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Abstract: With the development of electronic infrastructures and communication technologies and
protocols, electric grids have evolved towards the concept of Smart Grids, which enable the commu-
nication of the different agents involved in their operation, thus notably increasing their efficiency. In
this context, microgrids and nanogrids have emerged as invaluable frameworks for optimal integra-
tion of renewable sources, electric mobility, energy storage facilities and demand response programs.
This paper discusses a DC isolated nanogrid layout for the integration of renewable generators,
battery energy storage, demand response activities and electric vehicle charging infrastructures.
Moreover, a stochastic optimal scheduling tool is developed for the studied nanogrid, suitable for
operators integrated into local service entities along with the energy retailer. A stochastic model
is developed for fast charging stations in particular. A case study serves to validate the developed
tool and analyze the economical and operational implications of demand response programs and
charging infrastructures. Results evidence the importance of demand response initiatives in the
economic profit of the retailer.

Keywords: DC nanogrid; microgrid; electric vehicle; demand response; optimal scheduling; uncertainty

1. Introduction

The Smart Grid paradigm requires active participation and coordination of all the
agents involved in the electric system [1,2]. With the advent of this concept, nanogrids
(NGs) have emerged as an invaluable framework for the integration of renewable genera-
tion, electric vehicles (EVs), storage facilities and demand response (DR) programs [3–6];
as well as for electrical supplying of remote isolated areas [7]. In this context, the opti-
mal coordination of the agents involved requires deploying advanced communication
infrastructures and electronic interfaces on either AC, DC or hybrid networks [8–10]. Com-
munication channels enable effective information exchange among the different assets
that participate in the operation of the system. This novel paradigm allows to effectively
coordinate the participation of the different agents, with the aim of pursuing more efficient
management of the generation and storage facilities [11]; while consumers can also actively
participate through DR initiatives, modifying their consumption profiles on the basis of
price or incentive signals [12].

Because of the heterogeneity and conflicting interests of the different agents involved
in the NG operation, their coordination is frequently addressed in a centralized fashion
by the grid operator. This agent is usually integrated into the local service entity along
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with the local retailer [13]. In remote isolated areas, the local service entity usually owns
the on-site generation and storage assets [14]. In such a case, the operator must ensure
the supplying quality and reliability at minimum cost, in order to maximize the benefits
obtained by the retailer. To this end, the operator can exploit public infrastructures such
as charging stations [15,16], in order to complement the incomes obtained from energy
supplying. Thereby, it is essential to operate the grid in an optimal way efficiently exploit-
ing the different available resources and taking advantage of the flexibility provided by
DR programs.

The optimal operation of NGs (or microgrids) is a hot topic that has attracted huge
attention recently. In Ref. [17], the authors developed an optimal scheduling model for
EVs and battery swapping stations. The model is formulated so that the costs of EVs
are minimized while the profit of battery storage systems (BSSs) in energy markets is
maximized. In Ref. [18], an energy management problem is formulated which considers
renewable sources and an EV smart parking lot, with the objective of maximizing the EVs
owner satisfaction. The authors in [19] developed a model predictive control for MGs
which considers possible future variations in EVs demand. The possibility of vehicle-to-grid
capabilities from EVs is considered in [20], by which bidirectional flows are enabled from/to
the onboard storage systems. In Ref. [21], an operating window constrained strategic energy
management is proposed for MGs, which allows different formulations depending is the
problem is treated by the EVs owner or the MG operator. The reference [22] deals with
the optimal operation of isolated MGs in which EVs are exploited as storage facilities,
enabling vehicle-to-grid capabilities. The authors of [23] developed a bi-level optimization
problem for isolated MGs equipped with battery swapping stations. The idea is to minimize
the operating cost in the upper level while the secondary problem aims at maximizing
the profits of the stations. In Ref. [24], an optimal scheduling model for industrial MGs
with plug-in EVs is developed, in which constraints related to industrial production are
included. Ref. [25] proposed a coordination model for charging stations supplied from
photovoltaic (PV) panels, EV on-board storage and the rest of the isolated MG. In Ref. [26]
the optimal generation scheduling is combined with the optimal reconfiguration of the
grid. The reference [27] proposed a real time control scheme for a smart EV fleet for
optimal coordination of vehicle-to-grid and grid-to-vehicle modes. In [28], the EV fleet
is considered as a mobile storage system in a hierarchical real time model predictive
control for MGs. The authors in [29] considered the control of a hybrid AC-DC MG in
which the EV charging system is directly connected to the DC side. The authors of [30]
developed a stochastic scheduling model for MGs, including EVs, renewable sources and
fuel cells. The reference [31] proposed a multi-objective problem for optimal network
reconfiguration, generation dispatch and capacitor switching in the presence of controllable
loads and EVs. The reference [32] developed a two-level robust optimization framework
for optimal scheduling of grid-connected MGs including plug-in EVs. Ref. [33] deals
with the short-term optimal planning of MG layout considering plug-in EVs with enabled
vehicle-to-grid capability. The authors of [34] exploited metaheuristic techniques to solve
the optimal scheduling of an MG with renewable sources, EVs and battery energy storage
systems (BES). The authors of [35] considered three different charging modes for plug-in
EVs, analyzing their impact on the MG optimal scheduling task. Ref. [36] analyzed the
role of EVs for critical load restoration in resilient MGs, exploiting vehicle-to-grid and
grid-to-vehicle capabilities as well as onboard high-powered engine generators.

