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Abstract: We described a real-time hair segmentation method based on a fully convolutional network
with the basic structure of an encoder–decoder. In one of the traditional computer vision techniques
for hair segmentation, the mean shift and watershed methodologies suffer from inaccuracy and slow
execution due to multi-step, complex image processing. It is also difficult to execute the process in
real-time unless an optimization technique is applied to the partition. To solve this problem, we
exploited Mobile-Unet using the U-Net segmentation model, which incorporates the optimization
techniques of MobileNetV2. In experiments, hair segmentation accuracy was evaluated by different
genders and races, and the average accuracy was 89.9%. By comparing the accuracy and execution
speed of our model with those of other models in related studies, we confirmed that the proposed
model achieved the same or better performance. As such, the results of hair segmentation can obtain
hair information (style, color, length), which has a significant impact on human-robot interaction
with people.

Keywords: computer vision; hair segmentation; FCN; deep learning; Mobile-Unet; HRI

1. Introduction

A person’s hair information is important in assessing their appearance. Hair varies
widely in color, length, pattern, and texture information depending on gender, age, fashion,
culture, and personal taste. Appearance information, whether positive or negative, acts
as an important factor in human-to-human interactions as well as in human interactions
with robots [1]. For robots to have social relationships with people they need to mimic
the way people have social relationships [2]. However, a strand of hair is very flexible
and thin, which can be transformed into a variety of shapes, similar to skin color, or
heavily influenced by external lighting, making it difficult to segment skin, hair, and
background areas. Additionally, hair segmentation information can not only complement
social robot applications and face recognition results, but it can also be used for a variety
of applications, such as make-up changes and character photo editing [3]. Thus, a variety
of studies have been conducted recently on hair partitioning and recognition of style
information [3–6], but the study is challenging because hair areas vary widely depending
on complex backgrounds, different poses, reflected light, race, hair color, and dyeing.

Earlier hair split and color automatic recognition were proposed by Yacoob [4], and
hair areas were extracted using the ratio of face and color information and area grinding
methods for the front of the face. Wang [5] suggested a pre-learned hair segmentation
classifier to automatically expand into the entire area if the hair seeded area was manually
specified. However, this method has the weaknesses of having to manually designate hair
areas and of having low division accuracy if the background and hair color are similar.
Wang [6] proposed the data-driven isomeric manifold inference method. This method
manually enters the hair area from the labeled hair segmentation training image and
produces a probability map that enables the generation of the seed area. This method also
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addresses the difficulties of manually designating the initial hair area, but the difficulties of
the hair area not being split from the complex background remain.

Recently, there has been much success with deep neural networks (DNNs) and in
many tasks, including semantic segmentation, DNN-based hair segmentation methods
have been introduced. Guo and Aarabi [7] presented a method for binary classification
using neural networks that perform training and classification on the same data using the
help of a pre-training heuristic classifier. They used a heuristic method to mine positive
and negative hair patches from each image with high confidence and trained a separate
DNN for each image, which was then used to classify the remaining pixels. Long [8]
demonstrated convolutional neural networks (CNNs) that first trained end-to-end and
pixel-to-pixel for object segmentation. Fully convolutional networks (FCNs) predict dense
outputs from free-sized inputs. Both training and inference are performed on the whole
image at one time by back-propagation and dense feed-forward computation. Network
up-sampling layers enable pixel-wise prediction and learning in nets with subsampled
pooling. However, though this method has obtained good segmentation results, it has not
been proposed for the purpose of hair segmentation but has only been used for general
object segmentation. Chai [3] attempted to create the first, fully automatic method for
three-dimensional (3D) hair segmentation from a single input image, with no parameter
tuning or user interaction. Moreover, Qin [9] introduced the use of a fully connected
conditional random field (CRF) and FCN to perform pixel-wise semantic segmentation on
hair, skin, and background.

However, with the application of DNN in hair segmentation, the accuracy remark-
ably improves, but the applications on mobile devices or embedded platforms without
a GPU (Graphics Processing Unit) are not easy to apply in real-time due to its unique,
large number of parallel computations with fully connected heavy-weight network archi-
tectures. Therefore, adaptive importance learning [10], knowledge distillation [11], and
MobileNet2 [12] algorithms can be utilized to train a light-weight network for speed-up.
Adaptive importance learning proposes a learning strategy to maximize the pixel-wise
fitting capacity of a given light-weight network architecture. Knowledge distillation tech-
nology is utilized when a large (teacher) pre-trained network is used to train a smaller
(student) network. These two methods are suitable for DNN models of CNN and ResNet
architectures with general pipeline structures for detection or classification purposes, and a
MobileNet2-based approach is more efficient for image segmentation based on U-Net with
structures that segment through steps to compress and restore images.

