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Abstract: A high-performance and low power consumption triple-node upset self-recoverable latch
(HTNURL) is proposed. It can effectively tolerate single-node upset (SNU), double-node upset
(DNU), and triple-node upset (TNU). This latch uses the C-element to construct a feedback loop,
which reduces the delay and power consumption by fast path and clock gating techniques. Compared
with the TNU-recoverable latches, HTNURL has a lower delay, reduced power consumption, and
full self-recoverability. The delay, power consumption, area overhead, and area-power-delay product
(APDP) of the HTNURL is reduced by 33.87%, 63.34%, 21.13%, and 81.71% on average.

Keywords: soft errors; triple-node upsets; self-recoverable; C-element; clock gating; fast path

1. Introduction

With the semiconductor technology scaling down continuously, higher integration
and lower power integrated circuits (ICs) have been successfully developed. However,
modern ICs are growing vulnerable to radiation strike gradually [1,2]. Soft errors are
mainly brought by the strike of particles, such as protons, neutrons, alpha particles, heavy
ions, and electrons [3]. When a particle hits a circuit-sensitive node, the value stored
in the node may be changed, resulting in a single-node upset (SNU). However, in the
high-density ICs, owing to charge sharing, high-energy particle strike may alter the logic
values of double/triple nodes at the same time, resulting in a double-node upset (DNU) or
even a triple-node upset (TNU) [4].

The existing radiation-hardened latch designs may achieve TNU tolerance [2–9], but
only two of them can be fully TNU self-recoverable [4,9]. A fully self-recoverable latch
can restore back to the original correct value(s) after the node(s) has been flipped by
particle-striking, avoiding a floated state that can be easily altered by leakage current
when the clock interval is long. Although the latches presented in [4,9] are fully TNU-
recoverable, their delay and power consumption are large. Therefore, they are not suitable
for aerospace applications.

Because of latches’ problems mentioned above, we designed a high-performance
and low-power latch which is TNU self-recoverable. This latch comprises four series of
C-element modules, each consisting of four two-input C-elements. Each C-element fans
out to the two C-elements in the next module. Furthermore, fast path and clock gating
(CG) techniques are taken to reduce delay and power consumption. Compared with the
typical TNU-recoverable latches, the HTNURL proposed in this paper decreases the delay
by 69.54%, the power consumption by 30.90%, the area overhead by 3.60%, and the APDP
by 88.60%. In addition, process, voltage, and temperature (PVT) estimation indicates it is
less sensitive to PVT variations than that of up-to-date latches.

This paper is structured as follows. Section 2 provides some radiation-hardened cell
reviews In Section 3, the working principle, implementation, and reliability verification
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of the proposed latch is described. Section 4 compares the latches. In Section 5, we draw
conclusions from this paper and show our plan for future work.

2. Typical Radiation Hardened Designs

The C-element and the dual interlocked storage cell (DICE) are the most extensively
used in the design of radiation-hardened latches. The 2-input and 3-input C-elements are
shown in Figure 1a,c.

Figure 1. C-elements and DICE: (a) 2-input C-element; (b) CG-based 2-input C-element; (c) 3-input C-element; (d) CG-based
3-input C-element; (e) DICE.

If the inputs of the C-element are the same, the function of the C-element is similar
to an inverter. If the inputs of the C-element are different, the C-element outputs a high-
impedance state (HIS) and keeps the original value. Figure 1b,d show the CG-based
two-input C-element and CG-based three-input C-element that can be controlled by the
system clock and the negative system clock signals. Figure 1e is the DICE, which consists of
four PMOS transistors and four NMOS transistors. The DICE has four sensitive nodes (N1,
N2, N1b, and N2b). Here, a sensitive node is defined as a node in a circuit whose electrical
potential can be modified by internal injection or collection of electrical charges [10]. The
DICE can self-recover when any nodes are flipped by an SNU, but this structure cannot
self-recover from DNUs [11].

