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Abstract: Several synthesis techniques are available to optimize amplitude and phase excitations of 

periodic linear arrays to generate flat-top beams. Clearly, the optimal tapering depends on design 

parameters such as the array length, the number of array elements, the beam flatness, the beam 

width, the side lobe levels, and others. In this paper, in order to derive useful guidelines and rule of 

thumb for the synthesis of periodic array antennas, relations between these parameters are derived 

employing linear programming techniques, which guarantee optimality of the solutions. Such rela-

tions are then plotted and used in some design examples. 
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1. Introduction 

In this paper, the canonical problem of generating a flat-top beam with a linear array 

of equally spaced identical elements is investigated. A flat-top beam is a radiation pattern 

having an intensity profile that is flat over a required region of interest. Several antenna 

applications, such as reconnaissance and search RADARs, and wide-area broadcasting 

communication systems, require flat-top beams characterized by well-defined beam-

widths. For such applications, key radiation pattern requirements are the ripple within 

the main-beam and the level of sidelobes after a transition zone from the main beam. Well-

established synthesis procedures such as Fourier [1] or Woodward–Lawson [2,3] exist but 

are not particularly well suited due to the Gibbs phenomenon. Inspired by Butterworth 

filters [4], Ksienski introduced an analytical procedure [5] (extended in [6]) which max-

imizes the smoothness of the radiation patter at the expenses of an enlarged transition 

zone. Notwithstanding their speed, these techniques result suboptimal due to the unnec-

essary constraint on the realness of the voltage radiation pattern. In this respect, linear 

programming techniques allow for finding the global optimal solution to the flat-top 

power pattern problem [7]. 

Given an array geometry (i.e., the elements positions), the problem of the optimiza-

tion of array excitations to satisfy arbitrary upper and lower bounds for the main beam 

and sidelobes is casted in the equivalent problem of the optimization of the real and im-

aginary parts of the autocorrelation of the excitations, which become the new unknowns. 

In this auxiliary space, the power pattern is a linear transformation of the unknowns (as 

the voltage pattern is a linear function of the array excitations) and the power pattern 

constraints can be described as linear constraints on the unknowns (an additional linear 

constraint on the positivity of the power pattern must be added). The goodness of this 

transposition stays in the fact that the minimization of the sidelobes and/or of the main-

beam ripple become convex problems admitting a unique global solution, which can be 
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found with linear programming techniques. Although the formulation [7] used in the fol-

lowing sections leverages on the framework developed by L. R. Rabiner in 1972 for Finite-

Impulse-Response (FIR) filters [8,9], the application to array antennas and optimality as-

pects can be found in [10]. 

Concerning the computational speed of linear programming solvers, while the theo-

retical analyses of their complexity remain an open problem, the simplex method or the 

interior point methods have been shown to exhibit typical polynomial (in the number of 

unknowns and constraints) running times (which correspond to few seconds in the in-

stances of the addressed problem) [11]. Notwithstanding the global optimality of the lin-

ear programming solution for a specified flat-top-beam problem, the sensitivity of the so-

lution to the input parameters has not been addressed in the technical literature (to the 

best knowledge of the authors). This paper analyzes the performance relationships be-

tween the following design parameters: array length, number of array elements, beam 

width, maximum allowed beam ripple, and width of the transition region between the 

main beam and the side lobes. Adopting a linear programming approach, the optimal 

value of the maximum side lobe level is derived and graphically illustrated as a function 

of the other parameters. The study presented in this paper does not aim to propose a new 

array synthesis algorithm but rather to deepen the analyses presented in [7] to provide 

antenna engineers with some design curves giving useful insights in the problem and data 

for the preliminary phase of synthesis. 