As deduced from the review above, optimal scheduling of MGs is essential to minimize
their operating costs or maximizing their monetary profits. In this sense, flexible loads
such as charging stations and DR initiatives play a vital role to boost up the efficiency of
the system. To maximize the penetration of EVs, DC NGs emerge as the optimal solution
for reducing system requirements. By this approach, charging stations can be directly
connected to the DC bus through DC-DC converters, thus allowing a simplification in their
control schemes. This paper develops an optimal day-ahead scheduling model for DC
isolated NGs, which is suitable for grid operators that are integrated into the local service
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entity structure along with the local retailer. This way, in contrast to most of the existing
scheduling tools for similar grids which are devoted to minimizing the operational cost, the
developed formulation aims at maximizing the benefits obtained by the retailer optimally
coordinating on-site generators, storage facilities, flexible consumers and public charging
infrastructures. In addition, the proposed model incorporates various uncertainties, which
are modeled as stochastic parameters, including the charging station demand for which,
in contrast to other approaches which model the stochastic EV charging demand using
conventional probability functions, a specific stochastic model is developed. For the sake
of clarity, the major contributions of this paper are summarized below:

• Describing a DC layout for isolated NGs with DR programs and public EV
charging stations.

• Developing an optimal day-ahead scheduling model for the grid system described,
which is suitable for a grid operator which is integrated into the local service entity
structure along with the local retailer.

• Developing a stochastic model for the different uncertainties involved in the NG
operation, including renewable generation, local demand and EV charging profiles.

• Analyzing the influence of DR programs and EV penetration in the NG operation,
also focusing on the economic impact of such aspects.

In the rest of the paper, Section 2 describes the analyzed NG layout, the agents involved
and their role in NG operation. Section 3 presents the developed optimal scheduling model
for the NG described in the previous section. Section 4 develops a stochastic framework
for considering uncertainties in renewable generation, demand and EV charging profiles.
Section 5 presents various case studies. The main conclusions are duly drawn in Section 6.

2. Description of the NG under Study

As commented, this paper is focused on isolated DC NGs. This kind of system
involves the participation of various agents. The more notable interactions among the
agents involved are depicted in Figure 1, while their roles are explained below:

• NG operator: this agent is integrated into an upscale structure called a local service
entity. It is responsible for operating the grid in an optimal way, ensuring the sup-
plying quality and reliability. To this end, this agent daily performs a day-ahead
optimal scheduling plan, by which the different on-site assets are coordinated with
DR premises, such as those enabled by flexible consumers and public charging infras-
tructures. As a result, commitment signals, power set-points and DR information are
sent to generators, storage systems and flexible consumers to address the resulted
scheduling plan.

• Retailer: this agent provides fuel for conventional generators and is responsible
for the monetary expenditures derived from generator operation (operation and
maintenance). On the other hand, it receives monetary incomes from consumers
through energy tariffs and public charging infrastructures, of which the local service
entity is the owner.

• Generators and storage facilities: they are on-site assets owned by the local service
entity. They may be formed by conventional generators, such as diesel engine genera-
tors (DEGs); renewable generators, such as PV panels or wind turbines (WTs); and
storage facilities like BES.

• Consumers: residential demand and public charging infrastructures are considered
as consumers in this paper. The residential demand comprises inelastic and flexible
consumption. While the first one does not respond to price or incentive signals from
the NG operator, the second one may be scheduled in order to increase the efficiency
of the system or ensure its reliability. On the other hand, public charging stations
are owned by the local service entity. They provide adequate charging infrastruc-
tures to privately owned EVs, obtaining a monetary counterpart which is received
by the retailer.
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Figure 1. Pictorial representation of the agents involved in the operation of the NG under study and
the more notable interactions among them.

To effectively address the optimal coordination of the different participants, both
energy and communication channels have to be enabled, which are illustrated in Figure 2.
Each controllable agent is connected through electronic interfaces, which allow an effective
energy flow control from/to the different elements. This way, PV arrays, charging points
and BES are directly connected to the DC bus through DC-DC converters. On the other
hand, DEG and WTs require a rectified stage, which converts the generated AC waveform
to DC. It is assumed that residential consumers mostly comprise DC loads; therefore,
they can be connected directly to the DC bus without the necessity of an interface. In
contrast, flexible consumers require a control mechanism that receives the commitment
signals emitted from the NG operator. Each day, the operator receives forecasted data for
weather and demand, which allow the performance of an optimal scheduling plan for the
grid. This plan is transferred to the conventional generators and storage systems in the
form of commitment and set-point signals, while renewable sources receive power set-
points. DR programs are enabled through direct communication with flexible consumers.
Thereby, the public charging station may be controlled through power set-points, so that
EV demand may be totally satisfied or not, while flexible residential consumers can be
actually scheduled, shifting their consumption to the more convenient hours of the day.