In this paper, we propose a new approach to a hair segmentation method with a light-
weighted model based on Mobile-Unet for fast and accurate results. The proposed method
includes the optimization techniques of depth-wise separable convolution and an inverted
residual block. Furthermore, we have used the proposed generated and augmented
datasets for training the deep neural networks model. This paper is organized as follows:
Section 2 presents the pre-processing steps, landmark detection, size normalization, data
augmentation, and hair recoloring; Section 3 describes the proposed method in detail,
followed by the experimental results including the training datasets demonstrated in
Section 4; finally, Section 5 concludes this paper.

2. Pre-Processing Steps

To achieve DNN-based hair segmentation, several pre-processing methods are re-
quired. Here, we describe landmark detection, size normalization, and data augmentation
of face images, as well as hair recoloring of a detected hair region.

2.1. Landmark Detection and Size Normalization

As an initial experiment, the size of the input image was simply normalized to a size
of 224 × 224, which was used as training data without other pre-processing. In this case,
the real-time test did not obtain good results according to changes in the environment,
such as distance or lighting. To solve this problem, we sought a method to normalize
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images regardless of size, location, or distance by immobilizing them in a specific reference
position rather than simply resizing them and configuring the dataset. Here, we used
68 face landmarks detectors [13] to normalize the input images. The face detector used
a single-shot multi-box detector [14] that had relatively fast detection and was highly
accurate. We normalized the input image to the central position of the image, as shown in
Figure 1, after the detection of landmarks.
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Figure 1. Images normalized by face alignment.

As shown in Figure 1, we normalized images of any size, by converting them to a size
of 224 × 224, so that the nose was at the central position of the image. If the converted
area was larger than the original, we set the pixels in the padded background area to 255.
The reason the border of the image was not padded to zero was mainly that the border of
normal images, or real-time images, was bright instead of dark.

2.2. Data Augmentation

If a video is taken in real-time, the input image can be characterized according to
changes in distance, pose, camera angle, and light intensity. For training in DNN models,
if sufficient training datasets that are the same as a variable input environment cannot
be collected, it is common to increase the training data by artificially generating such
environmental changes. Consequently, a total of 95,200 items of training data were obtained
from 6800 items of training data by using flip and rotation (±5, ±15, ±30) to acquire data,
which enabled 14 additional images to be obtained from one image. Figure 2 shows the
results of the data augmentation.

2.3. Basic Hair Segmentation Model

For hair segmentation, the use of a segmentation model with the basic structure
of an encoder–decoder [15] is more appropriate than AlexNet or VGGNet, which are
composed of CNN and ResNet architectures with general pipeline structures for detection
or classification purposes. Object segmentation, for which location information—such as
hair segmentation—is important, requires spatial information for images entering the input
layer of the model to be matched with spatial information for the resulting image going
out to the output layer. To satisfy this process, the segmentation model takes the form of
down-sampling and up-sampling steps, as shown in Figure 3.
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Figure 3. The basic structure of the encoder–decoder.

A model that initiates the image segmentation and introduces an encoder–decoder-
style restoration structure as the core of the model is the FCN model for semantic segmen-
tation [8]. However, the FCN does not fully recover the segmentation because it uses an
asymmetric method that goes from a very small channel to a large channel instead of a
format in which dimensions are recovered at a certain rate during up-sampling. The model
that addresses the asymmetry of the skip-connection and up-sampling is the U-Net model.
Therefore, we used the U-Net model as a basis for the hair segmentation model.

2.4. Hair Recoloring Processing

When the hair is correctly segmented, it is possible to recolor the hair various colors
that differ from the input hair color. Hair recoloring has the advantage of allowing users to
experience what colors would match when they change their hair color. To automatically
convert hair colors, we used a method to convert input images into intensity images using
color maps to select desired colors and to match them in the lookup table (LUT) from
brightness values [16]. Figure 4 shows an example of the hair recoloring process.
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3. Proposed Method

In human–robot interaction, where real-time interaction is essential, the hair segmen-
tation model using the traditional U-Net model has difficulty in real-time processing. To
solve this, we propose the use of the two optimization algorithms (depth-wise separable
convolution and inverted residual block) used by MobileNetV2 [12] in the traditional
U-Net.

