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Abstract: The popularity of mobile devices in Internet of Things has brought great convenience
to the lives of the people. Massive data generated in the IoT are outsourced and stored on cloud
platforms so that data aggregation and analysis can be performed on the massive data. However,
these data often contain sensitive information of mobile devices, so effective protection of mobile user
privacy is the primary condition for further development of IoT. Most of the current data aggregation
schemes require a lot of interactions between users, and thus this paper designs a non-interactive
secure multidimensional data aggregation scheme. This scheme adopts an additive secret sharing
technique to mask the shared data and send it to two non-colluding servers, and then the servers
aggregate the ciphertext respectively. Different from the existing schemes, our proposed scheme
achieves non-interaction between users, and the aggregation result is kept confidential to the server
and supports mobile users offline. Finally, we perform an experimental evaluation which proves the
effectiveness of our scheme.

Keywords: privacy-preserving; secret sharing; verification; robustness; Internet of Things

1. Introduction

With the rapid development of mobile devices and cloud computing, the IoT has
brought great convenience to the lives of people. According to the mobile economy 2020
released by the Global System for Mobile Communications Assembly, the total number
of global IoT connections reached 12 billion in 2019, and they will reach 24.6 billion in
2025 [1]. These devices will generate data, which means that the IoT can have a deeper
understanding of user behavior, so as to provide users with more convenient and faster
services.

The large amount of data generated by the IoT covers various fields, such as medical
life services, economy and education, which have promoted the development of human
society. However, in the face of these massive amounts of data, the information in their
collection, processing and transmission process may be maliciously attacked, which may
lead to privacy information leakage. For individuals, smart wearable devices record
information about our daily life, including our health status, location, call records, etc.
However, the transmission process between the device and the mobile phone is not secure,
and once the private information is intercepted by malicious attackers, the consequences
are beyond imaginable. For the country, once the confidential national information is
stolen by illegal elements, the security is doomed to face huge losses, so the importance is
self-evident.

Aggregation technology is a common data processing method in the IoT. Smart devices
generate extensive data which are collected and aggregated by cloud servers and applied
in learning algorithms such as machine learning and artificial intelligence. The data are
analyzed and predicted so as to improve the user experience of using smart devices [2,3],
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and cloud servers provide basic services for IoT and improve the computing efficiency of
smart devices. For example, if you want to know the electricity situation of users in an
area, the cloud server will aggregate the electricity information of these users. After that,
the electricity service provider could analyze the total electricity consumption, so as to
reasonably allocate the electricity resources in this area. However, they are also facing the
issue of data privacy leakage, so data security and user privacy have also received great
attention [4–7].

In the existing secure data aggregation research, most of the schemes are able to protect
the private data of users well, but they use complex encryption techniques, which leads
to high computational overhead and communication costs for users. In addition, due to
the complexity of the real environment, mobile devices may drop out at any time during
the process of performing aggregation tasks. However, many schemes do not take this
problem into consideration.

In order to work out the problem of the huge communication cost, and support users
offline and realize the verification of the aggregation results, this paper proposes a non-
interactive and secure data aggregation algorithm, which means that the mobile users do
not interact with each other. Compared with the previous ones, our algorithm not only
reduces the computational complexity of local users from O(n2 + mn) to O(m), but also
reduces the communication cost from 2(3n + 1)m|p| to 3m|p|. In addition, this scheme
supports users offline and can effectively verify the aggregation results. Our contributions
are as follows:

1. We design a non-interactive and secure data aggregation scheme that has low com-
munication overheads, which is robust to the exiting users and supports mobile users
offline. This scheme uses additive secret sharing to share the original data in two parts,
and then masks two shared values with a random number. Finally, the ciphertext
is sent to two non-colluding cloud servers separately. Compared with the previous
aggregation ones, our scheme reduces the computation and communication costs of
users.

2. In most of the previous schemes, the server can obtain the final aggregation results,
and it is possible for the cloud to misuse the aggregation results for malicious analysis
and speculation. However, in our scheme, the two cloud servers perform data
aggregation with the ciphertext of the aggregation result, and therefore the true
aggregation result is well-protected from the servers.

3. This paper designs a set of algorithms so that the final aggregation result can be
efficiently verified. Anyone can check the correctness of the aggregation results
with a probability of 1, and it is impossible for an incorrect aggregation result to be
successfully verified.

The rest of this paper is organized as follows. In Sections 2 and 3, we first present the
related work and preliminaries. The system framework and the non-interactive and secure
data aggregation scheme are introduced in Section 4. Privacy and limitations of the paper
are discussed in Section 5. The experimental results are presented in Section 6. Finally, we
outline the conclusions of the paper in Section 7.