2.1. LCHRNAN

The low-cost and highly reliable hardened latch design for nanoscale CMOS technol-
ogy (LCHRNAN) [12] is shown in Figure 2. It tolerates a SNU through the C-elements.
Suppose node N5 is struck by a SNU, node nq enters a HIS and keeps the original value, so
node Q outputs the correct value. However, the incorrect value of node N5 reaches nodes
N1 and N2 through the inverters, causing node N5 to keep the incorrect value and it cannot
be recovered until the next clock cycle. Suppose node pair (N5, N6) is struck by a particle
and causes a DNU, the value of node nq is flipped, while N5 and N6 keep the incorrect
value. Therefore, this latch can only tolerate SNU, but cannot self-recover.
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Figure 2. Schematic of LCHRNAN latch.

2.2. HRPU

The highly reliable and high-performance SEU-hardened latch (HRPU) [13] is shown
in Figure 3. The latch uses four C-elements to construct a feedback loop. When N2 is struck
by a particle causing a SNU, node Q is affected immediately, so N1 and Q enter the HIS
and keep their original values. The incorrect value of node N2 is updated by N1. Q keeps
the correct value, so the HRPU latch is SNU-recoverable. Suppose node pair (N2, N3) is
struck by a particle causing a DNU, the value of nodes Q and N1 are flipped, and thus this
latch cannot tolerate DNUs.

Figure 3. Schematic of HRPU latch.

2.3. DNCS

The double-node charge-sharing SEU-tolerant latch (DNCS) [14] is shown in Figure 4.
This latch uses six two-input C-elements to construct a feedback loop to store values and
one three-input C-element as a voter at the output. Suppose node pair (N1, N3) is struck
and it causes a DNU, the three-input C-element will enter the HIS and keep the original
value, so node Q will not be affected. This latch can tolerate DNU but is not self-recoverable.
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Figure 4. Schematic of DNCS latch.

2.4. Delta DICE

The delta dual interlocked storage cell (Delta DICE) [15] latch is demonstrated in
Figure 5. It is composed of three interlocked DICEs. Any two DICEs are connected through
a shared node. Suppose node pair (N1, N3) is struck, causing a DNU in DICE A. DICE A
cannot self-recover in this case. Since node N1 is the shared node of DICE A and DICE
B, it can be recovered by DICE B. Similarly, node N3 can be recovered by DICE C. This
latch cannot keep the correct value if all of the shared nodes N1, N3, and N5 are flipped.
Therefore, the Delta DICE latch can only be DNU-recoverable and cannot tolerate TNUs.
At the same time, many current loops exist in the transparent mode, which causes a lot of
power consumption.

Figure 5. Schematic of Delta DICE latch.

2.5. TNUHL

The TNU-hardened latch (TNUHL) [8] is shown in Figure 6. The latch takes five
interlocked four-input C-elements to construct a feedback loop and combines two three-
input C-elements and one two-input C-element to filter soft errors. Suppose node set
(N1b, N2b, N5b) is struck and it causes a TNU, node N6 is flipped through the three-input
C-element. Node N7 enters the HIS and keeps the original value because nodes N3b and
N4b are not affected. Similarly, node Q is not affected and maintains the correct value.
Therefore, the TNUHL latch can tolerate TNU but cannot self-recover. Besides, the delay of
the latch is large.
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Figure 6. Schematic of TNUHL latch.

2.6. LCTNURL

The low-cost and TNU self-recoverable latch (LCTNURL) [9] is shown in Figure 7. It
mainly constructs a feedback loop through twelve circularly linked three-input C-elements
(C1-C12). Suppose node set (N1, N7, N11) is struck and it causes a TNU. Since nodes N4,
N6, and Q keep their original values, node N1 can be recovered by C1. Similarly, nodes N7
and N11 can be recovered by C7 and C11, respectively. Since the output of any C-element
in the latch is connected to the input of the three specified downstream C-elements, the
latch can tolerate the TNU and is self-recoverable. However, there are many current paths
in the latch, generating a large power consumption.

Figure 7. Schematic of LCTNURL latch.

2.7. TNURL

The TNU self-recoverable latch (TNURL) [4] is shown in Figure 8. It is mainly con-
structed from seven mutually feeding back soft-error-interceptive modules (SIMs), any
of which consists of two three-input C-elements and one two-input C-element. Suppose
node set (I1, I2, I3) is struck and it causes a TNU. For SIM2, since nodes I4, I5, I6, and Q are
not affected, nodes t3 and t4 keep their original values, node I1 can be recovered by nodes
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t3 and t4 through the two-input C-element. Similarly, nodes I2 and I3 can be recovered
by SIM3 and SIM4, respectively. Due to the mutual feedback mechanism of SIMs and the
dual-level soft-error interception of each SIM, the latch can self-recover from any possible
TNU. However, the TNU recovery is achieved at the price of an increased area overhead
and power consumption penalties.

