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Abstract: Multi object tracking (MOT) is a key research technology in the environment sensing system
of automatic driving, which is very important to driving safety. Online multi object tracking needs to
accurately extend the trajectory of multiple objects without using future frame information, so it will
face greater challenges. Most of the existing online MOT methods are anchor-based detectors, which
have many misdetections and missed detection problems, and have a poor effect on the trajectory
extension of adjacent object objects when they are occluded and overlapped. In this paper, we propose
a discrimination learning online tracker that can effectively solve the occlusion problem based on an
anchor-free detector. This method uses the different weight characteristics of the object when the
occlusion occurs and realizes the extension of the competition trajectory through the discrimination
module to prevent the ID-switch problem. In the experimental part, we compared the algorithm
with other trackers on two public benchmark datasets, MOT16 and MOT17, and proved that our
algorithm has achieved state-of-the-art performance, and conducted a qualitative analysis on the
convincing autonomous driving dataset KITTI.

Keywords: multi object tracking (MOT); autonomous driving; discrimination module;
anchor-free detector

1. Introduction

The multi object tracking (MOT) system is an accurate tracking of obstacles moving in
front of or in the surrounding environment of an autonomous vehicle, including vehicle
path tracking, non-motor vehicle trajectory tracking, pedestrian trajectory tracking, etc. This
subsystem helps self-driving cars make decisions and avoid collisions with objects that may
move (for example, other vehicles and pedestrians) [1–3]. In the above scenarios, the main
task of the multi-object tracking algorithm is to track many objects simultaneously, assign
and maintain a corresponding ID for each object, and record the trajectory, which cannot be
achieved by only using the object detection algorithm or single object tracking algorithm.

The object tracking task is very important to driving safety and can effectively predict
the trajectory of object movement, so that the control layer can make decisions such as
collision warning and lane change processing in advance. The application of object tracking
can be divided into single object tracking (SOT) [4,5] and multi-object tracking (MOT) in
terms of the number of objects. In the actual traffic scene, MOT is more common, and the
matching relationship between the previous frame and the next frame of multiple moving
objects in the actual movement should be taken into account. An example of an output
diagram is shown in Figure 1. As an important task branch of computer vision, the MOT
algorithm has also been widely used in the fields of intelligent surveillance systems [6],
medical image processing [7] and human–computer interaction [8].
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Figure 1. Sample output of the MOT algorithm.

MOT can be divided into offline mode and online mode in terms of processing mode.
Offline tracking usually uses global information to track objects, so its accuracy is relatively
high. However, due to its high computational cost and huge storage space, it is not suitable
for automatic driving which requires high portability and real-time performance. Online
tracking, due to its real-time requirements, can only use the information of the current
frame and historical frame, which brings more challenges to researchers. Due to the
complexity of multiple tracking problems, we need to consider not only the change of
shooting angle and illumination, but also the emergence of a new object, the disappearance
of an old object, and how to recognize the lost object again. This makes a robust tracking
algorithm still a huge challenge.

Recently, deep learning technology based on neural networks has made great progress.
Representative detection algorithms include Fast R-CNN [9], SSD [10] and YOLO [11–13]
algorithms and so on. With the advancement of object detection technology, detection
based tracking-by-detection has taken the lead. The algorithm detects the object in each
frame and then matches it with the existing tracking trajectory. For a new object in the
current frame, a new trajectory needs to be formed. For an object leaving the field of
view in the current frame, the trajectory of the object needs to be terminated. However,
whether it is a detector based on Faster-RCNN [14] or a detector based on SDP [15], they
are all anchor-based detectors, which are prone to the problems of center point offset and
low accuracy of the regression frame. Therefore, in this paper, we use the anchor-free
detector algorithm.