3.1. Depth-Wise Separable Convolution

The depth-wise separable convolution operation is an optimization technique that
reduces the computational capacity by performing 1 × 1 component operations on each
channel instead of the normal convolution operation. Figure 5a presents general convo-
lution and Figure 5b presents depth-wise separable convolution. The U-Net in real-time
processing must reduce the convolution operations that require the most operations. Depth-
wise separable convolution can be seen as a factorization of this common convolution.

Cost = DK × DK × M × N × DF × DF (1)
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In Equation (1), DK represents the kernel size, DF represents the size of the input image,
M represents the input channel, and N represents the output channel. Cost represents the
number of computations.

Cost = DK × DK × M × DF × DF + M × N × DF × DF (2)

Equation (2) shows the total computational capacity of the depth-wise separable
convolution operation. The difference between the arithmetic of (1) and (2) is shown in (3).

Diff_Ratio = (1/N) + (1/(DK
2)) (3)
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The Diff_Ratio indicates the difference in the ratio between Equations (1) and (2). This
is about 8 to 9 times the difference, proving that the depth-wise separation operation is
much faster than the normal convolution operation.

3.2. Inverted Residual Block

The inverted residual block structure is a method that reduces the amount of cal-
culation by replacing a common structure that is connected between feature maps with
a structure with large channels between 1 × 1 component bottlenecks. Residual blocks
indicate the beginning and end of a convolutional block with a skip connection. By adding
these two states, the network has the ability to access earlier activations that were not mod-
ified in the convolutional block. This method was revealed to be essential to building large
depth networks. When looking more closely at the skip connection, it becomes clear that an
original residual block follows a wide to narrow to wide approach, concerning the number
of channels, if the input channel has a large number of channels that are compressed with
an inexpensive 1 × 1 convolution. In that case, the following 3 × 3 convolution has far
fewer parameters. To add input and output at the end, the number of channels is increased
again using another 1 × 1 convolution.

On the other hand, an inverted residual block follows a narrow to wide to narrow
approach. The first step widens the network using a 1 × 1 convolution because the follow-
ing 3 × 3 depth-wise convolution has already greatly reduced the number of parameters.
Afterward, another 1 × 1 convolution “squeezes” the network in order to match the initial
number of channels. The inverted residual block method is very effective in terms of
efficiency when we use GPUs. A GPU has internal and external memories, so the size of
the lift and the size of the drop are the most important. Considering the memory swap,
the low number of channels in the input layer and the last output layer indicates that it is
efficient. This is an important attribute for mobile robots with limited memory. Figure 6
shows the configuration of the inverted residual block.
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3.3. Proposed Mobile-Unet

U-Net combined with the optimization techniques described in the previous section
is called Mobile-Unet. Figure 7 shows the brief architecture of the proposed Mobile-Unet
model.

The input size started at 224 × 224. The image size was reduced by each step to an
image size of 7 × 7 after a total of five steps of contraction. In the next stage, we went
through an expansion phase of the five steps symmetrically. Because the expansion phase
is a process of restoring information, the layer structure was built to be the same as that of
the contraction phase. Table 1 shows the Mobile-Unet contraction process, where T is the
channel extension factor and C is the final number of channels after the last convolution
operation. N indicates the number of times the operation is repeated for the inverted
bottleneck and S indicates the stride. The best empirical result was yielded when the
expansion factor T was set to 6.
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Table 1. Contraction processing of our Mobile-Unet.

Input Size Convulsions T C N S

224 × 224 × 3 Conv2D 3 × 3 - 32 1 2
112 × 112 × 32 Bottleneck1 1 16 1 1
112 × 112 × 16 Bottleneck2 6 24 2 2
56 × 54 × 24 Bottleneck3 6 32 3 2
28 × 28 × 32 Bottleneck4 6 64 4 2
14 × 14 × 16 Bottleneck5 6 96 3 1
14 × 14 × 96 Bottleneck6 6 160 3 2
7 × 7 × 160 Bottleneck7 6 320 1 1
7 × 7 × 320 Conv2D 1 × 1 6 1280 1 1

7 × 7 × 1280 - - - - -

Table 2 shows the process of the Mobile-Unet expansion in detail. The number of
repetitions was set to 1, and the image size was doubled for each inverted residual operation.
We set the expansion ratio to 6. The final step calculates the score from 224 × 224 × 16 to
224 × 224 × 3 and then to 224 × 224 × 1.

Table 2. Expansion processing.