Figure 2. Layout of the NG under study.
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3. Optimal Scheduling Model for the NG under Study

In this section, the mathematical formulation for the optimal scheduling of the NG
described in Section 2 is developed. The optimization problem is formulated as Mixed-
Integer-Lineal programming, which can be solved using conventional solvers.

3.1. Assumptions

It has been widely reported that electronic devices can delay the response of the device
to which it is interconnected by several seconds [37]. This aspect was not considered
in the developed formulation because it was assumed that the time step scheduling is
considerably larger than the delay introduced by electronic devices. This way, this aspect
did not impact the scheduling result yielded by the developed tool.

3.2. Objective Function

The optimal scheduling problem is formulated from the retailer point of view, which
aims at maximizing its own profit. To this end, this agent obtains monetary incomes
from serving energy in flexible and non-flexible consumers as well as charging processes
in EV stations. On the other hand, this agent incurs monetary expenditures due to fuel
consumption of DEG and operation-derived costs of the other generation and storage
assets. Keeping this in mind, the objective formulation can be formulated as follows:

F = ∑r∈R

{
ωr∆τ∑t∈T

{[
λtdr|t + λEVdEV

r|t + ∑
q∈Q

{
λquq

r|t pq

}]
︸ ︷︷ ︸

Incomes

−

ρPV pPV
r|t + ρWT pWT

r|t + ρBES
(

pBES,ch
r|t + pBES,dch

r|t

)2
+ f DEG

r|t︸ ︷︷ ︸
Expenditures


}} (1)

whereR stands for the representative scenario set; ωr is the probability of the rth scenario;
∆τ is the time step; T is the set of time intervals; λ is the energy cost (energy tariffs); d
is the expected demand; the superscript EV makes mention to electric vehicles; Q is the
set of shiftable consumers; u is a binary variable that indicates the commitment status; p
stands for power; ρ is the operation and maintenance costs; and the superscripts PV, WT,
BES and DEG make mention to solar panels, wind generators, battery storage and diesel
engine, respectively.

The objective formulation is formulated considering a stochastic model for uncertain-
ties so that the expression (1) considers the probability of occurrence of each scenario. The
first term of the incomes stands for the energy consumption of inelastic residential con-
sumers, the second term counts the profit from EV charging and the last element represents
the payments of flexible consumers.

The monetary expenditures mainly comprise operation and maintenance costs of
generation assets. For renewable-based generators, these costs are proportional to the
energy generated [7], whereas, in the case of BES, they are quadratic functions of the energy
exchanged with the grid [38]. The last element of the expenditures stands for the fuel
cost of DEG, which can be calculated as a quadratic function of the energy generated, as
follows [39]:

f DEG
r|t = aDEG + bDEG pDEG

r|t + cDEG
(

pDEG
r|t

)2
; ∀r ∈ R∧ t ∈ T (2)

where aDEG, bDEG and cDEG are predefined coefficients.
In order to keep the lineal feature of the developed problem, quadratic functions can

be efficiently linearized using piecewise representations [15] (see Appendix A).
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3.3. DEG Modelling

DEG units can be modeled as other dispatchable generators by their upper and
lower-rated values and ramping constraints, as said the Equations (3) and (4), respectively.

uDEG
t pDEG ≤ pDEG

r|t ≤ uDEG
t pDEG; ∀r ∈ R∧ t ∈ T (3)

pDEG
r|t−1 − RDEG ≤ pDEG

r|t ≤ pDEG
r|t−1 + RDEG; ∀r ∈ R∧ t ∈ T \t > 1 (4)

where pDEG and pDEG are the minimum and maximum dispatchable powers of the DEG
and R is the ramping rate.

3.4. PV Modelling

PV generation is influenced by uncertain parameters such as solar irradiation and
ambient temperature. Assuming these parameters are known or sufficiently well-predicted,
the available power generation can be calculated using an available PV array model. In
this paper, the model considered in [7,14] is used, which determines the PV generation
capacity as a function of the solar irradiation and ambient temperature, as follows:

φPV
r|t = pPV

[
0.25ϑr|t + 0.03ϑr|tθr|t +

(
1.01− 1.13ηPV

)
×
(

ϑr|t

)2
]

; ∀r ∈ R∧ t ∈ T (5)

where pPV is the rating power of the PV array; ϑ is the solar irradiance; θ is the ambient
temperature and ηPV is the efficiency of PV panels.

As pointed out in [7,14], model (5) does not take into account the installed power of the
PV generators. In other words, the second term in (5) may be higher than 1, which yields a
value higher than the rated power of PV panels. In practice, inverters impose limitations in
the PV power generation to avoid failure or fast degradation of components. Traditionally,
the equipment allows exceeding the nominal power by 10% [40], assuming that these
overvalues may be eventually assumed without excessively deteriorating the components
of the PV array. With these premises, the PV array model is completed with (6).