In this work, in order to meet the scene requirements of real-time online tracking of
autonomous vehicles, we are inspired by the pipeline FairMOT [16] algorithm and propose
an online multi-object real-time tracker based on the feature extraction of ROI regions. This
algorithm designs a multifunctional discriminant model by differently affecting the driver
in the autonomous driving scene by overlapping or adjacent objects and backgrounds.
The model determines the type of trajectory by calibrating the ROI of the object detected
in the previous frame, and then uses the discriminative model to solve the change in
the appearance of the object due to the occlusion of the object or the interaction between
the objects, and then obtain the global characteristic trajectory of the object during the
movement. At the same time, in order to meet the real-time requirements of autonomous
vehicles, historical information and future information are used at the same time to smooth
the trajectory of objects on multiple frames. The main contributions of this work are
as follows:

i. An online multi-object tracking algorithm suitable for the process of autonomous
driving environment perception is proposed.

ii. For the occlusion problem of different objects or overlapping adjacent objects when
the object is moving, a discriminative learning model is proposed.

iii. The performance of our proposed MOT tracker has achieved competitive performance
on the MOT [16], MOT [17] benchmark and KITTI datasets.

2. Our Proposed Tracker

In this section, we first introduce the FairMOT pipeline and the novel detection
strategy, then introduce the proposed online MOT tracking algorithm, and finally, introduce



Electronics 2021, 10, 2479 3 of 15

in detail our optimized trajectory extension strategy for different tracking objects during
the tracking process.

2.1. Baseline FairMOT
2.1.1. Problem Formulation

Since multi-object tracking is used to predict the position state of multiple objects in the
next frame, the tracking method of MOT can be described as a multi-variable optimisation
problem. Given an image sequence, suppose that Ai

t and Xi
t are the state value and

observation value of the i-th target in frame t respectively, and At =
(

A1
t , A2

t , . . . AMt
t

)
is the

track sequence value of all targets Mt in frame t. Ai
is:ie =

{
Ai

is , . . . , Ai
ie

}
is the track sequence

value of the i-th target, where is and ie respectively denote the object i for the start and end
frame that the object i appears, while A1:t = {A1, A2, . . . At} represents the track sequence
of all objects in the image from the start frame to the t-th frame. Xt =

(
X1

t , X2
t , . . . XMt

t

)
is used to refer to the observed values of all objects Mt in frame t. X1:t = {X1, X2, . . . Xt}
represents the observation values of all the object bears from the start frame to the t-th
frame in the image.

The research purpose of MOT is to find the best trajectory of all objects. Therefore,
under the condition that all object state values are known, the optimization problem of
MOT can be modeled by the maximal a posteriori (MAP) probability model as:

Â1:t = argmax
A1:t

P(A1:t|X1:t) (1)

The prediction and update process is obtained by the following formula:

Predict : P
(
At |X 1:t−1

)
=
∫

P(At |A t−1)P(At−1|X1:t−1)dAt−1

Update :P(At |X 1:t ) ∝ P(Xt |A t)P(At|X1:t−1) ) (2)

2.1.2. FairMOT Pipeline

For the detection-based multi-object tracking algorithm, the detection performance of
the detector directly affects the tracking effect. The traditional MOT algorithm basically
uses an anchor-based detection algorithm. However, anchor-based detection not only has
a large number of hyperparameters, but also has low detection accuracy. The FairMOT
algorithm adopts anchorless detection, which improved detection accuracy effectively. The
highlight of the FairMOT algorithm is that it combines the anchor-free detection algorithm
and the Re-ID feature for end-to-end tracking. The tracking process is shown in Figure 2.

Figure 2. Simplified FairMOT pipeline.
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The object detection process is regarded as a center-based bounding box regression
task on high-resolution feature maps. Three parallel regression heads are added to the
backbone to predict the heatmap, object center offset, and box size. The loss functions of
the three processes can be obtained by the following formulas:

Lheatmap = − 1
N ∑

xy

{ (
1− M̂xy

)α log
(
M̂xy

)
if Mxy = 1(

1−Mxy
)β(M̂xy

)α log(1−
(
M̂xy

)
otherwise

(3)

where Mxy denotes the response of (x,y),

Lbox =
N

∑
i=1
||oi − ôi||1 + ||si − ŝi||1 (4)

Lidentity = −
N

∑
i=1

K

∑
k=1

Li(k) log(P(k)) (5)

Among them, Ŝ ∈ R9W×H×2 and Ô ∈ RW×H×2 are the output size and offset, respec-
tively. bi = (xi