2. Related Work

In the past few decades, scholars have put forward many secure data aggregation
schemes from different applications, mainly on account of secure multi-party computation,
differential privacy and homomorphic encryption. Due to the emergence of federated
learning, the problem of data islands has been well-resolved. Participants calculate the
training gradient locally, then use encryption technology to mask the local gradient before
sending the ciphertext to the server. After that, the server aggregates these ciphertexts
securely, and then returns the aggregation results to the participants. This process does not
require participants to directly share local data, thereby reducing many privacy leaks [8–11].

In the field of machine learning, Bonawitz et al. [12] provided a double-masked secure
aggregation scheme by using key agreement and secret sharing techniques, which not only
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ensures user input privacy but is also robust to dropped users. However, there are many
shortcomings in this scheme, such as the need for continuous interaction between users,
the lack of support for offline users and the inability to verify aggregation results. On the
basis of the above scheme, Xu et al. [13] proposed a similar scheme based on federated
learning which verifies the aggregation results and ensures the correctness of aggregation.
Yang et al. [14] achieved an aggregation scheme with paillier homomorphic encryption,
which ensures the privacy of user input at the same time. Mandal et al. [15] proposed
the practical privacy-preserving federated regressions scheme, which can train regression
models in a federated learning environment. At the same time, it ensures data and model
privacy. Based on proxy encryption and aggregate signature techniques, Xu et al. [16]
designed a multi-party secure learning framework. The main feature of this scheme is
to use proxy encryption to realize key transformation, so that the server does not obtain
the final aggregation result and only the user can utilize the corresponding private key to
decrypt the aggregation result.

In the application of the Internet of Things, secure data aggregation is more widely
used. Based on homomorphic encryption technology, Al-Zubaidie et al. [17] used a se-
cure and lightweight signature algorithm to prevent user information leakage. Edemacu
et al. [18] proposed a multi-party privacy-preserving logistic regression framework and
filtered out low-quality data for data contributors. Yang et al. [19] designed an encryp-
tion scheme on account of elliptic curve encryption, which reduces the computation and
communication costs. However, it does not propose a verification algorithm to verify the
aggregation results. Li et al. [20] put forward an aggregation scheme by using key agree-
ment and a verification algorithm. Although the scheme proposes a verification algorithm
for aggregating results, it does not support user drop out, and therefore, once the user
drops out, this aggregation protocol will aggregate incorrect results. Based on Bonawitz’s
scheme, Jiang et al. [21] added the functions of location privacy and multi-dimensional
data analysis for mobile users, but the communication cost is still very high and most
mobile users must be online.

3. Preliminaries

This section will introduce some basic concepts, including secure multi-party com-
putation, additive secret sharing, pseudo-random generator, bilinear map and verifiable
computation.

3.1. Secure Multi-Party Computation

Yao proposed a theoretical framework for secure multi-party computation, which
resolves the problem of collaborative computation among a set of mutually distrustful
parties in the context of protecting private information without a trusted third party [22].

Afterwards, several papers [23–26] applied this theory. Secure multi-party computa-
tion means the collaborative computation of an agreed function by multiple participants
with an untrusted third party. It is also guaranteed that each party only obtains its own
calculation results and cannot infer the input and output data of any other party from the
interaction data during the calculation. The mathematical formula for multi-party security
computation is as follows:

f (a1, a2, . . . , an) = (b1, b2, . . . , bn) (1)

where a1, a2, . . . , an are the inputs of each participant, b1, b2, . . . , bn are the corresponding
outputs and f is the computation function agreed by each participant. Each participant can
only see their own inputs and outputs in the whole multi-party computation protocol, and
cannot know the inputs and outputs of other participants.

3.2. Additive Secret Sharing

Inspired by former works [27,28], this paper introduces additive secret sharing to split
the data into two parts. We assume a mobile user Oi shares the secret u (define < u > as
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the shared value of u) to server A and server B, then SA and SB obtain < u >A and < u >B,
where < u >A + < u >B= u mod p. It is worth noting that SA and SB are non-colluding,
so < u >A (< u >B) is only known to SA (SB). In order to reconstruct the value of u later,
two parties need to send the secret shared value together to obtain u. In our scheme, the
data are first split into two secret shared values, which not only protects the original data,
but also achieves non-interactivity between the users.