0 ≤ pPV
r|t ≤

{
φPV

r|t , if φPV
r|t ≤ 1.1·pPV

1.1pPV , o.w.
; ∀r ∈ R∧ t ∈ T (6)

It is worth noting that the developed model considers the PV generation as a variable
of the problem. It means that the NG operator can schedule its production on the basis of
forecasted data. In this sense, the scheduling result may occasionally set the PV generation
below the available power calculated by (5). In such a case, the surplus energy is assumed
to be dissipated in dummy loads [41,42].

3.5. WT Modelling

As in the case of the PV panels, the power given by a WT depends on the available
wind speed. Once this parameter is known or approximated, the available wind generation
can be estimated on the basis of the wind speed-power curve of WTs [7]. A typical graph
for this kind of curve is shown in Figure 3. It can be distinguished into three clear zones.
For a wind speed below γWT , the turbine is not able to extract energy from the wind and
therefore, the power produced is zero. After surpassing this threshold, the power given
by the turbine increases until reaching the rated power of the device at γWT,∗, which is a
characteristic value of each turbine model. Beyond this point, the turbine is able to give
its rated power until a maximum threshold γWT , beyond which the turbine is braked to
avoid breakdowns. The wind speed-power curve of a WT is typically represented by a set
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of equations as shown in (7), while the expression (8) takes into account the efficiency of
the coupling rectifier.

φWT
r|t =



0, if γr|t < γWT

αWT ·
(

γr|t

)3
− βWT pWT , if γWT ≤ γr|t ≤ γWT,∗

pWT , if γWT,∗ < γr|t ≤ γWT

0, if γr|t > γWT

; ∀r ∈ R∧ t ∈ T (7)

0 ≤ pWT
r|t ≤ ηWTφWT

r|t ; ∀r ∈ R∧ t ∈ T (8)

where γ is the wind speed; γWT and γWT are the minimum and maximum wind speed
values for which the WT can work; γWT,∗ is the nominal wind speed of WT; αWT and βWT

are predefined coefficients; pWT is the rated power of WT; and ηWT is the efficiency of WT.

Figure 3. Typical wind speed-power curve of a WT.

3.6. BES Modelling

The power that a BES can exchange with the system is typically upper bounded, as
said the constraint (9), whose nominal values are determined by the nominal capacity
and the energy to power ratio [43]. It is realistic to assume that charging and discharging
processes are actually complementary, which is ensured by imposing the constraint (10).
Equation (11) models the state of charge of the batteries, which is limited by their nominal
capacity and depth of discharge settings [40], as said the Equation (12).

0 ≤ pBES,i
r|t ≤ uBES,i

r|t pBES; ∀r ∈ R∧ t ∈ T ∧ i ∈ {ch, dch} (9)

∑i∈{ch,dch}

{
uBES,i

r|t

}
≤ 1; ∀r ∈ R∧ t ∈ T (10)

εBES
r|t = εBES

r|t + ∆τ

ηBES pBES,ch
r|t −

pBES,dch
r|t
ηBES

; ∀r ∈ R∧ t ∈ T \t > 1 (11)

εBES
(

1− DODBES
)
≤ εBES

r|t ≤ εBES; ∀r ∈ R∧ t ∈ T (12)

where εBES is the energy stored in batteries; ηBES is the efficiency of batteries; εBES is
the nominal capacity of the storage system; DODBES is the depth of discharge; and the
superscripts BES, ch and BES, dch stand for the charging and discharging processes of
batteries, respectively.

Equation (11) models the energy stored in batteries as a function of the state of charge
at t− 1 and the total energy exchanged with the grid. However, as pointed out in other
studies [7,40], this model has to be completed by setting the state of charge at the beginning
of the time horizon. As customary (e.g., see [41]), it is assumed in this work that the BES is
fully charged at the beginning of the time horizon. In addition, to keep the model coherent,
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the state of charge of the BES is forced to be equal to the nominal capacity at the end of the
time horizon. These working conditions are ensured by imposing the constraint (13).

εBES
r|t=1 = εBES

r|t=end = εBES; ∀r ∈ R (13)

3.7. Shiftable Consumers Modeling

As commented previously, it is considered that a part of the local demand may respond
to commitment signals emitted by the NG operator. This kind of responsible load can
therefore adjust their scheduling programs to achieve a more efficient operation of the grid.
As in other related problems [14], it is assumed that these consumers have to be operated
continuously, which means, once their operating cycle has started, it cannot be interrupted
until completing their duty cycle, as modeled the Equation (14).

uq
r|t − uq

r|t−1 = onq
r|t − o f f q

r|t; ∀r ∈ R∧ q ∈ Q∧ t ∈ T \t > 1 (14)

where on and o f f are binary variables that indicate the activation/deactivation of a
shiftable consumer.

