Meanwhile,
joyous had the highest performance of 0.89 in Dataset B. Scary had the lowest performance
of 0.41 in Dataset A.

Table 2. Dataset A, Dataset B Model Experiment Result.

Mood
Accuracy Precision Recall F1 ROC-AUC

A B A B A B A B A B

Energetic 0.68 0.74 0.69 40.72 0.71 0.78 0.69 0.74 0.72 0.77
Powerful 0.45 0.78 0.50 0.80 0.41 0.77 0.42 0.78 0.48 0.85
Joyous 0.58 0.84 0.58 0.85 0.64 0.87 0.60 0.85 0.56 0.89
Aroused 0.56 0.66 0.55 0.67 0.59 0.68 0.55 0.67 0.63 0.68
Scary 0.47 0.65 0.49 0.65 0.57 0.64 0.53 0.64 0.41 0.70
Tense 0.43 0.62 0.43 0.61 0.43 0.68 0.42 0.64 0.49 0.56
Relaxed 0.59 0.56 0.59 0.57 0.61 0.50 0.60 0.53 0.65 0.55
Sad 0.53 0.50 0.53 0.49 0.54 0.48 0.52 0.48 0.54 0.56
Soft/Quiet 0.57 0.60 0.59 0.59 0.59 0.62 0.57 0.60 0.66 0.69
Restrained 0.68 0.63 0.74 0.61 0.59 0.70 0.65 0.64 0.66 0.67
Calm 0.60 0.60 0.61 0.60 0.61 0.54 0.60 0.56 0.57 0.62
Happy 0.55 0.61 0.55 0.62 0.59 0.59 0.56 0.59 0.55 0.70
Warm 0.60 0.54 0.60 0.54 0.64 0.62 0.61 0.57 0.61 0.56
Mysterious 0.50 0.53 0.49 0.54 0.48 0.49 0.47 0.49 0.52 0.53
Elegant 0.50 0.57 0.49 0.57 0.53 0.57 0.49 0.57 0.48 0.55
Tuneful 0.58 0.66 0.58 0.63 0.61 0.65 0.59 0.63 0.63 0.66
Majestic 0.62 0.72 0.61 0.74 0.68 0.71 0.64 0.72 0.67 0.73
Reverent 0.52 0.75 0.52 0.73 0.57 0.80 0.54 0.76 0.58 0.74

There were no mood classes over 0.8 in Dataset A but there were mood classes
including Powerful and Joyous over 0.8 in Dataset B, so the mood classification model of
Dataset B showed better performance. Based on these results, Dataset B which analyzed
moods via the segment extraction method showed a better performance compared to
Dataset A which was extracted randomly by constant interval. Moreover, powerful, scary,
and tense of Dataset A did not prove higher than 0.5. If AUC is not higher than 0.5, the most
likely explanation was that the labelling is wrong. After checking the labelling data, there
were many moods corresponding to 30 s, so the performance of the model is predicted to
be low. Based on these results, it was shown that Dataset A is unsuitable for the purposes
of model learning.
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Figure 9. Comparison of ROC-AUC Performance Results of Dataset A and Dataset B.

4.2. Algorithm Performance Evaluation of Proposed Model
4.2.1. Experiment 2: Performance Evaluation Method

The research performs learning of data labelled by music experts using not only
XGBoost, which was used for classical music mood recognition model produced by the
research, but also random forest and SVM algorithms. Using the validation data, the
objective is to derive the performance values between algorithms so that a comparative
analysis can be executed. The objective of this experiment is to compare the use of the
XGBoost algorithm used for the music mood recognition model with other algorithms,
and to establish the foundation for the use value of the XGBoost algorithm in the music
mood recognition model. First, 18 binary classification models are produced, classifying
whether 18 mood adjectives belong to a positive class or negative class per algorithm, i.e.,
XGBoost, random forest, and SVM. In general, because the listener experiences a plethora
of moods, that is, complex moods throughout the music segment, the music segment
should undergo multi-label classification so that it can be classified into several mood class
labels. To accomplish this, a model is used for each mood class.

Meanwhile, the ratio of positive and negative classes of training data for each mood
is configured by 50% to establish a balanced data. Then, the threshold of the model is set
to 0.5, and if the performance of each model is 0.5 or higher, it is classified as a positive
class. In this way, one segment can be classified into several moods such as “Energetic” and
“Powerful”. Next, in order to verify the performance of the mood recognition algorithm,
we propose an optimal algorithm based on the average of the AUC values among the
results classified in each fold using the K-fold cross validation algorithm.

