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Abstract: Resistive random-access memory (RRAM) with the ability to store and process information
has been considered to be one of the most promising emerging devices to emulate synaptic behavior
and accelerate the computation of intelligent algorithms. However, variation and limited resistance
levels impede RRAM as a synapse for weight storage in neural network mapping. In this work, we
investigate a TaOx-based RRAM with Al ion local doping. Compared with a device without doping,
the device with locally doped Al ion exhibits excellent uniformity and analog characteristics. The
operating voltage and resistance states show tighter distributions. Over 150 adjustable resistance
states can be achieved through tuning compliance current (CC) and reset stop voltage. Moreover,
incremental resistance switching is available under optimized identical pulses. The improved
uniformity and analog characteristics can be attributed to the collective effects of reduced oxygen
vacancy (Vo) formation energy and weak conductive filaments induced by the local Al ion dopants.

Keywords: Al ion local doping; uniformity; multi-level adjustable resistance states; RRAM

1. Introduction

With the development of artificial intelligence (AI) technology, various powerful
neural network algorithms have achieved great success in applications such as autonomous
driving, big data analysis, image recognition, natural language processing, etc. [1]. To
enhance their accuracy, learning algorithms are usually computation- and data-intensive.
A large amount of data shuttle between the processing and storage unit is required, causing
increased latency and power consumption [2,3]. The brain’s highly parallel information
processing capability relies on huge neural networks, where countless synapses play
important roles in memorizing and processing information [4,5]. Neuromorphic computing
is inspired by the brain’s architecture for information processing.

Synaptic devices are the representative functional elements in neuromorphic com-
puting [6]. Among various emerging devices with synaptic characteristics [7–9], RRAM
can integrate computing and storage in a 2D and 3D crossbar array, and thus is promising
in overcoming the “memory wall” [10–12]. The synaptic plasticity of RRAM has been
extensively investigated [13]. However, due to the inherent stochastic resistance switch-
ing mechanism, i.e., the random migration of ions, the electrical characteristics of the
device have large fluctuations [14–16]. The reliability of RRAM limits the performance of
large-scale arrays and the accuracy of networks, which is a critical challenge for network
implementation and practical applications [17,18]. The key to inhibit the fluctuation is to
confine and modulate the path where the growth and fracture of the conductive filament
takes place. Therefore, researchers have proposed several optimization methods to im-
prove device uniformity from the perspective of process and device structure [19–23]. The
filament formation pathway can be controlled by ion dopants (such as Gd, Ti, N, Cu, etc.)
through process optimization to reduce the oxygen vacancy (Vo) formation energy [24–28].
The interlayer structure can be designed to control filament growth and fracture by using
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the intrinsic material property of oxygen storage, or by Vo migration among different
materials [29–33]. It has been reported that the restriction of the doping area can reduce the
randomness of uniform doping and confine the filament to further improve uniformity [34].
In addition, the analog properties of RRAM play a key role in network mapping and neu-
romorphic computation [35]. This study, based on Monte Carlo simulation, suggests high
thermal conductivity contributes to the random distribution of Vos and the subsequent
formation of weak filaments [36], leading to an improvement in the analog properties of
RRAM. We have demonstrated that the enhanced linear analog switching behavior can be
engineered by stacking resistive materials with different diffusion coefficients and energy
barriers, which can regulate the migration and reaction of the ion/vacancy [37].

In this paper, we have fabricated a Pt/TaOx:Al/TiN RRAM in which the switching
layer is locally doped with Al ion. Local doping of Al ions reduces the formation energy
of Vo, as well as the randomness of uniform doping in the switching layer, thus reducing
the randomness of filament growth and fracture. Compared with the undoped device,
the device with locally doped Al ion shows good uniformity. The operating voltage and
high/low resistance distribution are significantly improved. Furthermore, local doping
facilitates the formation of several weak conductive filaments. By changing the compli-
ance current (CC) and reset stop voltage, the device presents excellent analog switching
characteristics (>150 levels).