In addition to the analytical methods [1–6], the literature offers a great variety of nu-

merical methods for the array synthesis. As an example, in [12–14], deterministic proce-

dures are proposed based on alternating projection approaches; in [15], a linear program-

ming optimization plus a polynomial factorization is conceived; and [16] proposes a fast 

and versatile deterministic algorithm that iteratively minimizes a suitable weighted cost 

function. Furthermore, many global optimization techniques have been proposed, such as 

those presented in [17,18], based on genetic algorithms; the one proposed in [19], based 

on the differential evolution algorithm; and that in [20], which exploits the particle swarm 

optimization approach. Although this canonical problem has been already investigated, 

to the knowledge of the authors, attention has never been focused on the relations between 

the abovementioned design parameters. The authors believe that such an analysis may be 

very useful in the preliminary phase of design. For example, using the curves shown in 

Section 3, the antenna designer can estimate the length of the linear array necessary to 

achieve certain assigned performances or can anticipate the expected pattern characteris-

tics of a flat-top beam realizable with an array having a given length. 

The paper is organized as follows. In Section 2 the problem is formulated. In Section 

3 the dependence of the maximum side lobe level on various design parameters is pre-

sented and discussed along with an asymptotical analysis aimed to verify the results with 

respect to the number of pattern samples utilized to derive the relations between the de-

sign parameters. In Section 4 some numerical examples are presented in order to describe 

how the reference curves can be used and to prove the superiority of the linear program-

ming compared with conventional methods for the synthesis of shaped beams. The con-

clusions are proposed in Section 5. 

2. Formulation of the Problem 

The array factor of a linear antenna array of N identical equally spaced elements is 

given by the following: 

𝐹(𝜗) = ∑ 𝐸𝑛𝑒𝑗𝑘0𝑛𝑑𝑢𝑁−1
𝑛=0       (1) 

where 𝐸𝑛  is the excitation of the n-th element; 𝑗 = √−1; 𝑘0 = 2𝜋/𝜆, with 𝜆 the wave-

length; d is the inter-element spacing; and 𝑢 = sin 𝜃, where 𝜃 is the angle from broad-

side. In the sequel, the power pattern |𝐹(𝜗)|2 will be considered. 
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A flat-top beam pattern can be characterized by the main beam edge 𝑢𝑀𝐵, the ripple 

𝛿𝑀𝐵 in the main beam, the maximum side lobe level 𝛿𝑆𝐿, and the side lobe edge 𝑢𝑆𝐿, as 

depicted in Figure 1. The additional parameters Δ𝑢 = 𝑢𝑆𝐿 − 𝑢𝑀𝐵  and 𝐾 = 𝛿𝑀𝐵/𝛿𝑆𝐿  are 

also introduced. 

 

Figure 1. Example of a constraints compliant radiation pattern and definition of the design param-

eters 𝑢𝑀𝐵, 𝑢𝑆𝐿, 𝛿𝑀𝐵, 𝛿𝑆𝐿, and Δ𝑢 for the flat-top power pattern. 

The aim of the investigation presented in this paper is to derivie the relations between 

the above design parameters, exploiting them in the synthesis of flat-top beams. With this 

in mind, the desired values of 𝑢𝑀𝐵, 𝑢𝑆𝐿 (or, alternatively, ∆𝑢), and 𝛿𝑀𝐵 (or, alternatively, 

𝐾) are imposed, and the power pattern is calculated in such a way as to satisfy the con-

straints imposed on these parameters, simultaneously minimizing the maximum side lobe 

level 𝛿𝑆𝐿. This problem is solved by using a linear programming approach, as briefly ex-

plained below (see [8,9] for further details). At first, the power pattern is written as fol-

lows: 

|𝐹(𝜗)|2 = ∑ 𝑅𝑛𝑒𝑗𝑘0𝑛𝑑𝑢𝑁−1
𝑛=−(𝑁−1)       (2) 

where 

𝑅𝑛 = {
∑ 𝐸𝑖𝐸𝑖−𝑛

∗  𝑁−1
𝑖=𝑛  𝑖𝑓 0 ≤ 𝑛 ≤ (𝑁 − 1) 