It is assumed that these consumers have some preferences about when they prefer
to be scheduled, in this sense, they have to be operated within allowable time windows,
the scheduling tool being free to schedule their consumption in those time ranges. The
constraint (15) ensures that shiftable consumers complete their duty cycles within the
considered time windows. The model has to be completed by Equations (16) and (17),
which ensure that responsible loads cannot be scheduled out of their time windows and
are activated once over the time horizon, respectively.

∑t∈Ψq

{
uq

r|t

}
= ϕq; ∀r ∈ R∧ q ∈ Q (15)

∑t/∈Ψq

{
uq

r|t

}
= 0; ∀r ∈ R∧ q ∈ Q (16)

∑t∈Ψq

{
onq

r|t

}
= 1; ∀r ∈ R∧ q ∈ Q (17)

where ϕ is the total number of time slots that a shiftable consumer must be connected
throughout a day.

On the other hand, and with the aim of completing the analysis, it has been also
considered the case in which the shiftable loads could not be operated in a flexible manner.
In such a case, it is assumed that these consumers desire to start their operation at the first
slot of the allowable time window, which is ensured by the model (18)–(20).

∑t∈Ψq(1)+ϕq−1

{
uq

r|t

}
= ϕq; ∀r ∈ R∧ q ∈ Q (18)

∑t/∈Ψq(1)+ϕq−1

{
uq

r|t

}
= 0; ∀r ∈ R∧ q ∈ Q (19)

∑t∈Ψq(1)

{
onq

r|t

}
= 1; ∀r ∈ R∧ q ∈ Q (20)

3.8. Public EV Charging Station Modeling

The developed model assumes the public charging station can be operated in a flexible
manner, however, in contrast to the flexible consumers considered in the previous section,
the charging points response in this case to set-point signals rather than commitment
orders, as said in Equation (21).

pEV
r|t ≤ dEV

r|t ; ∀r ∈ R∧ t ∈ T (21)
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By the model (21), the expected EV demand may be only partially satisfied. This way,
the operator has the capability to decide if it is necessary to not fully cover or even ignore
some charging events, whether this supposes an actual benefit for the grid operation.

3.9. NG Balance

The energetic balance is ensured each time step by the constraint (22), which estab-
lishes the generation-consumption equilibrium. In this case, the non-served load was not
contemplated, thus having to satisfy the inelastic expected demand entirely. Therefore, DR
is in this case enabled by shiftable consumers and the public charging infrastructure.

pDEG
r|t + pPV

r|t + pWT
r|t + pBES,dch

r|t = dr|t + pEV
r|t + ∑

q∈Q

{
uq

r|t pq
}
+ pBES,ch

r|t ; ∀r ∈ R∧ t ∈ T (22)

3.10. Optimization Problem

The optimal scheduling model developed above is formulated from the retailer point
of view, which aims at maximizing their profits while the operator ensures the quality of
supplying. In this sense, the model is formulated as a maximization problem in which
(1) supposes the objective function. Therefore, the result of the problem searches for
the optimal scheduling of the different controllable assets that maximizes the monetary
incomes of the retailer. For the sake of analyzing, a case was also considered in which the
shiftable consumers cannot be operated in a flexible way, minimizing the DR capability of
the system. Both problems are stated below.

Model 1: shiftable consumers can be operated in a flexible fashion

max
Φ

F (23)

Subject to: (3)–(14) and (18)–(22).
Model 2: flexible operation of shiftable consumers is not enabled

max
Φ

F (24)

Subject to: (3)–(17), (21) and (22), where Φ stands for the vector of decision variables
(see Nomenclature).

4. Uncertainties Modeling

The optimal scheduling model developed in Section 3 contemplates various uncertain
parameters, which are reported in Table 1. For managing such parameters, a stochastic
framework has been proposed. Stochastic modeling is based on representing the uncertain
parameters by means of probability distributions, from which one can generate a number
of scenarios [44]. The scenarios generated constitute the scenario-space (S), which has
to be formed by many members since a large number of scenarios have to be considered
to properly catch the stochastic essence of the parameter (normally 1000 [45]). Because
of the large size of the scenario space, the optimization model may be intractable in
practice. Indeed, one should note that all the variables and constraints would have size
S × T . To overcome such issues, some papers have proposed to use scenario reduction
approaches [14,45]. By these techniques, the original space is completely described by just a
set of few representative members, which are considered a sufficiently descriptive image of
the original space. Among the available space reduction approaches, clustering techniques
are quite popular because of their efficiency, adaptability accuracy and simplicity [46].
Specifically, the k-medoids method has been used in this paper because of its overall
good performance [46]. The k-medoids method is inspired by the optimal plant location
problem. In such a problem, a set of plants must be placed in a set of cities, so that the total
distance from the plants in the cities is minimized. This approach thus grouping the set
of scenarios into clusters, so that each cluster is fully described by just a member within
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it called medoid. This way, the scenario space is reduced to the so-called representative
scenario-space (R), which is a notably smaller scale. The k-medoid method presents a
degree of freedom, namely the total number of clusters to be created. To set this parameter,
helpful indicators such as the total sum of distances and the Davies–Bouldin index along
the methodology described in [47] have been used. The flowchart in Figure 4 summarizes
the steps necessary for solving the optimal scheduling problem developed in Section 3 with
stochastic modeling of uncertainties. One of the most interesting features of the k-medoids
method is the possibility of easily calculating the probability of occurrence of each scenario,
as follows:

ωr =
size(Ωr)

size(S) ; ∀r ∈ R (25)

where S is the scenario space; and Ωr represents the cluster of the rth representative scenario.