2. Materials and Methods

In order to verify the effect of Al ion local doping on the uniformity and analog
properties of RRAM, we prepared a control group of devices: an Al ion locally doped
device and an undoped device. Pt and TiN were deposited as the bottom electrode and
the top electrode of the device, respectively [38–41]. TaOx was used as the switching layer.
First, the bottom electrode Pt and adhesive layer Ti were deposited on a Si/SiO2 substrate
by physical vapor deposition (PVD) and patterned using the lift-off process. The TaOx
switching layer was prepared by reactive magnetron sputtering. Then, the ion implantation
window was formed at the cross point of the top electrode and the bottom electrode. After
Al ion implantation, and via etching, the TiN top electrode was deposited by sputtering at
room temperature. Figure 1 shows the device structure and scanning electron microscope
(SEM) of the device with local Al ion doping.

Electronics 2021, 10, 2451 2 of 9 
 

 

device structure [19–23]. The filament formation pathway can be controlled by ion 
dopants (such as Gd, Ti, N, Cu, etc.) through process optimization to reduce the oxygen 
vacancy (Vo) formation energy [24–28]. The interlayer structure can be designed to control 
filament growth and fracture by using the intrinsic material property of oxygen storage, 
or by Vo migration among different materials [29–33]. It has been reported that the 
restriction of the doping area can reduce the randomness of uniform doping and confine 
the filament to further improve uniformity [34]. In addition, the analog properties of 
RRAM play a key role in network mapping and neuromorphic computation [35]. This 
study, based on Monte Carlo simulation, suggests high thermal conductivity contributes 
to the random distribution of Vos and the subsequent formation of weak filaments [36], 
leading to an improvement in the analog properties of RRAM. We have demonstrated 
that the enhanced linear analog switching behavior can be engineered by stacking 
resistive materials with different diffusion coefficients and energy barriers, which can 
regulate the migration and reaction of the ion/vacancy [37].  

In this paper, we have fabricated a Pt/TaOx:Al/TiN RRAM in which the switching 
layer is locally doped with Al ion. Local doping of Al ions reduces the formation energy 
of Vo, as well as the randomness of uniform doping in the switching layer, thus reducing 
the randomness of filament growth and fracture. Compared with the undoped device, the 
device with locally doped Al ion shows good uniformity. The operating voltage and 
high/low resistance distribution are significantly improved. Furthermore, local doping 
facilitates the formation of several weak conductive filaments. By changing the 
compliance current (CC) and reset stop voltage, the device presents excellent analog 
switching characteristics (>150 levels).  

2. Materials and Methods 
In order to verify the effect of Al ion local doping on the uniformity and analog 

properties of RRAM, we prepared a control group of devices: an Al ion locally doped 
device and an undoped device. Pt and TiN were deposited as the bottom electrode and 
the top electrode of the device, respectively [38–41]. TaOx was used as the switching layer. 
First, the bottom electrode Pt and adhesive layer Ti were deposited on a Si/SiO2 substrate 
by physical vapor deposition (PVD) and patterned using the lift-off process. The TaOx 
switching layer was prepared by reactive magnetron sputtering. Then, the ion 
implantation window was formed at the cross point of the top electrode and the bottom 
electrode. After Al ion implantation, and via etching, the TiN top electrode was deposited 
by sputtering at room temperature. Figure 1 shows the device structure and scanning 
electron microscope (SEM) of the device with local Al ion doping. 

 
Figure 1. (a) The structure diagram of Pt/TaOx:Al/TiN RRAM; (b) SEM image of TaOx-based RRAM 
with Al ion local doping. 

The electrical characteristics were measured by an Agilent B1500 Semiconductor 
Parameter Analyzer and a probe station. In the test process, the bottom electrode was 
grounded and the bias was applied to the top electrode. 