Figure 8. Schematic of TNURL latch.

3. Proposed Hardened Latch Design
3.1. Circuit Design and Behavior

The HTNURL latch is proposed and demonstrated in Figure 9. CLK and nCLK
represent the system clock and negative system clock, respectively; TG1–TG4 represent
four transmission gates (TGs); N1–N15 represent the data nodes inside the latch; C1–C16
represent 2-input C-elements. It should be noted that C13, C14, C15, and C16 represent
CG-based 2-input C-elements. The sensitive nodes in this latch are N1-N14 and Q. The latch
is mainly composed of 4 stage C-element modules, and each module is composed of four
2-input C-elements. Each 2-input C-element flows to the input of the two C-elements in
the next stage, and each input of the 2-input C-element comes from the 2-input C-element
in the previous stage, thus forming a feedback loop.

Figure 9. Proposed HTNURL latch design.

When CLK is high and nCLK is low, the HTNURL latch works in transparent mode.
At this time, TG1–TG4 are ON, and C13–C16 are OFF. The data of input D are transmitted
to nodes N1, N2, N3, and Q through TG1, TG2, TG3, and TG4, and then transmitted to
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other nodes (N4–N15) in the following stages through C-elements (C1–C12). Because node
Q is connected to node D via TG4, the D-Q delay is reduced.

When CLK is low and nCLK is high, the HTNURL latch works in the latching mode.
In this mode, TG1–TG4 are OFF, and C13–C16 are ON. The data are stored in the latch
through the feedback loop formed by four C-element modules and outputted through
the node Q. The simulation waveform of each node in the transparent mode and latching
mode is shown in Figure 10.

Figure 10. Simulation waveform of HTNURL latch.

SNU-recovery feature: For SNU, because the structure of the latch is symmetric, the
impact of a SNU on the latch is the same for any node. Considering N1, when N1 causes
a SNU, the logic value of N1 is flipped, and the incorrect value is transmitted to one of
the inputs of C1 and C4, but N2 and Q still keep the correct values. According to the
transmission characteristics of the C-element, the output nodes N4 of C1 and N7 of C4 keep
their original values. Nodes N12 and N13 also keep the correct values and recover node N1
through C13 from the incorrect value. Therefore, the HTNURL latch is SNU-recoverable.

DNU-recovery feature: For DNU, because the structure of the latch is symmetric, the
HTNURL latch can be affected by a DNU in three cases.

CASE D1: Two modules are affected.
Taking the node pair (N1, N2) as an example, because each internal node of the HT-

NURL latch is the shared node of the two modules, the affected modules must be tadjacent.
Suppose node pair (N1, N2) is struck by a particle and it causes a DNU, the two

input nodes of C1 are both flipped, so the output node N4 of C1 is also flipped. At this
time, nodes N3 and Q are kept at the correct values, so nodes N5, N6, and N7 keep their
original correct values. Though the value of node N4 is incorrect, due to the correct values
of N5 and N7, N8 and N11 keep their original correct values. Hence, the soft error in
the HTNURL latch has been completely blocked and will not be transmitted to the next
module. Because nodes N12, N13, and N14 keep the correct values, the incorrect values of
nodes N1 and N2 can be restored via C13 and C14.
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CASE D2: Three modules are affected.
Taking the node pair (N1, N4) as an example, when (N1, N4) is struck by a particle

and it causes a DNU, because Q is not affected, the output node N7 of C4 keeps the original
value. Though the value of node N4 is incorrect, due to the correct values of N5 and N7,
nodes N8 and N11 keep their original values. Because N12 and N13 are not affected, the
incorrect value of node N1 can be recovered through C13. At this time, N1 and N2 have
correct values, and the incorrect value of node N4 is recovered through C1.