Table 1. Uncertain parameters involved in the operation of the NG under study.

Uncertain Parameter Explanation

d Local inflexible (non-shiftable) demand
dEV EV demand

ϑ Solar irradiation
θ Ambient temperature

γWT Wind speed

Figure 4. Proposed flowchart for solving the proposed optimal scheduling problem with stochastic
modeling of uncertainties.

It remains to be explained how the different uncertain parameters involved are mod-
eled on the basis of probability functions, which is explained in the following sections.

4.1. Predictable Parameters

Some uncertain parameters can be day-ahead forecasted with sufficient accuracy [39].
Examples of these profiles are weather parameters or inflexible demand. For these kind
of uncertainties, the forecasted data can be subjected to errors derived from the forecast
technique or unpredictable events. Such errors can be modeled as normal distributions [48],
taking the forecasting parameter as mean and a pre-set standard deviation. Using this
distribution function, the scenario space can be generated for these parameters. For the
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model developed here in particular, the inflexible demand, solar irradiation, temperature
and wind speed are assumed to be managed by this approach [38,49,50].

4.2. EV Demand Modeling

In contrast to the other uncertain parameters, the EV demand, especially at low-
aggregated levels, is hardly predictable due to the generally random behaviors of drivers.
In this sense, some references have considered specific probability distributions for EV
demand [16,51,52]. For the particular case of the NG under study, it is important to note
that at this scale the majority of consumers are domestic. In this sense, it was considered
that the public charging station is devoted to light vehicles (cars and motorbikes).

In this paper, a stochastic model for the considered public charging stations has been
developed. The developed model is based on the vehicle trip distribution (F), which
is shown in Figure 5 for a typical weekday in US [16]. This distribution indicates the
probability of an EV is driving on road at each hour of the day. It is realistic to assume that
the probability of charging events will increase with the probability of a vehicle driving on
the road [16]. Thus, the probability of charging events each hour of the day can be adjusted
to the probability distribution shown in Figure 5.

Figure 5. U.S. vehicle trip distribution on weekdays [16].

On the other hand, it is necessary to model the number of charging events that may
occur in a day. It is assumed that this parameter can be either predicted based on historical
data or directly estimated from for example market studies. In this sense, the number of
daily charging events (NV) is modeled with a normal distribution, where the mean µ stands
for the daily expected number of charging events and σ models the standard deviation,
as follows:

NVs = round(rand(N(µ, σ))); ∀s ∈ S ,≥ 0 (26)

where round(·) is a function that yields the nearest integer; rand(·) is a function that yields
a random number based on a probability function; and N(µ, σ) is a normal distribution
with mean µ and standard deviation σ.

Once the total number of charging events was determined, it can be used as the
entry of the vehicle trip distribution, in order to determine the arrival time of each vehicle,
as follows:

Ts = round(rand(F)); ∀s ∈ S , Ti|s =
[

T1|s, T2|s, . . . , TNVs |s

]
(27)

Now, the vector T can be used to construct the vector c, whose ith element is equal to 1
if a vehicle arrives at the charging station at the ith time instant and 0 otherwise, using the
following simple loop:

initialize cs =
[
cs|1, cs|2, . . . , cs|T

]
= [0, 0, . . . , 0] ∈ BT

for i = 1 : size(Ts) do
cs(Ts(i)) == 1

end do

; ∀s ∈ S (28)
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Now, the vector c can be used for modeling the EV demand, as follows:

dEV
s|t = ctPEV

Rated; ∀s ∈ S ∧ t ∈ T (29)

where PEV
Rated is the rated power of the charging process.

The model (29) considers two plausible assumptions:

• The EV demand is considered constant during all the charging processes which, as
indicated in [15], is a quite realistic assumption since only marginal variations with
respect to the rating values are observed during the short time of the charging event.

• The EV charging process is completed within a unique time slot, which is quite realistic,
assuming fast charging processes, which can be completed in only 15–30 min [15].

Nevertheless, it is worth mentioning that the developed stochastic model for EV
demand presents a modular structure that allows it to be adapted to any charging mode
or more comprehensive charging profiles. Nevertheless, it has been assumed that the
developed model is quite realistic and useful in practice, lying out of the scope of this
work further analyzing other more elaborated models. For the sake of example, Figure 6
plots some EV demand profiles constructed with the developed model considering various
numbers of expected charging events. In this figure, fast charging mode was considered,
with 55 kW rated power [15].