Figure 1. (a) The structure diagram of Pt/TaOx:Al/TiN RRAM; (b) SEM image of TaOx-based RRAM
with Al ion local doping.

The electrical characteristics were measured by an Agilent B1500 Semiconductor
Parameter Analyzer and a probe station. In the test process, the bottom electrode was
grounded and the bias was applied to the top electrode.

3. Results
3.1. DC I-V Characteristics

The initial state of the device is a high resistance state (HRS). After forming, the device
can be set to a low resistance state (LRS). Figure 2 shows the current-voltage (I-V) curves
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with 1 mA CC and −1 V reset stop voltage of the doped and undoped devices under
100 consecutive cycles. The set and reset process are marked by the magenta arrow and
green arrow, respectively. Compared with the undoped device, the I-V curves of the Al ion
locally doped device show excellent uniformity.
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Figure 2. 100 consecutive I-V curves with 1 mA CC and −1 V reset stop voltage of (a) Pt/TaOx:Al/TiN
RRAM and (b) Pt/TaOx/TiN RRAM.

Figure 3 shows the set/reset voltage distribution of the undoped and locally doped
devices with 100 cycles, respectively. The set voltage of the undoped device fluctuates
significantly between 0.7 V and 1.9 V. In contrast, it can be found that the operating
voltage distribution of the locally doped device is significantly tighter than that of the
undoped device. Also, the set voltage (about 0.5~0.7 V) of the locally doped device is
reduced compared to that of the undoped device, thus reducing the energy consumption
of switching.
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Figure 3. Cycle to cycle distributions of set/reset voltage of the undoped (top) and locally doped
devices (bottom).

Figure 4 shows the distribution of HRS and LRS of the two devices after 100 cycles.
The blue box and circle represent the resistance distribution of the undoped device. The
red box and circle represent the resistance distribution of Al ion locally doped device. The
distribution of HRS/LRS in the undoped device shows great fluctuation. The HRS range
extends over an order of magnitude. The distribution of HRS and LRS in the locally doped
device is quite uniform (the LRS is roughly 500 ohm, and the HRS is roughly 3000 ohm).
Figure 5 shows the endurance of the Al ion locally doped device and the undoped device.
The switching ratio of the devices is between 5 and 6. Local doping can not only reduce
the cycle to cycle (C2C) variation of operating voltage and resistance states, but can also
reduce the programming voltage. This is attributed to the decreased Vo formation energy
after Al ion doping [34], which will be explained in detail later.
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3.2. Analog Characteristics

We investigated the effect of Al ion doping on the analog characteristics of the device.
Multi-level resistance states can be barely achieved either by gradually increasing the CC
or adjusting the CC in the undoped device as shown in Figure 6a,b. It can be seen from
Figure 6a that only 4 states can be obtained when the reset stop voltage increases from
−0.4 V to −1 V with a step of −0.1 V. In other words, the undoped device has poor analog
characteristics and cannot obtain multiple adjustable resistance states by increasing the
CC. Figure 6c,d show the analog characteristics of the locally doped device. Excellent
multi-level resistance states can be obtained by controlling the CC in the set process or
the reset stop voltage in the reset process. Almost 100 resistance states can be obtained by
increasing the CC with a 10 uA step. As shown in Figure 6c, 60 resistance states can be
obtained by gradually increasing the reset stop voltage from −0.4 V to −1 V with a step of
−0.01 V. A total of over 150 resistance states can be obtained in the Al ion locally doped
device. It should be noted that more adjustable resistance states can be obtained by further
refined voltage or CC parameters.
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RRAM. (a) Gradual reset process of Pt/TaOx/TiN RRAM. Four states can be obtained with reset stop
voltage increasing from −0.4 V to −1 V with a step of −0.1 V. (b) Abrupt set process of Pt/TaOx/TiN
RRAM. The undoped device has been tuned by increasing set CC repeatedly, and representative I-V
curves with set CC (60 uA, 300 uA, 500 uA and 1 mA) are shown here for the sake of illustration.
An obvious switching window appears at 60 uA CC, and the device cannot be tuned gradually to
LRS, with CC increasing to 1 mA. Over 150 resistance states can be achieved in Pt/TaOx:Al/TiN
RRAM through (c) increasing reset stop voltage from −0.4 V to −1 V with a step of −0.01 V and (d)
increasing CC gradually from 10 uA to 1 mA with a step of 10 uA.