∑ 𝐸𝑖
∗𝐸𝑖+𝑛

𝑁−1
𝑖=−𝑛  𝑖𝑓 − (𝑁 − 1) ≤ 𝑛 < 0

    (3) 

with the asterisk denoting complex conjugate. By (3), 𝑅−𝑛 = 𝑅𝑛
∗ . Therefore, (2) can be writ-

ten in the following form: 

|𝐹(𝜗)|2 = 𝐴0 + 2 ∑ (𝐴𝑛 cos(𝑘0𝑛𝑑𝑢) − 𝐵𝑛 sin(𝑘0𝑛𝑑𝑢))𝑁−1
𝑛=1 ,    (4) 

with 𝑅𝑛 = 𝐴𝑛 + 𝑗𝐵𝑛  and in particular 𝑅0 = ∑ |𝐸𝑖|
2 𝑁−1

𝑖=0 = 𝐴0 . The design parameters 

𝑢𝑀𝐵, 𝑢𝑆𝐿, 𝛿𝑀𝐵, and 𝛿𝑆𝐿 are then used to define a mask for the power pattern in (2). Such a 

mask is illustrated in Figure 1. Thanks to the auxiliary variables 𝑅𝑛 in (2) and (3), the 

power pattern synthesis is formulated as a linear programming problem, where the ob-

jective function to be minimized is 𝛿𝑆𝐿. The problem can be formulated as follows: 

minimize{ 𝛿𝑆𝐿}         

subject to the following constraints: 

−|𝐹(𝑢)|2 ≤ −𝐿(𝑢)      (5a) 

|𝐹(𝑢)|2 ≤ 𝑈(𝑢)       (5b) 

−𝛿𝑆𝐿 ≤ 0       (5c) 
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 𝛿𝑀𝐵 = 𝛿𝑀𝐵
𝑑𝑒𝑠 or 𝛿𝑆𝐿 = 𝛿𝑀𝐵/𝐾𝑑𝑒𝑠     (5d) 

where 𝐿(𝑢) and 𝑈(𝑢) are two positive functions representing, respectively, the lower 

and the upper bound of the mask, and are defined as 

𝐿(𝑢) = (1 − 𝛿𝑀𝐵)𝐿𝐸(𝑢, 𝑢𝑀𝐵)      (6a) 

𝑈(𝑢) = (1 + 𝛿𝑀𝐵 − 𝛿𝑆𝐿)𝐿𝑇(𝑢, 𝑢𝑆𝐿) + 𝛿𝑆𝐿     (6b) 

Note that the constraints in (5) impose that the power pattern belong to the mask 

specified by 𝐿(𝑢) and 𝑈(𝑢) (conditions (5a) and (5b)), in which 𝛿𝑆𝐿 ≥ 0 (condition (5c)), 

and impose a desired value to 𝛿𝑀𝐵 or, alternatively, to 𝐾 (condition (5d)). The solution 

of the linear programming problem in (5) provides the values of the variables 𝑅𝑛 of an 

equi-ripple power pattern, which perfectly fits between the lower and upper masks and 

exhibits the minimum attainable 𝛿𝑆𝐿. 

In the next section, several curves representing the relations between the design pa-

rameters are illustrated. Such results are obtained by sampling the synthesized radiation 

patterns on a set of equally spaced points in the visibility interval [−1; 1]. Subsequently, 

the asymptotic behavior of the results is numerically analyzed by adopting an increasing 

number of samples. Three examples of array synthesis are presented in Section 4, and are 

solved with the aid of the obtained curves involving the design parameters. 

3. Maximum Sidelobe Level vs. Design Parameters 

In the sequel, a linear array with inter-element spacing 𝑑 = 𝜆/2 will be considered, 

and the dependence of the maximum side lobe level on the other design parameters is 

derived and plotted for some test cases, by using the above described linear programming 

approach. 