3.3. Pseudo-Random Generator

A pseudo-random number generator [29,30] is used to reduce our computational cost
in our scheme. A random number seed is used to generate irrelevant random numbers and
we use PRG (seed) to represent the output random numbers. Pseudo-random generator:
{0, 1}n → {0, 1}l is a deterministic that receives an n-bit binary string as input and outputs
an l-bit binary string, where l is much larger than n. The security of a cryptographically
strong PRG is defined by the fact that its output is indistinguishable from the bit stream of
a true random number.

3.4. Bilinear Map

Let G1, G2 and Gτ be cyclic groups of order p, where p is a large prime, and g1 and g2
are generators of G1, G2, respectively. e: G1 × G2 → Gτ is a bilinear map, which satisfies
the following conditions [31]:

1. Bilinearity: For any a, b ∈ Z∗p and g ∈ G1, h ∈ G2, we have e(ga, hb) = e(g, h)ab.
2. Computability: There is an efficient algorithm to compute e(g, h) for g ∈ G1, h ∈ G2.
3. Non-degeneracy: There exists g ∈ G1, h ∈ G2, such that e(g, h) 6= 1.

BDHE Problem: The Bilinear Diffie-Hellman Exponent (BDHE) problem is described
as follows: given g, ga, gb ∈ G1, h ∈ G2, the output is e(g, h)ab.

BDHE assumption: Given g, ga, gb ∈ G1, h ∈ G2, for any a, b ∈ F∗p , if the probability to
solve the BDHE problem is negligible, it means that the BDHE assumption holds in Gτ .

3.5. Verifiable Computation

The verification algorithm is usually used to check the results which are returned by
the server. The main purpose of the References [32–35] is to study verifiable algorithms.
Since cloud servers are untrustworthy, Jia et al. [36] and Zhang et al. [37] proposed public
verification algorithms supporting large-scale matrix multiplication. In our scheme, the
verification algorithm allows the verifier to verify the final result. The algorithm contains
the following four sub-algorithms:

1. KeyGen ( f , λ)→ (pk, sk): The inputs to the key generation algorithm are the secure
parameter λ and function f , and then the outputs are pk and sk.

2. ProbGen (sk, x) → (σx, τx): The inputs to the problem generation algorithm are sk
and x, and the outputs are σx, τx, where σx is a public value and τx is a private value
kept by the user.

3. Compute (pk, σx)→ σy: The algorithm takes pk and σx as inputs, and the cloud server
computes the output value σy.

4. Verify (sk, τx, σy)→ y∪ ⊥: The user uses sk and τx to verify whether σy is correct; if
the verification passes, it will be accepted, otherwise, it will be rejected.

4. System Framework and Non-Interactive and Secure Data Aggregation Scheme

In this section, the system framework and the non-interactive and secure data aggre-
gation scheme are presented in detail.

4.1. System Framework

Here, we introduce the system model, threat model and design goals of this paper.
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4.1.1. System Model

The system model consists of four roles: mobile users, two non-colluding aggregation
servers, control center and public verifier.

Mobile users: In the system, n mobile users are set up (defined as O = {O1, O2, . . . , Oi
, . . . , On}), and each mobile user holds a local private vector and uses a random number to
protect the private vector. At the same time, it also generates a verification key.

Cloud servers: This system consists of two non-colluding servers, SA and SB, mainly
to realize non-interactivity between users and keep the aggregation results confidential to
the cloud server. They will aggregate these vectors and also generate the corresponding
proofs when they receive masking vectors from n mobile users. Then, the aggregation
results and proofs are sent to the control center.

Control center: The two aggregation results are added up to obtain the final result
after the control center receives the aggregation results from SA and SB, so that the data of
these users can be analyzed by the control center.

Public verifier: The verifier usually refers to trusted institutions that can check the
final result based on the proofs and verification keys.

As shown in Figure 1, each mobile user first sends the local ciphertexts < ci >A and
< ci >B to SA and SB through a secure channel, respectively. Then, the server aggregates
the ciphertexts of all users and generates an aggregation value and verification key. Next,
the control center computes the final aggregation result. Finally, the public verifier checks
the final aggregation result according to the verification keys of the mobile user and the
server. In Table 1, we list the main symbols used in this paper, respectively.

Figure 1. System model of the non-interactive and secure data aggregation scheme.

Table 1. Definition of notations in the non-interactive and secure data aggregation scheme.