1,yi
1, xi

2, yi
2) is each corresponding ground truth (GT) of the image, and its

size can be represented by Si = (xi
2 − xi

1, yi
2 − yi

1). In the same way, the offset of GT can

be obtained as Oi =

(
ci

x
4 ,

ci
y
4

)
−
(⌊

ci
x
4

⌋
,
⌊

ci
y
4

⌋)
. Then, ŝi and ôi are the estimated size and

offset of the corresponding position, respectively. Lbox is the L1 loss function formula of
the two. P(k) is the distribution vector of our identity feature vector mapping at the center
of the GT box. Li(k) represents the one-hot value of the GT label. Embed object recognition
as a classification task. All object instances with the same identity in the training set are
regarded as one class. For each label box in the picture, obtain the object center

(
Cxi , Cyi

)
on the heatmap, extract an identity feature vector Exi,yi

to locate and learn to map it to a
class distribution vector P(k), which represents the encoding of the label Li(k).

2.2. Discrimination Learning Model

For multi-object tracking, occlusion has always been a difficult problem to overcome,
although many scholars have tried to deal with occlusion. For example, Naiyan Wang
et al. [17] treats the occlusion problem as a trajectory association problem, which is analo-
gous to the data association of detection. The tracklet is put into the optical flow network
for model optimization, thereby ignoring the failed detection object and continuing the
tracking. However, this method did not achieve a good anti-occlusion effect because it did
not pay attention to the importance of the sample itself. In this article, in order to meet the
real-time performance of autonomous vehicles and the frequent occlusion problems in the
process of vehicle travel, we introduce the discrimination model to solve the problem of
the occlusion of moving objects.

For two known competing trajectories, as shown in Figure 3, suppose there are the
previous M historical trajectories and the feature map Z1. In order to reduce the influence
of ambient noise, we use spatial Gaussian weights to denoise each channel. Through 1× 1
convolution operation and global maximum pooling, we get our abstract invariant features
S ∈ RN×C. After the S matrix is multiplied by its transposed matrix, the X ∈ RN×N matrix
is obtained after the softmat operation. The calculation of the correlation matrix X ∈ RN×N

can be obtained as follows:

Xij =
exp

(
Xi·XT

j

)
∑N

k=1 exp
(

Xi·XT
k

) (6)
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Figure 3. The details of discrimination learning model.

We can draw Xij on behalf the spatial correlation between trajectory j-th and trajectory
i-th. Where spatial correlation map X ∈ RN×N is a matrix composed of Xij.

Next, the correlation map X is reshaped and input to the two fully connected layers
and the softmaxx layer, and then the attention score y ∈ RN of each position is obtained.

Finally, the final output result is obtained by:

O =
N

∑
i=1

yiZ1i (7)

2.3. Trajectory Extension Strategy

In the tracking phase, trajectory extension in MOT is one of the most challenging
tasks. In order to effectively overcome the problems caused by trajectory extension, we
propose a position discrimination model, which can effectively separate the object from the
background and its surrounding adjacent or overlapping areas. Since the trajectories in the
tracking process can be divided into isolated trajectories and competitive trajectories, we
have designed different tracking strategies for them, and still adopt the classic two-stage
tracking strategy.

First, for each current active trajectory, we extract its region of interest as a candidate
region, and use instance segmentation to refine its bounding box. If the trajectory is an
isolated trajectory, when its confidence is greater than threshold σt (as Equation (7)), it will
be stored as a new trajectory.

ZTn =

{
∑n

i Zi
tp
·
(

2− exp
(

ϑ
√

tp

))
, if tp > 0

1, else
(8)

Here, tp represents the continuous tracking time in the first stage and Zi refers to the
refinement confidence in the ith growth. ϑ ≈ log(2)/

√
Tmax is measured by the maximum

number Tmax of consecutive failures matches, which is a balance parameter. In this
experiment, all ϑ values are set to 0.1.

Secondly, for the trajectory with competitive relationship, the detection example
is shown in Figure 4, and the overlapping detection area after the ROI candidate area
and the instance segmentation refined bounding box is taken as our candidate object.
The discrimination model is used to calculate the similarity between the competition
trajectory and the candidate region, and the deep Hungary algorithm is used to associate
the similarity matrix to carry out the correct extension of the trajectory.