3.1. Case of Equality between Main Beam Width and Side Lobe Region Width 

First, let us analyze the case where the main beam width (𝑢𝑀𝐵) is equal to the side 

lobe region width (1 − 𝑢𝑆𝐿), that is 𝑢𝑀𝐵 + 𝑢𝑆𝐿 = 1, and in (5d) 𝐾𝑑𝑒𝑠 = 𝛿𝑀𝐵/𝛿𝑆𝐿 = 1 (i.e., 

𝛿𝑀𝐵 = 𝛿𝑆𝐿 = 𝛿). Figure 2 shows 𝛿 as a function of the transition width Δ𝑢. In the figure, 

different curves refer to different values of 𝑁. As expected, higher values of Δ𝑢 corre-

spond to lower values of 𝛿 as well as higher values of 𝑁 correspond to lower values of 

𝛿. Thus, lower side lobes can be obtained with larger arrays or by allowing for a larger 

transition region. 

 

Figure 2. Case of equality between the main beam width and the side lobe region width, and 𝐾𝑑𝑒𝑠 = 𝛿𝑀𝐵/𝛿𝑆𝐿 = 1: the 

curves show 𝛿 = (𝛿𝑀𝐵 = 𝛿𝑆𝐿) as a function of Δ𝑢 for 𝑁 taking values from 20 to 30. 
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From now on, unlike the previous case, flat-top beams are considered with 𝑢𝑀𝐵 and 

1 − 𝑢𝑆𝐿 possibly different, and 𝛿𝑀𝐵 possibly different from 𝛿𝑆𝐿 (i.e., 𝐾𝑑𝑒𝑠 ≠ 1). 

3.2. Dependence on 𝑁 

Figure 3a,b show the maximum side lobe level 𝛿𝑆𝐿 as a function of 𝑁. Both figures 

refer to the case 𝑢𝑀𝐵 = 0.375. As expected, the more stringent the constraints (that is, the 

values of Δ𝑢 and 𝛿𝑀𝐵 are lower), the higher the obtained values of maximum side lobe 

levels. The curves in Figure 3a are obtained with 𝛿𝑀𝐵 = 0.1  and Δ𝑢 = 0.05, 0.1, 0.15 , 

whereas those in Figure 3b refer to the case Δ𝑢 = 0.1 and 𝛿𝑀𝐵 = 0.02, 0.1, 0.2. In both fig-

ures, the curves show a quasi-linear behavior. However, the curves in Figure 3b exhibit 

nearly the same slope, unlike those in Figure 3a. 

 

   
   (a)  (b) 

Figure 3. Maximum side lobe level 𝛿𝑆𝐿 (in dB) as a function of 𝑁, obtained with 𝑢𝑀𝐵 = 0.375 and: 

(a) a common value of 𝛿𝑀𝐵 = 0.1 and varying Δ𝑢; (b) a common value of Δ𝑢 = 0.1 and varying 

𝛿𝑀𝐵. 

3.3. Dependence on 𝐾 

The dependence of the maximum side lobe level 𝛿𝑆𝐿 on 𝐾(= 𝛿𝑀𝐵/𝛿𝑆𝐿) is analyzed 

here. In the next three figures, the same main beam edge 𝑢𝑀𝐵 = 0.5 is considered, and the 

maximum side lobe level decreases as 𝐾 increases. In Figure 4a, which corresponds to 

Δ𝑢 = 0.2, all curves are practically linear. Instead, in Figure 4b, corresponding to Δ𝑢 =

0.15, for high values of 𝐾, the curve obtained for 𝑁 = 20 is nonlinear. In Figure 4c, cor-

responding to Δ𝑢 = 0.1, the behavior is quasi-linear only for 𝑁 = 40. 