Symbols Definition

U Mobile user dataset
< xi >A,< xi >B The shares of xi

ai Random vector of the mask selected by user
< ci >A, < ci >B The ciphertexts of shared value < xi >

m Dimension of the private vector
h Verification vectors

PK The public key for verification
VKi Authentication key for verification
sum Aggregation result

σ The proof of computation

4.1.2. Threat Model

In this paper, we assume that mobile users and cloud servers are honest but curious,
and the control center is trustworthy.
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The mobile users: The mobile users are curious about the private data of others while
participating in the aggregation process. However, malicious mobile users may collude
with each other to infer private data of others, or use their own private data to collude with
cloud servers for the same purpose.

The cloud servers: They may return forged results to the control center, which will
lead to wrong results. In addition, the cloud server may also collude with malicious users
to infer the private information of other users.

4.1.3. Design Goals

The non-interactive and secure data aggregation scheme proposed in this paper should
achieve the following five goals:

1. Input privacy: The data collected by mobile users are sensitive data. These data
should be masked before sending to the server; therefore, in this paper we should
ensure that the data input is private.

2. Output privacy: Since there are two non-colluding servers, they perform aggregation
operations without obtaining the final aggregation result; therefore, in this paper we
should ensure the output privacy.

3. Verifiability: The verifier can utilize the verification algorithm to verify whether it is
correct when all participants execute the protocol correctly.

4. Non-interactivity: Our scheme guarantees non-interaction between users, which
reduces the communication cost. Due to the non-interactivity between users, it will
not affect the normal execution of the protocol even if someone drops out during the
aggregation process.

5. Efficiency: It is experimentally demonstrated that our aggregation scheme can obtain
the aggregation result and verify its correctness with a low computation cost.

4.2. Non-Interactive and Secure Data Aggregation Scheme

In this section, the non-interactive and secure data aggregation scheme is described
in detail. We suppose that there are n mobile users and each mobile user, Oi, collects a
large amount of private data about themselves, such as identity information, personal
assets, health status and so on. The data collected by mobile users are called private
data, xi = (xi1, xi2, . . . , xim), where m is the dimension of private data. Firstly, each Oi
uses additive secret sharing to split xi into two parts: < xi >A and < xi >B , where
< xi >A + < xi >B= xi mod p. Then, each Oi encrypts < xi >A and < xi >B using its
own generated private key respectively, and also generates the relevant verification keys.
Finally, the mobile user sends the ciphertexts to SA and SB, respectively. Next, SA and SB
aggregate the data from n mobile users, then the aggregation results are sent to the control
center for analysis. Meanwhile, the public verifier can also verify the aggregation results,
as shown in Algorithm 1, and the specific steps are shown in the following subsections.

4.2.1. Key Generation

The system initialization is performed by the key generation center. e: G1 × G2 → Gτ

is a bilinear map, where G1, G2 and Gτ are multiplicative groups of order p, and p is a large
prime, and g and g′ are generators of G1 and G2, respectively. Later, it publishes the public
parameters = (G1, G2, Gτ , p, g, g′).

Firstly, a random number δ (δ ∈ Z∗p) and the vector r = (r1, r2, . . . , rn) are chosen, then
it computes g′′ = g′δ based on the public parameters, the vectors h = (h1, h2, . . . , hn) and
PKi = e(gri , g′), where ri ∈ Z∗p, hi = gδ+ri and PK = (PK1, PK2, . . . , PKn).

4.2.2. Masking of Private Data

This algorithm is used to blind the private vectors of mobile users. Each mobile user,
Oi, has private data xi = (xi1, xi2, . . . , xik, . . . , xim), where xik represent the k-th dimension
data (1 < k < m). In the following steps, this paper will take the k-th dimension data xik
as an example. Firstly, the mobile user Oi selects a random vector a = (ai1, . . . , aik, . . . , aim),
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where aik ∈ Z∗p, and calculates < xik >A and < xik >B using the additive secret sharing
algorithm. Input aik into the PRG as a random seed. Subsequently, Oi encrypts < xik >A
and < xik >B respectively, as follows:

< cik >A =< xik >A +PRG(aik)

< cik >B =< xik >B −PRG(aik)

VKik = PKxik
i

(2)

Then, the mobile user sends the ciphertexts to the cloud server through a secure
channel, meanwhile generating public verification keys VKi = (VKi1, . . . , VKik, . . . , VKim).
The mobile user provides the verification keys to the verifier so that the verifier can verify
the final result.

Algorithm 1 Non-Interactive and Secure Data Aggregation Scheme

1: begin
2: Mobile user: Split xi into < xi >A and < xi >B.
3: Compute ciphertexts < cik >A=< xik >A +PRG(aik) and < cik >B=< xik >B
−PRG(aik).