Electronics 2021, 10, 2479 6 of 15

Figure 4. Examples of competitive trajectory tracking results, where yellow is the detection result, and red and green
indicate the correct tracking result.

The final stage is the allocation of the trajectory of the untracked object, and the IOU
calculation between the detector and the threshold τiou is tracked, and it is allocated to the
remaining detection results. After data association, each untracked trajectory is considered
lost in the current frame, and a new trajectory is initialized with high response confidence
for each unmatched detection. In order to reduce the influence of false detection, once any
new trajectory is lost in any first τi frame, it will be deleted. If the trajectory continuously
exceeds τt and is lost or leaves the field of view, the trajectory will terminate.

2.4. Proposed Online MOT Tracking Network

Multi-object tracking based on detection can be divided into online tracking and offline
tracking. Online multi-object tracking is a frame-by-frame progressive tracking method,
which is similar to the real-time tracking process of human eyes. Firstly, each moving object
should be identified and confirmed (object detection), and then its next action should be
predicted (trajectory prediction). Finally, the motion direction (motion model), appearance
shape (appearance model) and other features of the object are associated with the previous
trajectory (data correlation matching).

In this section, we will introduce the main tracking process of our algorithm. Due
to anchor-based detectors have many hyperparameters and the shortcomings of features
that are not easy to counteract, we employ anchor-free detectors in the detection process.
As shown in Figure 5, after the t-th frame image of the current frame passes through the
backbone network, the region of interest is extracted and the result of the t − 1th frame
detection is performed to correct the position to obtain the trajectory of the object in the
current frame. If the trajectory of the object in the frame is an isolated trajectory, the
trajectory is stored and extended directly, and the tracking is successful. If the trajectory
of the object in the t-th frame is in a competitive relationship, that is, there is occlusion,
input the discrimination learning model to solve the occlusion problem through position
correlation, realize the storage and extension of the trajectory, and track successfully. If
the trajectory of the object in the t-th frame belongs to the new object, the trajectory is
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initialized. If the trajectory of the object in frame t-th does not appear in consecutive frames,
the tracking is stopped and the tracking ends.

Figure 5. Simplified ours pipeline.

In order to better balance the two performances of speed and accuracy, we use the
ResNet-34 backbone network with strong feature extraction capabilities like the FairMOT
detection method. As shown in Figure 6, in order to better integrate the semantic and
location information of different layers, we use a backbone network of Deep Layer Ag-
gregation [18] to extract image features. At the same time, in order to dynamically adjust
the receptive field when the proportion and posture of the object change, we use de-
formable convolution [19] to complete the up-sampling. The size of the input images
are Himage ×Wimage, and the output feature map has the shape of C × H ×W where
H = Himage/4 and W = Wimage/4. The proposed tracking flow is summarized in Algo-
rithm 1.

Figure 6. Deep Layer Aggregation (DLA-34) backbone network structure, where the red arrow de-
notes down-sampling, the yellow arrow denotes up-sampling, the blue arrow denotes the resolution
keeping.
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Algorithm 1: The proposed Method

Input: The pre-trained network model, the first frame, initial obkect location bounding box b1
Output: The object location b2, b3, . . . bn of the subsequent frames
1. Input the initial frame and initial bounding box
2. for i = 2 : n do

Get the ROI feature
3. Calculate the correlation matrix using Equation (6)
4. Calculate the maximum response using Equations (4) and (5)
5. Calculate the bounding box
6. end for

3. Experiments and Evaluation

In this section, we will introduce the experimental details of our proposed algorithm
in detail and compare it with the most representative MOT16 [20] MOT17 [20] public
benchmark in the MOT Challenge and an autonomous driving dataset KITTI [21,22].

3.1. Experiment Implementation Details

Our algorithm is implemented based on Pytorch in an Ubuntu 16.04 desktop computer
with Intel i7-9700k CPU, 16G RAM and two Nvidia GTX1080Ti GPUs. In this experiment,
we use the DLA-34 pre-trained multi-layer feature fusion on the COCO dataset [23] as the
backbone network. The ADM optimizer is used for 30 epochs of training on ETH [24], city
person [25] and crowd human [26]. During our experiment, the input size of all training
set images is 1088 × 608, and the feature map resolution is 272 × 152.