Figure 6. EV demand scenarios generated with the developed stochastic model for various numbers
of expected charging events.

5. Case Study

This section presents a case study that is devoted to validating the developed stochas-
tic optimal scheduling formulation, for the DC NG layout described in Section 2. The
optimization model was coded in Matlab R2019a and solved using Gurobi [53] with
30-min resolution.

5.1. Data

For creating the scenarios for uncertain parameters, several public databases were
used. Figure 7 shows the forecasted profiles for the solar irradiance, temperature, local
demand and wind speed along the scenarios generated using the methodology described in
Section 4. The considered weather profiles were taken from Ref. [54] and correspond with
real data observed at the Virgin Islands on 3 May 2016. The forecasted profile corresponding
to local demand was adapted from real demand measurements at La Palma Island at the
same date, which is available in [55].
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Figure 7. Forecasted profiles (solid lines) and scenarios (discontinuous lines) used for modelling
uncertain parameters in simulations.

The data corresponding to the other parameters involved are reported in Table 2,
while the data regarding shiftable consumers are collected in Table 3. For the EV charging
the fast mode was considered, with a rated power of 55 kW and a price of 1.5 $/kWh [15].
Finally, Figure 8 shows the Time-of-Use tariff used for non-flexible consumers, which is
based on typical dynamic tariffs [14].

Figure 8. Time-of-Use tariff applied to non-shiftable consumers in simulations.

Table 2. Parameters considered in simulations [7,14,38,39].

Parameter Value Parameter Value

pDEG 100 kW pWT 50 kW

pDEG 5 kW ηWT 0.88

RDEG 50 kW ρWT 0.19 $/kWh

aDEG 0.6 $/h γWT 2 m/s

bDEG 0.05 $/kWh γWT,∗ 11 m/s

cDEG 0.02 $/kWh2 εBES 50 kWh

pPV 125 kW pBES 25 kW

ηPV 0.167 ηBES 0.95

ρPV 0.4 $/kWh ρBES 10−6 $/kWh2

DODBES 0.7



Electronics 2021, 10, 2484 14 of 20

Table 3. Data of shiftable consumers.

Parameter Consumer 1 Consumer 2

p 50 kW 30 kW
λ 0.36 $/kWh 0.27 $/kWh
ϕ 6 h 7.5 h
Ψ 2:30–17:30 h 4:30–15:30 h

5.2. Results

In this section, various results are presented and commented on. For further analysis,
the operation of the NG under study is considered with and without flexibility in shiftable
loads (models 1 and 2, respectively). Moreover, the model is tested for various numbers
of expected charging events (µ in Equation (26)). Figure 9 shows the value of the objec-
tive function (retailer profit) for various cases. As observed, the flexibility provided by
consumers has a direct impact on economical profitability. In fact, the monetary balance
for the retailer resulted in negative values (monetary losses) if the shiftable consumers
are operated in a rigid manner, while the benefits may achieve up to ~400$ in the case
of the flexible program. Logically, the profitability of the system grows with the number
of expected charging events, since more monetary incomes are obtained from the public
charging station, as seen in Figure 10.

Figure 9. The value of the objective function for various scenarios.

Figure 10. Monetary incomes obtained from EV charging processes in various scenarios.

As seen in Figure 9, the flexibility of shiftable consumers has a direct impact on the
profitability of the system. This is due to the flexibility provided by consumers allows to
further satisfy the expected EV demand. Indeed, as observed in Figure 11, the EV demand
satisfaction decreases in the case of considering the model, in which demand flexibility
is not enabled. In order to further analyze the behavior of the charging station, Figure 12
plots the expected and actual satisfied EV demand with model 2, as seen in this figure.
Some expected charging events were not covered, while others were just partially satisfied.
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Figure 11. Percentage of the expected EV demand actually satisfied in various scenarios.

Figure 12. Expected and actual satisfied EV demand without considering flexibility (model 2).

In order to further analyze the role of the shiftable consumers, their scheduling results
are plotted in Figure 13 considering the optimization models 1 and 2. As seen, in the case
of flexible operation, both consumers are scheduled later, exploiting higher PV penetration
and avoiding the use of DEG.

Figure 13. Scheduling result of the shiftable consumer with model 1 (upper) and 2 (bottom).

As commented, the main advantage of operating the shiftable consumers in a flexible
way is reducing the dependency on costly generators like DEG. As seen in Figure 14, the
expected DEG generation with flexibility barely surpassed 400 kWh, while it was higher
than 600 kWh in case of no flexibility. These results are traduced in lower fuel consumption
and therefore lower operational cost. As seen in Figure 15, the expected fuel cost with
model 1 did not surpass 400$, while the fuel cost was higher than 800$ in the case of
the rigid operation of shiftable consumers. These results have also a direct impact on
environmental concerns since, as commented in [40], total CO2 emissions are proportional
to diesel consumption.
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Figure 14. Total DEG generation in various scenarios.

Figure 15. Total fuel cost in various scenarios.