4: Compute verification keys VKik = PKxik
i .

5: Send the ciphertexts and verification keys through a secure channel to server and public
verifier, respectively.

6: Server A: Compute < sumk >A= ∑n
i=1(< xik >A +PRG(aik)) and < σk >A=

∏n
i=1 h<cik>A

i .
Server B: Compute < sumk >B= ∑n

i=1(< xik >B −PRG(aik)) and < σk >B=

∏n
i=1 h<cik>B

i .
7: Send the < sumk >A, < σk >A, < sumk >B and < σk >B.
8: Control center: Compute sumk =< sumk >A + < sumk >B and σk =< σk >A · <

σk >B.
9: Send the sumk and σk.

10: Public verifier: Verify e(σk, g′) = e(gsumk , g′′)∏n
i=1 VKik.

11: end.

4.2.3. Data Aggregation

In the aggregation phase, the server aggregates these ciphertexts received from n
mobile users and generates aggregation proofs < σ >A and < σ >B, where < σ >A= (<
σ1 >A, . . . ,< σk >A, . . . ,< σm >A), < σ >B= (< σ1 >B, . . . ,< σk >B, . . . ,< σm >B). SA
and SB execute the following computations, respectively:

< sumk >A =
n

∑
i=1

(< xik >A +PRG(aik))

< σk >A =
n

∏
i=1

h<cik>A
i

(3)

< sumk >B =
n

∑
i=1

(< xik >B −PRG(aik))

< σk >B =
n

∏
i=1

h<cik>B
i (1 ≤ k ≤ m)

(4)

Then, SA and SB generate the aggregation results < sum >A= (< sum1 >A, . . . ,<
sumk >A, . . . ,< summ >A) and < sum >B= (< sum1 >B, . . . ,< sumk >B, . . . ,< summ >B
), respectively. Then, SA and SB send the aggregation results and proofs to the control
center, which will compute sumk =< sumk >A + < sumk >B and σk =< σk >A · < σk >B
(1 ≤ k ≤ m) for each k-th aggregation result and proof.
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4.2.4. Verification of the Results

The public verifier can check the each k-th final result and proof after receiving the
final result from the control center. The verification formula is as follows:

e(σk, g′) = e(gsumk , g′′)
n

∏
i=1

VKik(1 ≤ k ≤ m) (5)

where σk and sumk are provided by the control center, and VKik is provided by mobile
users.

Theorem 1. According to the verification algorithm, the public verifier can verify the correctness
of the final result.

Proof.

e(σk, g′) = e(< σk >A · < σk >B, g′)

= e(
n

∏
i=1

h<cik>A
i ·

n

∏
i=1

h<cik>B
i , g′)

= e(g, g′)δ ∑n
i=1(<cik>A+<cik>B) · e(g, g′)∑n

i=1 ri(<cik>A+<cik>B)

= e(gsumk , g′)δ ·
n

∏
i=1

e(g, g′)ri(<cik>A+<cik>B)

= e(gsumk , g′′) ·
n

∏
i=1

VKik

(6)

It can be seen from the above formula that our proposed verification algorithm is
correct.

5. Analysis

We will analyze the non-interactive and secure data aggregation scheme based on in-
put and output privacy, verification algorithm security, robustness analysis and limitations.

5.1. Input and Output Privacy

Input privacy: Our scheme first performs additive secret sharing of private data and
then masks it by the random number in the masking phase. The random number, aik,
is generated by the user and kept by himself. It must obtain the blinded value aik if the
cloud server receives the ciphertext of each mobile user and wants to recover the personal
information. Assume that |p| is the length of the key, then the probability that the cloud
server recovers the private data is Pr = 2−|p|. Since the key length is usually very large, the
probability is negligible. The server cannot obtain privacy data for the mobile user, and
therefore, our scheme guarantees the input privacy.

Output privacy: In our aggregation phase, the server aggregates the ciphertext data
from all the mobile users and the output result is a part of the additive secret sharing, which
is not the sum of all of the mobile users. Meanwhile, the two servers are non-colluding,
honest and curious, so the server does not obtain the final aggregation result and then
cannot analyze the data of these mobile users in the aggregation. Moreover, the < σk >A
and < σk >B are computed by the cloud servers and cannot reveal any private information
about them; therefore, our scheme guarantees the output privacy.

5.2. Verification Algorithm Security

Theorem 2. Our proposed verification algorithm is secure under the BDHE assumption.