3.2. Results on MOT16

MOT16 mainly detects moving pedestrians and vehicles. It is a dataset based on
MOT15 [27] with more detailed annotations and more bounding boxes. MOT16 has a richer
picture, different shooting angles and camera movements, as well as different weather
condition videos. It is marked by a group of qualified researchers in strict compliance with
the corresponding marking guidelines, and finally a double detection method is used to
ensure the high accuracy of the marked information. The trajectory marked by MOT16 is
2D. There are 14 video sequences in the MOT16 dataset, of which 7 are training sets with
annotation information, and the other 7 are test datasets.

The detector used in the MOT16 data set is DPM [28], which has a good perfor-
mance in detecting the pedestrian category. The main information of these videos is as
follows: including FPS, resolution, video duration, number of tracks, object book, density,
static or moving shooting, low, medium and high angle shooting, weather conditions for
shooting, etc.

Table 1 shows our comparison with the most state-of-the-art algorithm on the MOT16
public benchmark. The results show that whether we compare with offline trackers or
online trackers, the algorithm we proposed obtains the best results on several important
indicators such as MOTA, MOTP and IDF1.
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Table 1. Comparison of our algorithm with other state-of-the-art algorithms.

Mode Method MOTA↑ MOTP↑ IDF1↑ MT↑ ML↓ FP↓ FN↓

Off-line
FWT [29] 47.8 75.5 44.3 19.1 38.2 8886 85,487
TPM [30] 51.3 75.2 47.9 18.7 40.8 2701 85,504
LMP [31] 48.8 79.0 51.3 18.2 40.1 6654 86,245

On-line

DeepMOT [32] 54.8 77.5 53.4 19.1 37.0 2955 78,765
Tracktor++ [33] 54.4 78.2 52.5 19 36.9 3280 79,149

DMAN [34] 51.4 76.9 54 16.5 34.9 21,042 251,873
PV [35] 50.4 77.7 50.8 14.9 38.9 2600 86,780

Ours 56.3 79.2 55.1 20.4 35.6 3095 79,634

In Table 1, FP represents false positive samples during the tracking process. The lower
the value, the better. The number of false positive samples detected in our algorithm is
79,634, which ranks in the middle. FN is the false negative sample, ML is the mostly lost
sample; the smaller the value of both the better. The results of our algorithm have achieved
good performance in the eight competitive algorithms in 2016. MT is mostly tracking, IDF1
refers to the F value of the pedestrian ID in each pedestrian frame. The larger the value of
the two, the better. MOTA and MOTP are the other most important indicators to measure
tracking accuracy and position error in multi-object tracking, and can be expressed by
Formulas (9) and (10) as:

MOTA = 1− ∑t(FNt + FPt + IDSWt)

∑t GTt
(9)

MOTP =
∑t,i dt,i

∑t ct
(10)

where t is the index of each frame of image, and GT is the ground truth label, and ct denotes
the number of matches in frame t and dt,i is the bounding box overlap of target i with its
assigned ground truth object.

As shown in Table 1, in the three most important indicators of multi-object tracking
performance, MOTA, MOTP and IDF1, the algorithm we proposed all ranked first.

3.3. Results on MOT17
3.3.1. Quantitative Analysis

MOT17 are datasets based on MOT15 with more detailed annotations and more
bounding boxes, mainly for pedestrians and vehicles. They have a richer picture, different
shooting angles and camera movements, as well as different weather condition videos. They
are marked by a group of qualified researchers in strict compliance with the corresponding
marking guidelines, and finally a double detection method is used to ensure the high
accuracy of the marked information. The motion trajectory marked by MOT17 is 2D, which
is a brand new data set. Compared with MOT15 of pedestrian density, it is more difficult.
Therefore, in this experiment, we will use MOT17 as our verification data set to verify the
performance of our algorithm.

As shown in Table 2, the best performance has been bolded in black. Compared with
the online tracker or offline tracker, our algorithm has significant advantages. Because
the offline tracker can use the global information to track, the overall performance of the
tracker is better than the online tracker. However, due to the wide application of deep
learning in the field of detection and its obvious advantages, the gap between the two is
getting smaller and smaller, and will even surpass some offline trackers.
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Table 2. Comparison of our algorithm with other state-of-the-art algorithms.