    

 (a)  (b) (c) 

Figure 4. Maximum side lobe level 𝛿𝑆𝐿 (in dB) as a function of 𝐾. The curves are obtained for 𝑢𝑀𝐵 = 0.5 and (a) Δ𝑢 =

0.2, (b) Δ𝑢 = 0.15, and (c) Δ𝑢 = 0.1. 
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3.4. Dependence on 𝛿𝑀𝐵 

Figure 5 shows the maximum side lobe level as a function of 𝛿𝑀𝐵, through the pa-

rameter 𝜏𝑀𝐵 = (1 + 𝛿𝑀𝐵)/(1 − 𝛿𝑀𝐵) expressed in dB (the parameter 𝜏𝑀𝐵 is used in agree-

ment with several other papers, for example [9]). As expected, the maximum side lobe 

level is lower for higher values of 𝛿𝑀𝐵: in other words, when relaxing the requirements 

for the maximum allowed ripple amplitude in the main beam, a reduction in the maxi-

mum side lobe level is observed. Moreover, the different curves refer to different values 

of Δ𝑢. All curves have nearly the same shape and show that larger transition regions per-

mit achieving better side lobe levels. All curves refer to the case 𝑢𝑀𝐵 = 0.46 and 𝑁 = 20. 

 

Figure 5. Case Maximum side lobe level 𝛿𝑆𝐿  (in dB) as a function of the parameter 𝜏𝑀𝐵 = (1 +

𝛿𝑀𝐵)/(1 − 𝛿𝑀𝐵) expressed in dB, where 𝛿𝑀𝐵 is the maximum allowed ripple amplitude, in the case 

where 𝑁 = 20 and 𝑢𝑀𝐵 = 0.46, with different values of Δ𝑢 ranging from 0.05 to 0.2. 

3.5. Dependence on 𝑢𝑀𝐵 

Figure 6a shows the maximum side lobe level 𝛿𝑆𝐿 as a function of 𝑢𝑀𝐵 for a maxi-

mum allowed beam ripple 𝛿𝑀𝐵 = 0.05 and a transition region Δ𝑢 varying from 0.05 to 

0.2. As expected, larger transition regions globally allow for lower maximum side lobe 

levels, but 𝛿𝑆𝐿  does not vary monotonically as a function of 𝑢𝑀𝐵 : all curves show the 

same behavior, with alternating maxima and minima. However, the average slope of the 

curves and the differences between maxima and minima tend to increase when increasing 

of Δ𝑢. 

Figure 6b shows the maximum side lobe level as a function of the main beam edge 

𝑢𝑀𝐵 for an assigned beam ripple 𝛿𝑀𝐵 = 0.05. All of the curves in the figure refer to a tran-

sition region Δ𝑢 = 0.15 and to different values of 𝑁, varying from 𝑁 = 18 to 𝑁 = 22. It 

is interesting to note that all curves show a similar behavior. As expected, lower side lobe 

levels can be obtained with higher values of 𝑁. However, for certain values of 𝑢𝑀𝐵, cor-

responding to the minima along the curve obtained with 𝑁 elements, the corresponding 

values of 𝛿𝑆𝐿 are nearly coincident with the values obtained with 𝑁 + 1 elements. More-

over, for low values of 𝑢𝑀𝐵, the maximum of the curve corresponding to 𝑁 elements is 

higher compared with the closest minimum of the curve with 𝑁 + 1 elements. 
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  (a) (b) 

Figure 6. Maximum side lobe level 𝛿𝑆𝐿  (in dB) as a function of 𝑢𝑀𝐵 , obtained for 𝛿𝑀𝐵 = 0.05 and (a) 𝑁 = 20 with 

Δ𝑢=0.05, 0.125, 0.2 , (b) Δ𝑢 = 0.15 with 𝑁 from 18 to 22. 