Input Size Convulsions T C N S

7 × 7 × 1280 D_Bottleneck1 6 96 1 2
14 × 14 × 96 D_Bottleneck2 6 32 1 2
28 × 28 × 32 D_Bottleneck3 6 24 1 2
56 × 56 × 24 D_Bottleneck4 6 16 1 2

112 × 112 × 16 D_Conv2D 4 × 4, pad = 1 - 16 1 2
224 × 224 × 16 Conv2D 1 × 1 - 3 1 -
224 × 224 × 3 Conv2D 1 × 1 - 1 1 -
224 × 224 × 1 - - - - -
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4. Experimental Results

Here, the real-time hair segmentation using the Mobile-Unet method proposed in
this study was evaluated. In our experiments, the hair segmentation datasets, including
ETRIHair data, the experimental environment and results, and performance comparison
are described.

4.1. Hair Segmentation Datasets

Public hair segmentation datasets that include hair-partitioned masks are relatively
small, which makes it difficult to collect enough data to train with DNNs. The effort and
time required to build hair segmentation datasets are greater than when building another
training dataset for the face or human body because it is particularly difficult to divide
thin hair areas into different hair segmentation areas to create training target masks. The
currently released hair segmentation datasets [17,18] employ some of the existing large
face datasets and manually partition hair partitions to build the training dataset. Table 3
shows the sets of data we used for training to develop the proposed algorithm.

Table 3. Our training datasets for hair segmentation.

Datasets # of Images From Align Permission

Parts Labels [17] 3.0 K LFW None Public
CelebBHair [18] 3.5 K CelebA Automatic Align Public

ETRIHair 1.3 K Googling None Private

The first dataset was collected by extracting some data from the Labeled Faces in
the Wild (LFW) dataset and labeling a hair region. This dataset, called the Parts Labels
dataset [17], has a total of three labeled areas—hair, background, and face—and consists of
about 2900 images that are not pre-processed and are publicly available. The pixel value of
the hair areas in Parts Labels is set to 255 and the pixels of the other mask image for the rest
of the areas are set to 0 to handle the binary division problem. The second dataset, called
the CelebBHair dataset [18], was collected by applying a hair mask to some images selected
from the CelebA face datasets. This dataset consists of about 3500 images and has the same
background, face, and hair area divisions as Parts Labels. The same pre-processing used
on the Part Labels datasets was also carried out on these images for use in this study.

The third ETRIHair dataset collected about 1200 face data of Asian people and the
hair segmentation was marked manually. The reason for also collecting Asian hair data is
that the majority of the two previously released datasets consists of European hair data.
After the initial training, we tested the hair segmentation DNN model using only the first
two datasets. The accuracy for Asians was measured to be about 30% lower than that for
Europeans based on an interaction of union (IOU) evaluation. If the dataset is developed
using the proposed pre-processing method on these two datasets, the data will consist of
approximately 6000 images. Many data items were excluded as there was a large number
of noise images, which are those that do not include the hair region or occluded the hair
region or images with faces that could not be detected by the face detector [14], such as
those where most of the face was covered by hair or the back of the head. To address
this issue, the data could have been corrected using a hair segmentation model that was
already developed [3,9], but there was no guarantee that the results would be consistently
well-segmented in various environments. Therefore, the hair segmentation was carried out
using manual image segmentation software. Despite these tasks, the final set of data used
for training the DNN model, excluding non-calibrating data, consisted of 6800 images with
1000 images for verification.

4.2. Experimental Environment and Results

To develop the DNN model, we used the PyTorch deep learning framework in Python.
The GPUs we used for training employed parallel training with two NVidia GTX TITAN-Xs.
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The input images went through the normalization process after switching to Tensor, the
batch size was set to 128, and for the loss, we used BCELoss. We used the Stochastic Gradi-
ent Descent (SGD) optimizer (learning rate = 0.001, weight decay = 1 × 10−8, momentum
= 0.9 and nesterov = “True”). Of the 95,200 images obtained for hair segmentation, we
randomly selected 90% for training and 10% for testing. Table 4 shows the processing time
for each module. As shown in Table 4, the proposed Mobile-Unet module had almost
the same speed as face detection, indicating that real-time responses are possible. Our
hardware specification for the inference test is a notebook with an Intel I7-8750H CPU, 16 G
of memory, and a GTX1060 graphics card.

Table 4. Processing time of each module.