Proof. The reason this paper uses the BDHE assumption is that in the verification phase,
the user needs to send the verification key PKxi

i = e(gri , g′)xi to the verifier, which is



Electronics 2021, 10, 2464 9 of 15

a BDHE problem. We know that the BDHE assumption is that given g, gψ, gω ∈ G,
h ∈ G1, it is difficult to compute ψ, ω ∈ Z∗p. Therefore, this paper assumes that there is an
adversary P that can work out this difficult matter by using an efficient algorithm, Θ, with
a non-negligible advantage, ε. The steps are indicated as below:

The algorithm Θ initializes the system by choosing G1, G2 and Gτ as p-order cyclic
groups, and g, g′ are the generating elements of G1, G2, respectively. Firstly, the algorithm
Θ chooses ψ , ω ∈ Z∗p randomly, computes g1 = gψ and g′1 = (g′ω)δ, and then the common
parameters = (G1, G2, Gτ , p, g, g′, g1, g′1) are published. Secondly, PK′i = e(g, g′)/e(g1, g′1) is
computed. Since the algorithm Θ knows the public parameters and VKik

′, then it can obtain
e(∏n

i=1 gxik , g′) = e(∏n
i=1 gcik

1 , g1)∏n
i=1 VKik

′, where VKik
′ = PK′i

cik . Adversary P uses the
algorithm Θ to obtain VKik for each input xik. Then, adversary P forges the aggregation
result

′
k, where result

′
k 6= resultk. Then, the algorithm Θ verifies whether results′k = resultk.

If the verification passes, it implies that the algorithm Θ fails the challenge. Otherwise, it
works out the BDHE problem and obtains the following settlement result:

e(g, g′)ψω = e(
δ

∏n
i=1 gcik

)δ(resultk−result
′
k)
−1

(7)

From the above equation, it can be seen that our verification algorithm is secure under
the BDHE assumption.

5.3. Robustness Analysis

In the actual application, mobile users in IoT may drop out at any time due to network
and other factors. In the previous schemes, the secret sharing recovery algorithm is usually
used to restore the mask values of exiting users, which improves the robustness of their
scheme. Some methods [12,21] require a large number of mobile users to be online, and their
masking formula is yu = xu + PRG(bu) + ∑v∈U:u<v(PRG(su,v) − ∑v∈U:u>v(PRG(su,v)
mod R. The xu represents the private data of each user and bu is a random number
generated by the user who distributes shares of bu to the other users, and su,v is the agree-
ment key between user u and user v. Assume that there are no user drops out, then
the cloud server will correctly compute the aggregation result ∑n

u=1(yu), and then the
∑n

u=1(∑v∈U:u<v PRG(su,v)− ∑v∈U:u>v PRG(su,v)) will be zero. Once a user drops out, a
large number of users are needed to recover the shared values bu and su,v by the secret
reconstruction algorithm to make ∑n

u=1(∑v∈U:u<v PRG(su,v)−∑v∈U:u>v PRG(su,v)) zero,
so a large number of users need to be online to ensure that the scheme is executed correctly.
However, the scheme [20] does not support user drop out. Since the formula of the masking
phase is yi = xi + s−1

i (∑n
j=i+1 PRG(vij)−∑i−1

j=1 PRG(vij)), where xi represents the private
data, si is generated by aggregation and vij is the agreement key between user i and user j.
Assume that once the user drops out, then the yi will not be uploaded to the cloud server,
and the formula (∑n

j=i+1 PRG(vij)− ∑i−1
j=1 PRG(vij)) is not zero, which will produce an

incorrect aggregation result.
The scheme in this paper does not require the mobile users to be online all the time.

The mobile user sends the ciphertexts < cik >A=< xik >A +PRG(aik) and < cik >B=<
xik >B −PRG(aik) to the server. Assume that the mobile user Oi drops out, then neither
< cik >A nor < cik >B will be sent to the server, and the data of Oi will not have an
influence on the aggregation result. Therefore, our scheme is robust as it will not fail to be
performed properly even if some mobile users drop out.

5.4. Limitations

Reviewing the system framework of this paper, we conclude the limitations. First,
all participants in this paper are designed to be honest and curious, except for the control
center, and the two cloud servers do not collude. The system designed in this paper allows
a small number of mobile users to collude with the cloud server, which does not lead to
leakage of the private data of mobile users. However, once two cloud servers collude
with each other, the privacy of data may be affected. For example, SA and SB cooperate
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to calculate the final aggregation result after the ciphertexts of all mobile users are sent to
the cloud server, and then the aggregation result will be maliciously analyzed. Due to the
high security assumptions in this paper, we will focus on a single cloud server to solve
non-interactive issues in the future.