CASE D3: Four modules are affected.
Taking the node pair (N1, N8) as an example, when the node pair (N1, N8) is struck

by a particle and it causes a DNU, since nodes N2, Q, N9, and N11 are not affected, nodes
N4, N7, N12, and N15 keep their original values. At this time, nodes N12, N13, N4, and N5
have correct values, thus the incorrect N1 and N8 can be restored through C13 and C5.

Therefore, the HTNURL latch is DNU-recoverable.
TNU-recovery feature: For TNU, there are three cases since the latch is symmetric.
CASE T1: Two modules are affected.
Taking the node set (N1, N2, N3) as an example, when (N1, N2, N3) is struck by a

particle and it causes a TNU, since the values of both inputs of C1 and C2 are flipped, N4
and N5 are inverted as well. The value of node Q is not affected, so nodes N6 and N7 keep
their original values. The values of inputs of C5 are both flipped and the value of node N8
is also flipped. Nodes N9 and N11 still keep their correct values, so nodes N12 and N15
keep their original values. Because all of the nodes N12, N13, N14, and N15 output correct
values, the incorrect values of nodes N1, N2, and N3 can be recovered through C13, C14,
and C15.

CASE T2: Three modules are affected.
Taking the node set (N1, N2, N5) as an example, when (N1, N2, N5) is struck by a

particle and it causes a TNU, N4 is inverted as both inputs of C1 have been flipped. The
nodes N3 and Q are not affected, so node N5 keeps the incorrect value, but N6 and N7
keep their original correct values. Because the values of N4 and N5 are flipped, the value of
node N8 is also flipped. N6 and N7 are not affected at this time, so nodes N9, N10, and N11
keep their original values. N8 is inverted, and nodes N9 and N11 keep their original correct
values, so nodes N12 and N15 keep their original values. Because nodes N13 and N14 keep
their correct values, the incorrect values of nodes N1 and N2 are recovered through C13
and C14, and then the incorrect value of node N5 is recovered through C2.

CASE T3: Four modules are affected.
Taking the node set (N1, N4, N8) as an example, when (N1, N4, N8) is struck by a

particle and it causes a TNU, since N2 and Q are not affected, the output node N4 of C1
keeps the incorrect value, and the output node N7 of C4 keeps the original value. Because
the value of node N5 is not affected, node N8 keeps the incorrect value, and nodes N9 and
N11 keep their original values. The output nodes N12 and N15 keep their original values.
Nodes N12 and N13 keep correct values, so the incorrect value of N1 is recovered through
C13. Nodes N1 and N2 have correct values, so the incorrect value of N4 is restored through
C1. Nodes N4 and N5 have correct values, then the incorrect value of N8 is restored
through C5.

Therefore, the HTNURL latch is TNU-recoverable.

3.2. Verification Results

The charge deposition mechanism for upsets is direct ionization and indirect ionization.
Direct ionization is caused by the incident particle, while indirect ionization is caused by
secondary particles created by nuclear reactions between the particle and the device. The
charge generated by indirect ionization is significantly different from that generated by
direct ionization [16]. An aerospace application may work in both situations. Therefore, we
inject enough charges to the latches to flip the nodes indiscriminately in the simulations.

To verify the function of the HTNURL latch design, simulations were performed by
Synopsys HSPICE using the 32 nm PTM [17]. The temperature was set to 27 ◦C, the supply
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voltage was set to 0.9 V, and the clock frequency was set to 500 MHz. For TG1–TG4, the
PMOS transistors had the ratio W/L as 4 and the NMOS transistors had the ratio W/L
as 1. For the rest transistors, the PMOS transistors had the ratio W/L as 2 and the NMOS
transistors had the ratio W/L as 1. We used a double-exponential current source model to
inject charges in the simulation as in [18]. The equation of the model is shown in (1):

Iinj(t) =
Qinj

τ1 − τ2

(
e
−t
τ1 − e

−t
τ2

)
(1)

Qinj denotes the amounts of induced charge at time t. τ1 and τ2 are the material
dependent time constants, and they do not change in the same material (e.g., silicon).
Basically, the critical charge is only related to the location of the node in a latch and does
not change.

Figure 11 demonstrates the simulation results for SNU injections of the proposed
HTNURL latch. When the value of a single node is flipped, none of the other nodes is
affected. The incorrect value is restored quickly.

Figure 11. Simulation for SNU injections of HTNURL latch.