3.6. Dependence on 𝛿𝑀𝐵 

Figure 7 shows the maximum side lobe level as a function of the transition region Δ𝑢 

for 𝑢𝑀𝐵 = 0.16 and different values of 𝛿𝑀𝐵 from 0.01 to 0.5. All curves are decreasing, 

but their behavior is not linear. Observe that the light blue curve, corresponding to 𝛿𝑀𝐵 =

0.05, contains the same values obtainable when sampling the curves in Figure 6a for 

𝑢𝑀𝐵 = 0.16. 

 

Figure 7. Maximum side lobe level 𝛿𝑆𝐿 (in dB) as a function of Δ𝑢, for 𝑁 = 20, 𝑢𝑀𝐵 = 0.16 and 

𝛿𝑀𝐵 varying from 0.5 to 0.01. 

3.7. Asymptotical Analysis 

The above numerical results have been obtained by sampling the power patterns on 

a grid of 𝑁𝑠 = 800 equally spaced points in the interval [−1; 1]. In order to verify the 

asymptotic stability of the results, we applied the adopted method of synthesis and re-

calculated the above curves using different numbers 𝑁𝑠 of samples. For example, with 

reference to the already discussed Figure 7, which corresponds to 𝑁 = 20 and 𝑢𝑀𝐵 =

0.16, we set 𝛿𝑀𝐵 = 0.1 and analyzed the dependence of 𝛿𝑆𝐿 on Δ𝑢 for 𝑁𝑠 going from 

200 to 3200. Figure 8 shows the results obtained. 
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Figure 8. Maximum side lobe level 𝛿𝑆𝐿 (in dB) as a function of Δ𝑢, for 𝑁 = 20, 𝑢𝑀𝐵 = 0.16, and the 

number of sampling points varying from 200 to 3200. 

Different curves correspond to different values of 𝑁𝑠. As it can be seen, the results 

nearly independent of the number of samples. In order to better illustrate the convergence, 

Figure 9 shows the maximum side lobe level as a function of the number of samples for 

𝑁 = 20, 𝑢𝑀𝐵 = 0.16, and Δ𝑢 = 0.7. Note that the curve tends to saturate rapidly when in-

creasing the number of samples. Thus, the results prove the effectiveness of the adopted 

method to calculate the relations between the design parameters, showing a behavior 

quasi-independent of the number of points on which the power patterns have been sam-

pled. 

 

Figure 9. Maximum side lobe level (in dB) as a function of the number of samples, for 𝑁 = 20, 

𝑢𝑀𝐵 = 0.16, and Δ𝑢 = 0.7. 

4. Examples 

In this section, three significant examples are proposed, which show how the above 

derived curves can help in the preliminary design phase of linear antenna arrays radiating 

flat-top beams. 

4.1. First Example: Case of Equality between Main Beam Width and Side Lobe Region Width 

Let us assume that a linear array composed by 𝑁 = 30 elements is required to radi-

ate a flat-top beam, with the main beam region and the side lobe region having the same 
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width (i.e., 𝑢𝑀𝐵 + 𝑢𝑆𝐿 = 1), and 𝐾 = 1 (i.e, 𝛿𝑀𝐵 = 𝛿𝑆𝐿 = 𝛿). We want to find the maxi-

mum beam width (or, equivalently, the minimum transition region ∆𝑢), which guaran-

tees a maximum side lobe level 𝛿𝑆𝐿 ≤ −15 dB. Using the curve corresponding to 𝑁 = 30 

in Figure 2, we can observe that a value ∆𝑢 = 0.055 can give a power pattern satisfying 

the required specifications. In fact, using the linear programming with 𝑢𝑀𝐵 = 0.5 −
∆𝑢

2
=

0.4725, 𝑢𝑆𝐿 = 0.5 +
∆𝑢

2
= 0.5275, and 𝐾 = 1, we obtain the radiation pattern of Figure 10a, 

with a maximum side lobe level of −15.68 dB and a maximum allowed ripple in the main 

beam (shown in the inset of Figure 10a) of 𝛿 = 0.027 , which corresponds to 𝜏𝑀𝐵 =

10 log10((1 + 𝛿)/(1 − 𝛿)) = 0.23. The CPU time for this example is approximately 0.1 s. 