6. Performance Evaluation

In this section, we evaluate the performance of the non-interactive and secure data
aggregation scheme using theoretical and experimental analysis.

6.1. Function Analysis

We compare the functions of the non-interactive and secure data aggregation scheme
with the previous ones in Table 2. In [12], the authors use a double-mask to ensure data
privacy, efficient aggregation and robustness, which does not realize non-interactivity,
verification and result privacy. In [13], the authors also use a double-mask to ensure
data privacy, efficient aggregation, robustness and verification, which does not realize non-
interactivity and result privacy. In [16], the authors propose a multi-party secure computing
framework to ensure data privacy, verification, robustness and result privacy, which does
not achieve non-interactivity. In [20], the authors propose one mask to ensure data privacy
and verification, which does not achieve non-interactivity, robustness and result privacy. It
can be seen from Table 2 that the non-interactive and secure data aggregation scheme of
this paper achieves these five functions. Compared with the schemes mentioned above,
our scheme has certain advantages.

Table 2. Comparison with previous secure aggregation schemes.

Schemes Data Privacy Non-Interactity Verification Roustness Result Privacy

[12] Yes No No Yes No
[13] Yes No Yes Yes No
[16] Yes No Yes Yes Yes
[20] Yes No Yes No No
ours Yes Yes Yes Yes Yes

In Table 3, our scheme is compared with the previous ones in terms of computation
cost and communication costs, where |p| is the length of security parameter p, and the
number of users and the dimension of private data are n and m, respectively. In terms of
computation cost, the scheme in [12] has the highest cost since it requires a large number
of secret sharing and secret reconstruction operations, which requires O(n2 + mn). Xu
et al. [13] applied the algorithm in [12], so the time complexity of the user side is the same.
In [16], the time complexity of generating ciphertext and signature is O(m + n), and in [20],
the main computation cost results from computing the verification key and agreement
keys, which requires O(m + n). In our method, the computational cost is independent of
the number of users and it is only relevant to the size of data vector m, so the cost is the
smallest.

In terms of communication cost, the schemes in [12,13] include key agreement and
secret sharing, which require 6(n− 1)m|p|. In [16], the users only need to upload their own
encrypted data, which requires m|p|. However, the non-interactive and secure data aggre-
gation scheme makes the communication overhead between users zero. In our scheme,
the ciphertexts and verification keys are sent to the server and the verifier, respectively.
Then, the communication cost between the mobile user and the server is 2m|p|, and with
the verifier is m|p|, so our proposed scheme has the lowest communication cost.
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Table 3. Comparison of the computation and communication costs.

Computational Cost Comparison Communication Cost Comparison

Schemes User Server Verifier User–User User–Server User–Verifier
Communication Communication Communication

[12] O(n2 + mn) O(mn2) - 6(n− 1)m|p| 7m|p| -
[13] O(n2 + mn) O(mn2) O(m) 6(n− 1)m|p| 8m|p| -
[16] O(m + n) O(mn) O(mn) m|p| 3m|p| -
[20] O(m + n) O(mn) O(mn) 2(n− 1)m|p| 2m|p| m|p|

ours O(m) O(mn) O(mn) - 2m|p| m|p|

6.2. Experimental Results

We carried out a series of experiments to show the feasibility and efficiency of the
scheme. The experiments are based on python language implementation. In the verification
part, we used the bilinear map pypbc library, which is a python wrapper for the PBC library,
and set p as 1024 bits. All the experiments depend on the computer with Intel(R) Core(TM)
i5-10210U CPU @ 1.60 GHz 2.11 GHz 16.0 GB RAM, and run on the Ubuntu 18.04 operating
system.

The first experiment was executed to evaluate the efficiency of each sub-algorithm
in our scheme. In this experiment, our scheme has four sub-algorithms, including key
generation, masking of private data, data aggregation and verification of the results. We
defined the following parameters to represent the corresponding operation: Texp , Tpair and
Tmm for modular exponentiation, bilinear pairing and modular multiplication operations,
which are 0.16, 23 and 0.02 ms, respectively.

In the key generation phase, the algorithm chooses a random vector r ∈ z∗p, and
computes g′′, hi and PKi. Computing g′′ and hi requires one modular exponentiation and
n modular exponentiation operations respectively ( where hi = gδ+ri (1 < i < n)), while
computing PKi requires n modular exponentiations and one bilinear pairing operation.
From this phase, we conclude that the total time cost is (2n + 1)Texp + Tpair.

