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Abstract: Sensorless control technology of PMSMs is of great importance for safety and reliability
in electric vehicles. Among all existing methods, only the extended flux-based method has great
performance over all speed range. However, the accuracy and reliability of the extended flux rotor
position observer are greatly affected by the dead-time effect. In this paper, the extended flux-based
observer is adopted to develop a sensorless control system. The influence of dead-time effect on
the observer is analyzed and a dead-time correction method is specially designed to guarantee the
reliability of the whole control system. A comparison of estimation precision among the extended
flux-based method, the electromotive force (EMF)-based method and the high frequency signal
injection method is given by simulations. The performance of the proposed sensorless control system
is verified by experiments. The experimental results show that the proposed extended flux-based
sensorless control system with dead-time correction has satisfactory performance over full speed
range in both loaded and non-loaded situations. The estimation error of rotor speed is within 4%
in all working conditions. The dead-time correction method improves the reliability of the control
system effectively.

Keywords: permanent magnet synchronous motor; sensorless control; extended flux; electric vehicle;
dead-time correction

1. Introduction

Permanent magnet synchronous motors (PMSMs) have been extensively adopted in
electric vehicles in recent years due to positive features such as high-power density and high
efficiency [1]. They are not only used as traction motors but also used as assisted motors
in steering system and braking system, especially in electric commercial vehicles [2]. For
the applications except for traction motors, the position sensors of PMSMs are eliminated
in consideration of cost and mounting space [3]. Moreover, sensorless control technology
is also used for fault detection and fault tolerant control of the traction motors in case of
failures of position sensors [4].

Existing sensorless control technology can be classified into two categories: signal
injection methods and model-based observer methods [5,6]. Signal injection methods
can give precise rotor position estimation by analyzing current response to specific high-
frequency voltage pulses. However, these methods can only perform well at standstill and
low speeds [7,8]. Model-based observer methods can be further divided into the EMF-based
methods and the extended flux-based methods [9]. The EMF-based methods are the most
widely used methods for rotor position estimation [10–12]. However, their performance
deteriorates drastically at low speeds because the EMF is too low to be detected [13]. As
for the extended flux-based methods, they can detect the rotor position information under
full speed range, because the extended flux is always detectable at any speed [14].
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Studies about the extended flux-based methods are relatively rare compared to other
sensorless control technology, as there are many problems in practical application. For
example, the initial rotor position and the permanent magnet flux linkage must be accurate
when using the extended flux-based methods [15]. Besides these, the effect of dead time
must be taken into consideration when the motor operates at low speed [16]. In most
proposals related to the extended flux-based methods, conventional dead-time compen-
sation is applied in the control system without delving into details [17,18]. In some other
studies of sensorless control system, the dead-time compensation is executed with the help
of the estimated rotor position [19]. However, these simple compensation methods are
not accurate and even not reliable due to variation of dead-time compensation time and
current clamping effects. Advanced dead-time compensation methods based on observers
of dead-time compensation time are proposed in recent years to realize adaptive dead-time
compensation [20,21]. Some self-commissioning methods considering multiple nonlinear
factors, such as the effect of parasitic capacitors, are studied to make the compensation
more accurate [22,23]. All these advanced methods have shown great characteristics in
applications of traction motor control system, with the help of precise current sampling by
Hall elements. As for the applications in assisted motors, current sampling is realized by
sampling resistance, the precision of which deteriorates under small current conditions.
Under this circumstance, dead-time compensation may be inaccurate and bring negative
impact to the reliability of the control system. Consequently, application of dead-time
compensation is uncommon in sensorless control system of assisted motors. In this paper,
a simpler way to deal with this problem is provided by specially designing a dead-time cor-
rector for the extended flux-based method and limiting the impact of dead-time correction
to the position estimator.

The paper is organized as follows. The theory of the extended flux-based sensorless
control technology is introduced in Section 2. Then, the dead-time correction method
is designed in Section 3. The performance of the proposed sensorless control system is
verified by experimental results in Section 4. Finally, the key features of the proposed
sensorless control system are summarized in Section 5.