6. Conclusions and Future Works

This paper has comprehensively analyzed a possible DC isolated nanogrid layout for
integration of renewable sources, energy storage facilities, demand response initiatives and
electric vehicle charging infrastructures. In this sense, the necessary electronic interfaces
and communication channels have been described. Moreover, the relationship among the
different agents involved in the grid operation has been discussed. An optimal scheduling
tool for the analyzed nanogrid has been presented, along with a stochastic framework for
uncertainties modeling. In this regard, a specific stochastic model for fast charging stations
has been developed.

A case study has been presented and various results have been commented, with
the aim of validating the developed formulation and analyzing the impact of demand
response programs in the grid operation. The results obtained have served to evidence the
importance of flexible consumption for boosting up the monetary incomes of the retailer
and reducing diesel consumption and therefore CO2 emissions. It has been also remarkable
the role of public charging infrastructures in the profitability of the grid and how demand
response programs affect their viability.

Future works should be focused on analyzing the considered grid layout in grid-
connected mode, for which the uncertainty of energy pricing along with the possibility of
selling energy to the upscale grid has to be considered.
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Nomenclature

Indexes (Sets)
t(T ) Time
s(S) Scenario
r(R) Representative scenario
q(Q) Shiftable load
Ωr Cluster of the representative scenario r
Ψ Time window of a shiftable load
Superscripts
DEG Diesel engine generator
EV Electric vehicle
PV Photovoltaic
WT Wind turbine
BES, ch/dch Battery energy storage in charging/discharging mode
(·)/(·) Maximum minimum value of a variable or parameter

Constants and parameters
∆τ Time step (h)
λ Energy price ($/kWh)
d Predicted local demand (kW)
ρ Operation and maintenance cost ($/kWh or $/kWh2)
a, b, c Fuel cost coefficients ($/h, $/kWh, $/kWh2)
R Ramping rate (kW)
ϑ Solar irradiance (kW/m2)
θ Ambient temperature (ºC)
η Efficiency (pu)
γ Wind speed (m/s)
α, β Speed-power wind turbine curve coefficients (kW·(m/s)−3, -)
ϕ Total number of hours of operation of shiftable load (h)
EV demand modeling

N(µ, σ)
Normal distribution (with mean µ and standard deviation σ) for
modeling the daily number of charging events

NV Total number of charging events
Ti|s Arrival time of the ith vehicle corresponded to the sth scenario

c ∈ BT Binary vector whose ith element is equal to 1 if a vehicle arrives at
the charging station at the ith time instant and 0 otherwise

rand(·) Function that returns a random number based on a probability
distribution function

round(·) Function that rounds to the nearest integer
F(·) Vehicle trip distribution
PEV

Rated Rated power of Electric vehicles charging (kW)
Decision variables (Φ)
p Power (kW)
u Commitment status (binary)
ε Energy stored (kWh)

on/o f f
Flag variable that indicates the activation/deactivation of a
shiftable load (binary)

Appendix A. Linearization of Quadratic Terms

In the developed optimization model, some quadratic terms have appeared in the
objective function. To linearize these terms and, therefore preserve the lineal character of
the problem, a piecewise representation of such variables has been considered. By this

www.flaticon.com
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approach, the quadratic function ψ is characterized by its piecewise representation ψ̃, for
which n (x̃i) points are taken, as follows:

ψ̃ = x̃i, ψ(x̃i); ∀i ∈ {1, 2, . . . , n} (A1)

Usually, the higher number of points considered, the more accurate the piecewise
representation is however, the optimization problem becomes computationally more expen-
sive. The piecewise representation of quadratic terms allows to replace them by the dummy
variable z wherever they appear in the problem. This variable is calculated, as follows:

z =
i=n

∑
i=2
{δi(Kix + Li)} =

i=n

∑
i=2

Kiδix
}
wi

+ Liδi

 (A2)

where δ is a binary variable that ensures that only one segment of the piecewise curve is
activated at once by imposing the following constraint:

∑i=n−1
i=1 {δi x̃i} ≤ x ≤ ∑i=n

i=2{δi−1 x̃i} (A3)

To ensure that only one segment of the piecewise curve is activated at once, the
following constraint must be imposed:

∑i=n
i=1{δi} = 1 (A4)

In (A2), the parameters L and K can be calculated as follows:

Ki =
ψ(x̃i)− ψ(x̃i−1)

x̃i − x̃i−1
; ∀i ∈ {2, 3, . . . , n} (A5)

Li = ψ(x̃i)− Ki x̃i; ∀i ∈ {2, 3, . . . , n} (A6)

Finally, it is important to note that (A2) involves the product of two variables (δ and
x), which introduces further nonlinearities in the model. To avoid this issue, the product
of variables can be replaced by the lineal variable w for which the following additional
constraints are needed:

x−M(1− δi) ≤ wi ≤ x + M(1− δi); ∀i ∈ {2, 3, . . . , n} (A7)

−Mδi ≤ wi ≤ Mδi; ∀i ∈ {2, 3, . . . , n} (A8)

where M is a large positive constant.
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