The Al ion locally doped device can be operated by identical pulses. As shown in
Figure 7, the device exhibits long-term plasticity under consecutive 100 identical pulses
with a read voltage of 0.1 V. The conductance can be gradually increased by 100 positive
pulses (0.8 V, 20 ns) in the potentiation and decreased by 100 negative pulses (−1.1 V, 50 ns)
in the depression. Large Gmax/Gmin (Gmax and Gmin are the maximum and minimum
conductance during the potentiation and depression) and good linearity can be obtained in
the TaOx-based RRAM with local doping.
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3.3. Mechanism Explanation

The above test results show that the local doping of Al ions can not only reduce
variation, but also improve analog properties. The generally accepted resistive switching
mechanism of the TaOx-based RRAM is based on the generation and recombination of
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Vos, namely the filament model [42–46]. The migration of oxygen ions under the electric
field in TaOx leads to a valence change between the TaO2 conducting phase and the Ta2O5
insulating phase [47,48]. The stochastic formation and the rupture of the Vo filament
cause a large variation in the device’s characteristics. Doping Al ion can introduce more
defects and decrease the formation energy of Vo, based on first-principles simulations [49].
Consequently, it is easier to form conductive filaments in the region with a high ion doping
concentration, which helps to improve the uniformity of operating voltage distribution and
resistance distribution. In the reset process, oxygen ions are driven by the electric field to
return to the conductive filament and recombine with Vos to break the conductive filament.
Therefore, the uniformity of reset voltage and HRS distribution are improved after Al ion
doping. Because of the random ion implantation, the doping formed in the switching layer
is not uniform. Reducing the area of the ion implantation region helps to increase the
local ion doping concentration, so that Vos form at certain sites near Al dopants, and the
formation and fracture of conductive filaments are limited to the ion implantation area.
This contributes to reducing the variation of the size and location of conductive filaments.
Therefore, local doping of Al ions can be adopted to improve the uniformity of the device.

The analog properties of the devices are also related to the migration of Vos. The
accumulation of Vos leads to the evolution of a conductive filament in the undoped device
during the set process, eventually resulting in a single strong conductive filament being
formed in the switching layer. Therefore, the device without doping exhibits poor analog
characteristics. However, local Al ion doping facilitates the formation and movement of
Vos, thus contributing to the formation of multiple weak conductive filaments within the
doping area. The analog switching behavior can be adjusted by increasing the CC and reset
stop voltage. During the LTP/LTD process, the conductive filaments tend to gradually
evolve to form or resolve the multiple conductive paths. Therefore, multi-level adjustable
resistance states can be obtained in the locally doped device. As such, improved analog
characteristics can be attributed to multiple weak conductive filaments in the local high Al
ion doping region. The schematics of the switching mechanism on the Al ion locally doped
device are demonstrated in Figure 8, where purple shaded area refers to the local Al ion
doping area.
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4. Conclusions

In this paper, we investigated the effect of the local doping of Al ions on a TaOx-based
RRAM. The experimental results show that the device with local Al ion doping achieves
excellent uniformity with tighter distribution of the operating voltage and resistance states.
Moreover, the analog characteristics of the device are significantly improved through Al
ion local doping. Multiple adjustable resistance states were obtained by controlling the set
CC and reset stop voltage. In addition, the mechanism was analyzed to demonstrate the
improved uniformity and analog properties of the device can be attributed to the formation
of several weak conductive filaments in the local doping region. The improved uniformity
and analog behavior of the device has great advantages in neuromorphic computing
applications.
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