Mode Method MOTA↑ MOTP↑ IDF1↑ MT↑ ML↓ FP↓ FN↓

Off-line
EDMT [36] 50.9 76.6 52.7 17.5 35.7 24,069 250,768
TT17 [37] 54.9 77.2 63.1 24.4 38.1 20,236 233,295
TPM [30] 54.2 76.7 52.6 22.8 37.5 13,739 242,730

On-line

FPSN [38] 44.9 76.6 48.4 16.5 35.8 33,757 269,952
DeepMOT [32] 53.7 77.2 53.8 19.4 36.6 11,731 247,447
FAMNet [39] 52 76.5 48.7 19.1 33.4 14,138 253,616
DMAN [34] 48.2 75.7 55.7 19.3 38.3 26,218 263,6083

Ours 55.1 78.9 54.1 20.0 35.6 8524 241,795

In Table 2, among the two most indicators MOTA and MOTP to measure multi-
object tracking, our algorithm exceeds the tracking performance of offline algorithms and
ranks first.

In order to show the performance of our tracker more intuitively, we further compare
the performance of different detectors on the test set in Table 3. Overall, the performance of
the SDP [15] detector is the best among the three detectors. DPM is a traditional algorithm
that uses the sliding window idea, while FRCNN and SDP are both detection methods
using convolutional neural networks.

Table 3. Comparison results of different detector algorithms for MOT17.

Sequence MOTA(↑) MOTP(↑) IDF1(↑) MT(↑) ML(↓) FP(↑) FN(↑) IDSW(↑)
MOT17-01-DPM 41.7 78.4 40.3 5 11 23 3716 21
MOT17-03-DPM 65.3 79.1 59.7 51 19 1552 34,530 216
MOT17-06-DPM 54.0 80.6 55.9 47 86 120 5227 79
MOT17-07-DPM 41.6 79.3 45.9 5 22 94 9699 74
MOT17-08-DPM 26.6 83.5 32.7 8 39 68 15,375 64
MOT17-12-DPM 45.9 82.8 53.8 16 43 26 4635 27
MOT17-14-DPM 31.7 77.3 39.5 11 81 218 12,263 142

average 43.83 80.1 56.8 20.4 43 300.1 12,206.4 89
MOT17-01-FRCNN 43.6 77.9 41.1 6 10 107 3505 24
MOT17-03-FRCNN 67.7 78.7 60.3 54 18 1578 32,032 198
MOT17-06-FRCNN 57.5 80.0 58.6 55 61 225 4657 125
MOT17-07-FRCNN 41.9 79.1 46.9 6 22 219 9517 83
MOT17-08-FRCNN 26.2 83.5 32.1 8 40 94 15,431 60
MOT17-12-FRCNN 44.8 82.5 54.7 15 44 34 4728 18
MOT17-14-FRCNN 33.0 76.2 39.9 12 78 457 11,734 197

average 45.0 79.7 47.7 22.3 39 359.1 11,657 100.7
MOT17-01-SDP 43.9 77.7 59.7 6 10 104 3488 26
MOT17-03-SDP 71.8 78.1 62.7 62 16 2380 26,774 333
MOT17-06-SDP 58.0 80.0 56.9 58 65 282 4545 127
MOT17-07-SDP 43.9 78.7 45.8 8 19 222 9149 98
MOT17-08-SDP 27.7 82.7 32.4 10 37 146 15,057 74
MOT17-12-SDP 46.3 82.2 54.4 17 44 97 4532 26
MOT17-14-SDP 35.4 76.3 42.3 11 70 476 11,254 208

average 46.7 79.4 50.6 24.6 37.3 529.6 12,114 1513.4
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Table 3 shows the results of various indicators in different sequences of different
detectors in the MOT2017 video. The performance of our proposed algorithm has achieved
good results.