2. Extended Flux-Based Sensorless Control Technology
2.1. Mathematical Model of PMSM

The model of PMSM in the rotating reference frame can be written as follows [24]:{
ud = Rsid + Ld

did
dt −ωeλq

uq = Rsiq + Lq
diq
dt + ωeλd

(1)

where ud, uq, id, iq, Ld, Lq, λd and λq are the stator voltage components, stator current
components, inductances and flux linkage along the direct axis (d-axis) and the quadrature
axis (q-axis), ωe is electrical speed of the motor and Rs is the phase winding resistance. The
stator flux linkages can be expressed as:{

λd = Ldidλ f
λq = Lqiq

(2)

where λ f is the permanent magnet flux linkage of the motor. In (2), the stator flux linkages
are calculated with the stator current, which is called current model for simplicity in
this paper.

In order to simplify the model of PMSM in the stationary reference frame, the concept
of extended flux is developed and defined as:

λext = λ f − (Lq − Ld)id (3)
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By combining (3) and (1), the model of PMSM can be rewritten as:{
ud = Rsid + Lq

did
dt −ωeLqiq +

dλext
dt

uq = Rsiq + Lq
diq
dt + ωeLqid + ωeλext

(4)

Furthermore, the extended flux in the stationary reference frame is defined as:{
λext,α = λext cos θe
λext,β = λext sin θe

(5)

where θe is the rotor position of the motor. Then (2) can be converted into the stationary
reference frame with the help of the extended flux, as shown in (6).{

λα = Lqiα + λext,α
λβ = Lqiβ + λext,β

(6)

where iα, iβ, λα and λβ are the stator current components and flux linkage in the two-phase
stationary reference frame. It is obvious that the extended flux in the stationary frame
contains the information of rotor position. The extended flux can be derived not only by
the current model, but also by the voltage model in (7) which can be deduced from (4)
and (6). {

dλα
dt = uα − Rsiα

dλβ

dt = uβ − Rsiβ

(7)

where uα and uβ are the stator voltage components in the two-phase stationary refer-
ence frame.

An illustration diagram of the equations above is summarized in Figure 1, including
the voltage model and current model used in the extended flux-based sensorless control
technology. Tpark in the diagram is the Park transformation matrix.
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Figure 1. Illustration diagram of the model equations used in the extended flux-based sensorless control technology.

2.2. Rotor Position Estimation-Based on Extended Flux Observer

The voltage model in (7) can be used as an open-loop flux observer [25]. However, the
estimation error caused by some practical issues, e.g., the DC offset of current sensors will
be accumulated by the integrator [26]. Another flux observer is constructed by applying the
voltage model and the current model in the meantime. The estimation error between the
two models is used as the input of a PI compensator, the output of which is used to correct
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the voltage model. The structure of this closed-loop flux observer is shown in Figure 2. The
observer can be expressed as follows:

dλ̂α,u
dt = uα − Rsiα + ucomp,α

dλ̂β,u
dt = uβ − Rsiβ + ucomp,β

(8)


λ̂d,i = Ld îd + λ f

λ̂q,i = Lq îq
λ̂αβ,i = Tpark

−1(θ̂e)λ̂dq,i

(9)

where λ̂α,u and λ̂β,u are the estimated quantities of λα and λβ using the voltage model,
ucomp,α and ucomp,β are the output of the PI compensator, λ̂d,i and λ̂q,i are the estimated
quantities of λd and λq using the current model, λ̂αβ,i is the estimated quantity of λα

and λβ using the current model, θ̂e is the estimated quantity of θe and Tpark is the Park
transformation matrix. The compensating voltage can be calculated by the PI compensator:{

ucomp,α= (Kp +
Ki
s )(λ̂α,i − λ̂α,u)

ucomp,β =
(

Kp +
Ki
s )(λ̂β,i − λ̂β,u)

(10)

where Kp and Ki are the gains of the PI compensator.
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With the help of the PI compensator, the accumulated error can be eliminated. Fur-
thermore, the estimated rotor speed is absent in the observer, which excludes the bad effect
of inaccurate speed estimation. The stability of the observer is analyzed and demonstrated
in [27]. Once the estimated stator flux is obtained, the extended flux and the rotor position
can be deduced as: 

λ̂ext,α = λ̂α,u − Lqiα
λ̂ext,β = λ̂β,u − Lqiβ

θ̂e,atan = arctan(λ̂ext,β/λ̂ext,α)

(11)

where θ̂e,atan is the estimated rotor position using the arctangent function. Then a phase-
locked loop (PLL) observer is used to extract the rotor position and speed information in
consideration of noises and harmonic components within the observed signals [28]. The
structure of the PLL observer is shown in Figure 3 and the closed-loop transfer function of
the PLL can be derived as:

GPLL =
Kp,PLLs + Ki,PLL

s2 + Kp,PLLs + Ki,PLL
(12)
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where Kp,PLL and Ki,PLL are the gains of the phase-locked loop (PLL) observer.
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Both the advantages of the current model at low speed and that of the voltage model at
high speed are taken in the position estimation method above, making it a full-speed-range
sensorless control technology. This feature is of great importance for fault-tolerant control
of traction motors, because the operating speed of traction motors changes rapidly, and
frequent technology switching between high and low speed will lead to unreliability of
the whole system. The comparison between the extended flux-based estimation method
and the other two mainstream methods, i.e., the high frequency signal injection method
and the EMF-based method is given in Figure 4. The motor is started from standstill and
accelerated to 1500 rpm (rated speed of the tested motor) with speed sensor under rated
load. The three estimation methods are applied at the same time. The simulation results
validate that only the extended flux-based method can realize accurate estimation in full
speed range. In Figure 5, the estimation results of the extended flux-based method are used
to realize sensorless control of the motor, which show its accuracy and reliability.
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3. Dead-Time Correction for Sensorless Control System
3.1. Dead-Time Effect

As the switching feature of insulated gate bipolar transistors (IGBTs) is not ideal, the
two IGBTs in an inverter leg must be in an off state in the meantime for a time during
every switching period, which is called the dead time [29]. Affected by the dead time,
there is a deviation between the reference stator voltage and the actual stator voltage. This
deviation can be expressed as function of dead time, switching period, DC-link voltage
and the direction of stator current.

∆ux =
Udctd

Ts
· sign(ix) (13)

where Udc is the DC-link voltage, td is the dead time and Ts is the switching period. The
dead time is composed of controlled dead-time tcd, turn-on time ton, turn-off time to f f , and
average on time ta,on [26], which can be expressed as:

td = tcd + ton − to f f + ta,on = tcd + ton − to f f +
Uon

Udc
Ts (14)

where Uon is the average on voltage, which is defined as:

Uon =

{
Ton
Ts

Us +
To f f
Ts

Ud, i > 0
To f f
Ts

Us +
Ton
Ts

Ud, i < 0
(15)

where Us and Ud are on-voltage drops of switching devices and diodes, and Ton, To f f are
on-period and off-period of the upper-arm of inverter leg.

For most applications, the stator voltage used in the flux observer above is the reference
voltage rather than the actual one. The voltage deviation will produce additional error for
rotor position estimation. Generally, the deviation voltage is about 1~5% of the DC-link
voltage. When the reference voltage is high enough, estimation error caused by the dead-
time effect is negligible. However, the stator voltage will become quite low at low speed.
When the extended flux-based method is executed at low speed, the voltage deviation
may become equal to the reference voltage, which will cause huge estimation error and
out-of-control failure. Simulation results in Figure 6 show the position estimation error of
the observer based on extended flux during the startup process with different dead time.
Operating status of the motor is the same as that in Figure 3. Large estimation error can be
observed at low speed and becomes much bigger as the dead time increases.
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3.2. Dead-Time Correction Method

The common solution for dead-time effect is the dead-time compensation technology.
The deviation of stator voltage in stationary reference frame is calculated according to
(13) and added to the reference voltage. The dead-time compensation methods perform
effectively in applications of traction motors, because the current sampling is precise
with Hall elements. However, in consideration of cost, phase current is inspected by
setting sampling resistances in series in the three-phase circuit in applications of assisted
motors. Though the power dissipation of the sampling resistance is negligibly small, the
sampling precision deteriorates under small current conditions. Consequently, dead-time
compensation may be unreasonable and bring negative impact on stability of the vector
control system.

Instead of compensating the output voltage, correcting the stator voltage used in
the extended flux observer will be an effective and simple solution for this problem. By
limiting the impact of dead-time correction to the rotor position estimator, reliability of
the vector control system can be guaranteed. The structure of the extended flux-based
sensorless control system with dead-time correction is shown in Figure 7. The stator voltage
is used only in the voltage-model-based observer in (8), which is corrected by the dead-time
voltage deviation as follows: {

u∗α = uα − ∆uα

u∗β = uβ − ∆uβ
(16)

The voltage deviation in the stationary reference frame can be calculated by (13)
without the rotor position information.