Figure 12 demonstrates the simulation for DNU injections of the proposed HTNURL
latch. Current was injected into (N1, N2), (N1, N4), and (N1, N8) in turn. After the current
injection into the node pair (N1, N2), it can be found that the value of node N4 is instantly
flipped, and then all the other flipped nodes are recovered to their correct values.

Figure 12. Simulation for DNU injections of HTNURL latch.
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Figure 13 demonstrates the simulation for TNU injections of the proposed HTNURL
latch. Current was injected into (N1, N2, N3), (N1, N2, N2), and (N1, N4, N8) in turn. After
current injection into the node set (N1, N2, N3), it can be found that N4, N5, and N8 are
flipped instantly, and then all the affected nodes are recovered to their correct values.

Figure 13. Simulation for TNU injections of HTNURL latch.

In summary, the HTNURL latch is SNU-, DNU- and TNU-tolerant, and self-recoverable.
Scaling down the voltage to the sub-threshold/near-threshold regime increases the

energy efficiency of the circuits. This technique is widely used in electronics circuits. As
shown in Figure 14, the proposed latch works well with the supply voltage ranging from
0.5 V through 0.7 V with a step of 0.04 V. It means if we scale down the supply voltage into
the sub-threshold/near-threshold regime, the latch can provide not only good robustness
but also a lower power consumption.

Figure 14. Simulation waveform with supply voltage in sub-threshold/near-threshold regime of the
proposed HTNURL latch.

4. Comparisons and Evaluation
4.1. Performance Evaluation

To evaluate and compare the latches fairly, the HTNURL latch design and typical
radiation-hardened latches introduced in Section 2 were implemented under the same
simulation conditions. All simulations were performed by Synopsys HSPICE tool, using a
32 nm PTM. The temperature was set to 27 ◦C, the supply voltage was set to 0.9 V, and the
clock frequency was set to 500 MHz. The designs were compared regarding the reliability,
area, delay, and power consumption. Linear energy transfer (LET) is often used to describe
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the sensitivity of a process technology to a particle strike, which is directly proportional to
the charge deposited at the particle-struck node [19], so the critical charge about the latches
is compared in the following HSPICE simulations.

Table 1 demonstrates the robustness comparisons among the SNU-, DNU-, and
TNU-hardened latches. The LCHRNAN latch is only SNU-tolerant instead of SNU self-
recoverable, and the DNCS latch is only DNU-tolerant instead of DNU self-recoverable.
The Delta DICE latch provides DNU self-recoverability, but it is not reliable when it is
affected by a TNU. The TNUHL latch is only TNU-tolerant but not self-recoverable. The
LCTNURL, TNURL, and HTNURL provide self-recoverability from SNU, DNU and TNU,
while our proposed HTNURL latch has a lower overhead as shown in Table 2.

Table 1. Robustness comparisons among the typical radiation-hardened latches and HTNURL latch.

Latch SNU
Tolerant

SNU
Recoverable

DNU
Tolerant

DNU
Recoverable

TNU
Tolerant

TNU
Recoverable

LCHRNAN YES NO NO NO NO NO
HRPU YES YES NO NO NO NO
DNCS YES YES YES NO NO NO

Delta DICE YES YES YES YES NO NO
TNUHL YES YES YES YES YES NO

LCTNURL YES YES YES YES YES YES
TNURL YES YES YES YES YES YES

HTNURL YES YES YES YES YES YES

Table 2. Overhead and critical charge comparisons among the typical radiation-hardened latches and HTNURL latch.

Latch Qcrit/fC Delay/ps Power/µW Area (USTs) 10–3 × APDP

LCHRNAN 0.51 37.28 0.53 28 0.56
HRPU 0.75 36.91 0.48 14 0.24
DNCS 0.84 101.6 0.72 50 3.66

Delta DICE 0.99 48.63 1.73 36 3.03
TNUHL 0.47 136.3 0.42 82 4.93

LCTNURL 0.59 33.14 0.90 84 2.51
TNURL 1.33 22.51 1.30 128 3.75

HTNURL 0.70 17.73 0.39 80 0.55

In Table 2, “Qcrit” is critical charge. “Delay” is D to Q delay, i.e., the average of
the rise and fall delays of D to Q. “Power” is the average of static and dynamic power
consumption [3]. “Area” is silicon area measured in equivalent USTs as in [7]. “APDP” is
the area-power-delay product to comprehensively evaluate overheads of these latches [20].
Though the latch with higher critical charges means it is less sensitive to particle strike, our
HTNURL is the most robust because the latch can self-recover after suffering a strike even
if a node is flipped. Compared with other TNU-recoverable latches, the HTNURL latch
had the lowest area. It achieved a low power consumption and delay without being less
robust. The delay of HTNURL is the smallest.