 

(a) 

 
(b) 
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(c) 

Figure 10. The radiation patterns synthesized with the linear programming for the examples in (a) Section 4.1, (b) Section 

4.2, and (c) Section 4.3. All of the patterns satisfy the imposed constraints. 

4.2. Second Example: Estimation of the Number of Elements 

As a second example, we want to produce a flat-top beam with the following values 

for the design parameters: 𝑢𝑀𝐵 = 0.375, ∆𝑢 = 0.1, 𝛿𝑀𝐵 = 0.02, and 𝛿𝑆𝐿 ≤ −30 dB. With 

the help of Figure 3b, we note that an array of 𝑁 = 27 elements can achieve the required 

performances. In fact, using the linear programming with these parameters yields the 

power pattern of Figure 10b, which satisfies the constraints. The CPU time for this exam-

ple is slightly lower than 0.1 s. 

4.3. Third Example: Estimation of the Width of the Transition Region 

Let us consider a linear antenna array composed by 𝑁 = 20 elements. We want to 

radiate a flat-top beam with a beamwidth 𝑢𝑀𝐵 = 0.46, a maximum side lobe level of −30 

dB and a maximum allowed ripple in the main beam region 𝛿𝑀𝐵 = 0.0575 (𝜏𝑀𝐵 = 0.5 

dB). The curves in Figure 5 suggest that a possible value of width of the transition region 

that allows us to satisfy the requirement is ∆𝑢 = 0.125. In fact, using the linear program-

ming with these parameters yields the power pattern in Figure 10c, which satisfies all of 

the constraints. The CPU time for this example is slightly lower than 0.1 s. 

4.4. Result Comparison 

This final subsection aims to prove the superiority of the adopted linear program-

ming in terms of constraint compliance for the flat-top beam synthesis. Precisely, the pre-

vious three examples have been solved with two well-known methods, i.e., the Fourier 

Transform approach [1] and the Woodward–Lawson technique [2]. Figure 11 shows the 

patterns obtained by the three methods. As it can be seen, only the linear programming 

always satisfies the imposed constraints, whereas the classical methods may fail to meet 

the requirements. On the other hand, both the Woodward–Lawson technique and the Fou-

rier Transform approach have the advantage of using closed-form expressions for the ad-

dressed problems. Thus, the CPU times are quite low (approximately 1 ms or even less). 

5. Conclusions 

The power synthesis of flat-top beams for linear periodic arrays is a well-known ca-

nonical problem in the antenna community. The shape of the synthesized pattern depends 
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on a number of design parameters, such as the array length, the beam width, the maxi-

mum allowed ripple in the main beam region, the width of the transition region, and the 

maximum side lobe level. 

 
(a) 

 
(b) 

 
(c) 
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Figure 11. Comparison. The radiation patterns synthesized with the linear programming (blue lines), compared with the 

patterns of the Woodward–Lawson method (cyan lines) and those of the Fourier Transform approach (black lines) for the 

examples in (a) Section 4.1, (b) Section 4.2, and (c) Section 4.3. All of the patterns satisfy the imposed constraints. 

The aim of this paper was to derive the relations between these design parameters 

and to use them for design purposes. Adopting a linear programming technique that 

guarantees the optimality of the solutions, several case studies were analyzed, obtaining 

a set of relations between the above parameters, which are represented graphically by 

curves that can be useful in the array design. Three examples of array design were pro-

posed, and solved with the aid of these curves, obtaining results fully compliant with the 

assigned masks. In particular, the curves show that, also for the simple case of linear 

equally spaced arrays, the relations between the design parameters can be nonlinear. This 

is an interesting and not completely expected result, which must be taken into account in 

the array design. 
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