4.2.2. Experiment 2: Result and Discussion

Table 3 is a table comparing the performance of each of the three algorithms, and a
visual comparison of the results is shown in Figure 10. In 14 moods (energetic, powerful,
joyous, aroused, scary, tense, soft, restrained, calm, warm, mysterious, elegant, tuneful,
majestic), excluding relaxed, happy, sad, and reverent, the performance of XGBoost was
higher than SVM and random forest with a slight difference. Particularly, the powerful
mood in XGBoost was 0.822911, showing the highest performance. However, lowest
performance was scary from SVM by 0.635494.
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Table 3. Cross Validation Result Comparison of SVM, Random Forest, and XGBoost Algorithm.

SVM Randomforest XGBoost

Mood Accuracy Precision Recall F1 ROC-
AUC Accuracy Precision Recall F1 ROC-

AUC Accuracy Precision Recall F1 ROC-
AUC

Energetic 0.71 0.69 0.76 0.72 0.78 0.72 0.71 0.73 0.72 0.79 0.72 0.71 0.75 0.73 0.80
Powerful 0.73 0.73 0.73 0.73 0.81 0.74 0.75 0.74 0.74 0.81 0.74 0.75 0.74 0.74 0.82
Joyous 0.70 0.68 0.77 0.72 0.77 0.72 0.71 0.74 0.72 0.78 0.72 0.71 0.76 0.73 0.79
Aroused 0.68 0.67 0.72 0.69 0.75 0.68 0.67 0.70 0.68 0.75 0.68 0.68 0.69 0.68 0.76
Scary 0.55 0.57 0.50 0.53 0.64 0.63 0.67 0.58 0.59 0.65 0.64 0.63 0.66 0.64 0.70
Tense 0.62 0.66 0.52 0.58 0.66 0.64 0.65 0.59 0.63 0.69 0.64 0.65 0.60 0.62 0.69
Relaxed 0.67 0.65 0.75 0.69 0.72 0.68 0.68 0.70 0.69 0.75 0.68 0.67 0.69 0.68 0.75
Sad 0.63 0.66 0.57 0.61 0.67 0.65 0.68 0.64 0.65 0.73 0.66 0.67 0.63 0.65 0.73
Soft 0.72 0.71 0.74 0.73 0.77 0.72 0.71 0.73 0.73 0.79 0.73 0.72 0.75 0.73 0.80
Restrained 0.70 0.69 0.74 0.72 0.77 0.72 0.71 0.73 0.71 0.78 0.71 0.71 0.73 0.72 0.78
Calm 0.63 0.61 0.73 0.67 0.68 0.65 0.65 0.68 0.66 0.70 0.65 0.64 0.69 0.66 0.70
Happy 0.59 0.59 0.60 0.60 0.64 0.65 0.66 0.62 0.64 0.71 0.65 0.65 0.66 0.65 0.71
Warm 0.62 0.62 0.62 0.62 0.68 0.67 0.67 0.63 0.65 0.72 0.66 0.66 0.66 0.66 0.73
Mysterious 0.61 0.63 0.57 0.60 0.66 0.61 0.63 0.60 0.61 0.66 0.63 0.64 0.59 0.61 0.68
Elegant 0.64 0.65 0.63 0.64 0.69 0.66 0.66 0.63 0.65 0.71 0.66 0.66 0.64 0.65 0.71
Tuneful 0.64 0.63 0.69 0.66 0.69 0.65 0.65 0.64 0.66 0.72 0.66 0.66 0.68 0.67 0.73
Majestic 0.70 0.73 0.66 0.69 0.77 0.69 0.69 0.67 0.69 0.75 0.71 0.71 0.70 0.70 0.77
Reverent 0.64 0.67 0.54 0.60 0.70 0.66 0.67 0.62 0.66 0.74 0.69 0.71 0.64 0.67 0.73

Figure 10. Comparison of ROC-AUC Performance Results Graph of Dataset B by SVM, Random Forest, and XGBoost Model.