To make quantitative comparisons, we have calculated the relative overhead in
terms of delay (∆Delay), power (∆Power), area (∆Area) and APDP (∆APDP) of the TNU-
recoverable latches by Equation (2), as shown in Table 3.

à∆ = (Proposed latch- Compared latch)/Compared latch × 100% (2)
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Table 3. Comparisons among TNU-recoverable latches.

Latch ∆Delay ∆Power ∆Area ∆APDP

LCTNURL –46.50% –56.67% –4.76% –78.09%
TNURL –21.24% –70.00% –37.50% –85.33%
Average –33.87% –63.34% –21.13% –81.71%

As shown in Table 3, we can see that for all the parameters of the latches the per-
centages are negative, reflecting that all the parameters of the HTNURL latch are the
lowest. Compared with the other TNU-recoverable latches, the HTNURL latch reduced
the transmission delay by 33.87%, the power consumption by 63.34%, the area overhead by
21.13%, and the APDP by 81.71%. The overhead of the proposed latch is the lowest.

4.2. Effect of PVT Variations on Latches

As the process size is scaled down, the latch becomes more sensitive to the PVT varia-
tions [2]. In order to compare the circuit working in different situations, simulations were
performed by the HSPICE tool with the 32 nm PTM. PVT variations on the performance of
each latch is analyzed, as shown in Figure 15.

Figure 15. Assessment results of the PVT variations effect on the latches’ performances: (a) process
corners vs. power; (b) process corners vs. delay; (c) supply voltage vs. power; (d) supply voltage vs.
delay; (e) temperature vs. power; (f) temperature vs. delay.

There are five process corners: TT, FF, SS, FNSP, and SNFP [21]. The supply voltage
was varied from 0.75 V to 1.25 V, and the temperature was varied from –25 °C to 125 °C.
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As shown in Figure 15a,b, the power consumption and delay of the latch vary with the
change of process corner. The power consumption of the HTNURL latch is minimal at the
SS process corner, the delay of the HTNURL latch is minimal at the process corner of the
FF, while it is maximal at the process corner of the SS. The power consumption and delay
variations of our latch under different process corners are smaller than those of typical
TNU-tolerant/recoverable latches.

As shown in Figure 15c, the power consumption of the latch increases with increasing
supply voltage, because the power consumption is proportional to the square of the supply
voltage [22]. Meanwhile, as shown in Figure 15d, the latch delay decreases with increasing
of the supply voltage, because the higher conducted current on the devices is taken by the
higher supply voltage, then the delay decreases [23]. In addition, the power consumption
and delay of the HTNURL latch are least affected by the supply voltage changes compared
to the other latches.

As shown in Figure 15e,f, the latch delay increases with the temperature increasing,
because the carrier mobility decreases when the temperature increases [22]. The delay and
power consumption of the HTNURL latch are less effected when temperature changes.

In summary, compared with typical latch designs, the power consumption and delay
of the HTNURL latch is less sensitive to PVT variations.

5. Conclusion and Future Work

The development of process technology has caused the radiation-induced TNU to be-
come more serious. Although typical latches can tolerate TNU, they cannot self-recover or
they require a larger overhead. Therefore, a TNU-recoverable latch, HTNURL, is proposed.
The latch reduces delay by adopting a fast path and uses clock gating technique to reduce
power consumption. The HTNURL latch comprises four-stage C-element modules, form-
ing a feedback loop. It can tolerate TNUs and is highly reliable and self-recoverable. The
HTNURL latch is cost-effective and has lower delay (i.e., is high-performance) compared
to other TNU-recoverable latches, and it has a lower sensitivity to PVT variations. Though
the HTNURL latch is cost-effective, the signal scattering is an issue in this field and our
next step will be proposing a lower signal-scattering latch in future research.
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