Module Time (ms)

Face detection 13
68 landmark detection 6

Hair segmentation 13

Total 32

The accuracy of hair segmentation can be evaluated by various criteria. Here, we made
measurements based on the Dice coefficient and IOU evaluation criteria. Table 5 shows
the results of racial hair segmentation. As described in Section 4.1, our study obtained
segmentation results that were similar to those for Europeans, as we learned by adding an
Asian database to the evaluation. However, Asian hair is still less accurate in segmentation
than European hair. The reason for this is that additional Asian training data from ETRIHair
were used, but the overall training data rate was smaller than that of Europeans. Moreover,
Asians have a lot of short hairstyles for both men and women, because the area of hair is
relatively small compared to the entire face, so even untrained a slightly different hairstyle
increased the IOU error.

Table 5. Accuracy of racial hair segmentation.

Criterion European (500) Asian (500)

Dice coefficient 94.7% 86.2%
IOU 89.9% 81.1%

Average 92.3% 83.7%

Table 6 shows that the accuracy for men’s hair is generally high, at 93.8% on average,
because men’s hair is relatively less diverse. In contrast, women’s hair has a relatively wide
variety of hairstyles. Additionally, women’s hair has a wide variety of hair colors, and if
similar hair colors do not exist in the training dataset hair segmentation does not work well.
The difference in accuracy between men and women based on the IOU criterion was 11.6%.

Table 6. Accuracy of gender hair segmentation.

Criterion Man (500) Women (500)

Dice coefficient 97.1% 85.4%
IOU 90.4% 78.8%

Average 93.8% 82.1%

4.3. Performance Comparison

Figure 8 compares the performance of the recently proposed hair segmentation meth-
ods and the proposed methods. We used the IOU performance criterion. In most cases,
the results show good performance based on the CELEbA test dataset. Compared with
Unet [15], the accuracy is similar to our method, but the inference time is over ten times
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slower. The highest method in terms of accuracy was DeepLab V3 [19], which achieved an
accuracy of 91.2% based on the CELEbA test dataset, but they had two stages (hair segmen-
tation and a hair detection stage). If they do not use a hair detection stage, the accuracy
rate is 89.9%, which is the same score as our proposed method. DeepLab V3’s execution
time was 55 ms, so it was not fast when compared with our models in Figure 8. The best
method in terms of execution time was the Tkachenka [20] method, which had the fastest
real-time speed of 6 ms. However, the accuracy was only 80.2%; the trade-off between
speed and accuracy was obvious. The Mobile-Unet proposed in this study achieved an
accuracy of 89.9% on the CELEbA test dataset. The execution time was 13 ms, which is the
second-fastest among the methods shown on the graph. Thus, considering the proposed
Mobile-Unet method’s accuracy and execution time together, we can see that it is more
efficient than the other methods.
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Table 7 shows the comparison of the computational and memory complexity between
DeepLab V3, the original Unet, and the proposed method. The proposed method measures
approximately 4.2 times faster than DeepLab V3 in inference time and the number of
parameters that determine memory complexity use approximately 4.2 percent only that of
DeepLab V3.

Table 7. Comparison of the computational and memory complexity.

Models Inference Time (ms) # of Parameters (MB)

DeepLab V3 + ResNet18 55 58.62
Unet 307 31.03

Proposed Method 13 2.46

Figure 9 visually depicts the results of hair segmentation on test datasets obtained
using the proposed method. For baldness, other algorithms often show the wrong results,
but in our method, the results are output without hair segmentation results.
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Figure 10 shows the poor results obtained by our method, which occurred because of
noise regions such as a hand, hairbrush, or bounded input images.
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5. Conclusions

We have described a real-time hair segmentation method based on the Mobile-Unet
model with optimization techniques of depth-wise separable convolution and inverted
residual block technology. Optimization is an important task for real-time processing in
mobile devices and embedded edge computing. In general, increasing the number of
layers in deep neural networks can improve recognition performance, but it also increases
processing time. Therefore, a balance between performance and speed is required. The
proposed algorithm has balance in terms of performance and speed. In experiments, the
results produced an average hair segmentation accuracy of 89.9% with a 32 ms processing
time for different genders and races. By comparing the accuracy and execution speed
with other models in related studies, we confirmed that the proposed model achieved
equal performance and better speed. Additionally, the proposed method showed similar
performance on Asian hair segmentation to European hair segmentation using the proposed
ETRIHair dataset and augmentation approach. In addition, there was a performance rate
decrease of more than 20% in the experiment if the proposed Asian datasets were not used.
Furthermore, we may study new models for more accurate and detailed hair segmentation
by adding new optimization algorithm such as knowledge distillation.
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