5. Conclusions

In this study, a model that automatically recognizes the mood of classical music for a
project to create a platform and application service that allows classical music to be fused
with visual media suitable for emotions was examined. Classical music was considered
to be a good research subject due its inherent characteristic of a long–playing time and
transitional flows of various moods. Considering the affect convergence service, the music
segment data extraction criteria were established to effectively recognize the various moods
detailed in accordance with the flow of the classical music playing time. After generating
a model that can automatically recognize the mood according to the acoustic features
analysis of each segment data, the performance was verified.

First, more than 12,000 pieces of classical music data that were allowed to be processed
were collected. In order to recognize a detailed mood of music data, a standard for dividing
the segment data, that is, a length unit of music for recognizing a detailed mood, is first
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required. In this study, in order to find a way to divide the music segment data that can
improve the performance of mood recognition, the collected music data were segmented
in two ways, namely in Dataset A and Dataset B. Dataset A extracts music segment data
at regular intervals of 30 s, and Dataset B extracts a segment clustered among acoustic
features with similar MFCCs related to tone. The problem with a short music segment
of 5 s or under is that it may be a meaningless section for mood recognition, such as the
sound of applause, and the time is short in a service that features fusion with visual media,
so it is unsuitable for watching visual media. In order to improve this problem, segments
of 5 s or under are clustered once again with the front or rear segments, so that all music
segments can have a length of at least 5 s. In addition, we derived 18 classes of optimal
mood adjectives to be used in the study of the mood recognition model of classical music.
Music experts labeled some of music segment data classified as training data for datasets
A and B using 18 mood adjectives. Using this as training data, acoustic features were
analyzed using XGBoost and a model for recognizing the mood was trained with it. Finally,
by using XGBoost to classify mood classes for each music segment, a model was created
that automatically detects mood according to the flow of the entire classical music.

Experiments were performed for two evaluations of the classical music emotional
model production conducted in this study. A performance evaluation experiment was
first conducted to determine the music segment method that can improve the music mood
recognition performance by comparing the results from Dataset A and Dataset B. The results
revealed that Dataset B showed better recognition results from 15 mood classes (energetic,
powerful, joyous, aroused, scary, tense, sad, soft, restrained, happy, mysterious, elegant,
tuneful, majestic, reverent) than Dataset A. Through this, it was found that the method
from dataset B was optimal for increasing the clarity of mood recognition as a method of
clustering and extracting segments of classical music, which is the unit for recognizing the
mood in this study. The next performance evaluation experiment involved securing the
validity of using the XGBoost algorithm in the model based on the theoretical background
in this study. For this purpose, we compared the performance of mood recognition with
other SVM and random forest algorithms. The results revealed that XGBoost classified 14
(energetic, powerful, joyous, aroused, scary, tense, soft, restrained, calm, warm, mysterious,
elegant, tuneful, majestic) mood classes better than the other two algorithms. Moreover, the
ROC AUC values of most mood classes from the model classification results were between
0.7 and 0.8 so that the corresponding classification model is determined to be a good binary
classifier. According to the results of model classification, most mood classes have ROC
AUC values between 0.7 and 0.8, so it can be considered that the classification model is a
good binary classifier.

This study proposed a model that can effectively recognize the detailed mood of
classical music, focusing on classical music that has a long playback length and composed
of various detailed moods. This model has four important values. First, classical music is
segmented according to the tone of ‘acoustic features’, but it can be segmented with a length
optimized for mood recognition. Such a method is a music segment method suitable for not
only improving the performance of mood recognition, but also for applications to a service
that combines visual appreciation. Second, for the mood classification of classical music,
18 representative mood adjectives were derived from among numerous mood adjectives so
that they could be utilized in other similar studies and emotional fusion services. Third, for
music segment data to be used as training data, music experts participated in mood
labeling to enhance the expertise of training data and results. Finally, after learning the
mood of music segment data through the acoustic features of music using XGBoost, a model
for recognizing various moods of music segment data was presented to improve mood
recognition performance. The model proposed in this study was examined in consideration
of the development of an affect convergence platform service based on classical music in
the future. In other words, this study can serve as a foundation for efficiently segmenting
music and recognizing the mood for a service that allows users to enjoy visual media of the
same affect as well as the auditory experience while listening to classical music. In addition,
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these researchers intend to expand upon the study of developing a model for recognizing
detailed moods specialized in classical music to a model study for recognizing moods
specialized for various genres, such as new age, blues, ballads, and jazz in the future.
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