3.3.2. Qualitative Analysis

In order to show the performance of our algorithm more intuitively, we conducted a
qualitative analysis of the proposed algorithm as shown in Figure 7. In the first sequence of
the MOT17 test dataset, a lady wearing a black skirt on a street corner can still accurately
track her with the same ID after crossing and overlapping with a pedestrian next to her.
Sequence 3 is a scene with a lot of people and crowded at night, and the tracker we
proposed still shows good tracking performance. Sequence 6 uses a mobile camera to shoot
in a busy commercial block, and still has a good tracking performance after experiencing
a large range of deformation and occlusion. For MOT, in addition to difficulties such as
occlusion and illumination deformation, the tracking of small objects is also an extremely
challenging task. Since our algorithm uses a feature pyramid network with multi-feature
fusion in the feature extraction stage, the tracking of small objects in Sequence 7 shows
good performance. False detection, missed detection and occlusion have always been huge
challenges faced by MOT. In order to overcome these difficulties, we adopted an anchor-
free detector in the detection branch that does not rely on the experience setting, which not
only effectively avoids false detections and missed detections, but also in sequence 7 we
can see that the man in the white shirt was tracked accurately even after severe occlusion,
and Sequence 6 shows that in a complex indoor shopping mall, we also tracked the men
in black shirts that appeared midway. In the actual autonomous driving environment
in the city, the tracking of pedestrians on both sides of the road and crossing the road is
particularly important. Sequence 7 is taken by the in-car dash cam, which not only tracks
the pedestrians on both sides of the station, but also in the distance small object pedestrians
crossing the road on the zebra crossing have also been accurately tracked, which has played
an important role in taking avoidance measures for subsequent vehicles and avoiding
traffic accidents.

3.4. Results on the Autonomous Driving Dataset KITTI

The KITTI dataset is a computer vision algorithm evaluation dataset used in au-
tonomous driving scenarios. It was co-founded by the Karlsruhe Institute of Technology
(KIT) and Toyota Institute of Technology Chicago (TTIC). The scenes mainly include urban
areas, villages and highways. Among them, the data set used for the multi-object tracking
algorithm consists of 21 training sequences and 29 test sequences. Here, we have selected
KITTI-16 and KITTI-19 for qualitative analysis, as shown in Figure 8 below. Since the
pedestrian is a non-rigid object in MOT, it is the most difficult to track, so we only show
the tracking effect on pedestrians.

KITTI-16 is a high-traffic intersection shot by a static camera. Intersections, overlaps,
and occlusion frequently occur. Because we use the DM module to effectively solve the
ID-switch problem caused by occlusion. KITTI-19 is a bustling road scene in the city
captured by a mobile camera in the car. Our algorithm can still accurately track the road
and pedestrians on both sides.
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Figure 7. The tracking results of our algorithm on the MOT17 test sequence. In units of rows, from top to bottom are
sequence 1, sequence 2, sequence 3, sequence 4, sequence 5, sequence 6, and sequence 7.
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Figure 8. The tracking results of our algorithm on the KITTI dataset.

3.5. Ablation Experiment

The most important process in multi-object tracking is the early detection and the
later trajectory extension. The detection accuracy directly affects our later tracking results.
The innovation of our algorithm is in the detection and trajectory extension part. In order
to show the performance of our algorithm more intuitively, we conducted an ablation
experiment analysis on each part of our proposed algorithm on the MOT2016 dataset,
as shown in Table 4. In the experiment, we list three indexes which can best reflect the
performance of multi-object tracking.

Table 4. The results of ablation experiments of different models of our algorithm on the MOT16
dataset.

Method MOTA↑ MOTP↑ MT↑
Anchor-based tracking 48.7 67.8 49.2
Anchor-free tracking 52.3 70.1 52.4

Anchor-free tracking + trajectory
extension strategy (ours) 56.3 79.2 55.1

4. Conclusions

While self-driving cars bring us a lot of convenience, there are still many difficulties
and challenges in real life. To this end, we use a multi-feature fusion pyramid feature
extractor and anchor-free detector combined with the DM module to propose a multi-
object tracking algorithm that takes into account both accuracy and speed. In particular,
the proposal and application of the DM module effectively solve the problem of frequent
ID-switch when the object overlaps or occludes the background and surrounding objects,
and extends the competitive trajectory well. Compared with the most advanced trackers
in the two benchmarks of MOT16 and MOT17, it is more competitive. In the future, we
will continue to study the problems existing in the two-stage tracking, realize end-to-end
multi-object tracking, and further improve the accuracy and speed of the tracker.
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