In the masking phase, the main overhead of the mobile user is to compute verification
keys VKi. Computing the verification keys require m modular exponentiation operations
(where VKik = PKxik

i (1 < k < m)), so the total computation overhead is mTexp. From
this phase, we conclude that the computation overhead of the masking phase has a linear
relationship with the data size m.

In the aggregation phase, the servers calculate the aggregation values < sum >A
and < sum >B, respectively. However, the servers’ main time overhead is to calculate
the generation proof < σ >A and < σ >B, which requires 2mn modular exponentiation
and 2(n − 1) modular multiplication operations. Therefore, the computational cost is
2mnTexp + 2(n− 1)Tmm. From this phase, it displays that the computational cost of the
server in the aggregation phase is related to the mobile user n and the size of data m.

In the verification phase, the verifier receives the final result and proofs from the
control center, which requires 2m modular exponentiation, two bilinear pairing and n
modular multiplication operations. Therefore, the total time cost is nTmm + 2Tpair + 2mTexp.
This phase displays that the computation cost of the verification phase is related to the
mobile user n and the size of data m.

In the proposed aggregation scheme, the mobile users were set from 100 to 600, while
the private data dimension is fixed at m = 10. As shown in Figure 2, we compared the
relationship between the computational cost of each phase and the number of users n. In
the keyGen phase, the main computation overhead is to compute the key of the public
verifier, which requires (2n + 1)Texp + Tpair. In the masking phase, the main computational
cost is to calculate the verification key on the client side, which only requires mTexp and is
independent of the number of users. In the verification phase, the verifier mainly verifies
the Equation (5), which requires nTmm + 2Tpair + 2mTexp. As shown in this paper, n is set
from 100 to 600, and m is only set to 10. Therefore the computational cost of key generation
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is the largest. We can see the computation overhead in the aggregation phase is between
324 and 1944 ms, while that in the verification phase is between 51.2 and 61.2 ms.

Figure 2. The time cost of each phase varies with the number of mobile users.

Then, we change the data dimension when the number of mobile users is fixed
(n = 10), and it can be seen that the overhead of each phase increases with the dimensions.
It can be seen from Figure 3 that the computational overhead of the key generation phase
is independent of the data dimensions when the dimensions are set from 100 to 600. In
the masking phase, the time cost of the user is between 16 and 96 ms. In the aggregation
phase, the computational cost of the server is between 320.04 and 1920.24 ms, while the
computational cost of the verification phase is between 62.02 and 142.02 ms.

Figure 3. The time cost of each phase changes with the dimensionality of the data.

In the experiments, as shown in Figure 4, we compared the time cost of the user-side
of different schemes, which varies with the dimension of the data. Specifically, the number
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of users is set at n = 10, and the data dimensions vary from 100 to 500. The experiments
suppose an ideal situation where no mobile users drop out during the aggregation phase.
Since the schemes in [12,13] use secret sharing and the Diffie-Hellman key agreement
protocol, the time cost of their schemes is relatively high. However, Ma et al. [16] employ
proxy re-encryption and aggregation signatures, which contain modular exponentiation
operations, so the computation cost is not large. The scheme in [20] adopts key agreement
and the aggregation coefficient to mask the private data, which only contains a small
number of modular exponentiation and modular multiplication operations, so the time cost
is not large. In the non-interactive and secure data aggregation scheme, the main overhead
of mobile users is to calculate the verification key, which only contains a small number of
modular exponentiation operations. Therefore, we can see that the computation cost of the
other three schemes is much higher than ours.

Figure 4. The time cost of the user-side of different schemes varies with the dimensionality of
the data.

7. Conclusions

In this paper, we proposed a non-interactive and secure data aggregation scheme with
additive secret sharing for IoT. The mobile users adopt additive secret sharing to split the
private data into two parts and then mask them. Then, the ciphertexts are sent to servers
for aggregation. The proposed scheme not only protects the private data of mobile users
but also the privacy of the final aggregation results. Moreover, it realizes non-interaction
between users and supports users offline. Security analysis showed that the proposed
scheme protects the privacy of inputs and outputs. Finally, the experimental results show
that this scheme is effective and has less computation and communication costs than the
previous schemes.

In future work, we will focus on the following two issues: (1) Mobile user identity
privacy: in the research of IoT data security aggregation, most of the papers did not protect
the identity of mobile users, and we think that the identity of mobile users is as important
as private data, and (2) Consider a single cloud service: in future work, we will use a
single server to design a non-interactive aggregation scheme to reduce the computation
and communication overhead of mobile users.
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