[
∆uα

∆uβ

]
=

2
3

[
1 −1/2 −1/2
0
√

3/2
√

3/2

] ∆ua
∆ub
∆uc

 (17)

Then the voltage-model-based observer in (8) can be rewritten as:
dλ̂α,u

dt = u∗α − Rsiα + ucomp,α
dλ̂β,u

dt = u∗β − Rsiβ + ucomp,β
(18)
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The proposed dead-time correction method is devoted to extended flux-based sen-
sorless control system, because the dead-time effect has less effect on the estimation
precision of signal injection methods. Applications of the EMF-based methods demand
high-precision dead-time compensation at low speeds. The dead-time correction is applied
to the extended flux observer rather than the vector control system to avoid adverse effect
of inaccurate dead-time compensation for the whole control system. Thanks to the current
model and PLL observer, impact of less accurate dead-time calculation is tolerant for the
extended flux observer. Furthermore, it is much simpler than real-time dead-time compen-
sation, which can show better performance only with accurate rotor position information.
Based on the analysis above, the proposed extended flux-based sensorless control system
with dead-time correction is more suitable for applications in assisted motor. It can also
be used for the traction motors with the consideration of its simplicity. The structure of
the extended flux-based sensorless control system with dead-time correction is shown
in Figure 7.

4. Experimental Results

The purpose of this section is to verify the properties of the proposed extended
flux-based sensorless control system with dead-time correction. For the experiments, a
homemade three-phase two-level IGBT inverter switching at 6 kHz and a DC voltage
source of 540 V are applied. The strategy is realized with a digital controller based on DSP
TMS320F28035 with a clock speed of 60 MHz [30]. The motor is loaded by a hydraulic
circuit, which consists of a hydraulic oil pump, a hydraulic valve, an oil reservoir and high-
pressure oil pipes. Furthermore, an optical encoder is installed between the tested PMSM
and the pump to validate the motor speed and position estimation. The experimental setup
is shown in Figure 8. The parameters of the tested PMSM are given in Table 1.

Table 1. Motor parameters.

Denotation Symbol Value

Rated power (kW) PR 3
Rated current (A) IR 10
Rated speed (rpm) nR 1500
Rated load (N·m) TR 23

Rated frequency (Hz) fR 100
Number of pole pairs np 4
Stator resistance (Ω) Rs 1.08

d-axis inductance (mH) Ld 12.52
q-axis inductance (mH) Lq 23.37

Flux linkage (Wb) λf 0.26
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Figure 8. Experimental setup.

The motor is started from standstill and accelerated to its rated speed in the experiment.
The hydraulic valve is used to tune the load. The performance of the sensorless control
system proposed in this paper is first demonstrated under no load. Then the motor is
started under rated load to verify its operating performance under load.

Experimental verification under no load is conducted firstly and the results are shown
in Figure 9a. It can be seen that the proposed extended flux-based sensorless control system
shows great performance over full speed range. No large speed or torque ripples can
be found during the whole process. The speed estimation error is within 55 rpm. The
same experiment is conducted under rated load, where the oil pressure reaches 11 MPa.
Experimental results in Figure 9b show that the proposed method performs well with
higher output torque. The speed estimation error is within 57 rpm over full speed range. It
can be seen that the performance under low speeds is poorer than that at high speeds due
to less accurate dead-time correction. However, assisted motors of electric vehicles hardly
work under low speeds. Reliable start-up process from standstill to rated speed is needed
and can be guaranteed by the dead-time correction method.
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To validate the influence of dead-time correction, the experiment under rated load
is repeated with 50% dead-time correction and no dead-time correction respectively. As
the motor cannot be started without dead-time correction under load, the experiment is
executed under no load. Transients of the a-phase current at the startup moment are given
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in Figure 10. It can be found that the a-phase current with full dead-time correct is the
smoothest one, indicating the most accurate rotor position estimation. The peak value of
a-phase current without dead-time correction is two times of that with dead-time correction.
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From the experimental results above, it can be observed that the proposed extended
flux-based sensorless control system has satisfactory performance over full speed range
in both loaded and non-loaded situations. The dead-time correction is essential for the
reliability of the control system.

5. Conclusions

An extended flux-based sensorless control system with dead-time correction is pro-
posed in this paper to achieve reliable control of PMSMs with only one rotor position
estimation method over full speed range. To guarantee the reliability of the whole control
system, a dead-time correction method devoted to the extended flux observer is designed.
The performance of the proposed sensorless control system was verified by experimental
results. The proposed extended flux-based sensorless control system with dead-time cor-
rection best suits the applications in assisted motors of electrical vehicles and can also be
used for fault detection and fault tolerant control of the traction motors of electric vehicles.
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