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Abstract: Internet of Things (IoT) networks are typically composed of many sensors and actuators.
The operation controls for robots in smart factories or drones produce a massive volume of data
that requires high reliability. A blockchain architecture can be used to build highly reliable IoT
networks. The shared ledger and open data validation among users guarantee extremely high data
security. However, current blockchain technology has limitations for its overall application across IoT
networks. Because general permission-less blockchain networks typically target high-performance
network nodes with sufficient computing power, a blockchain node with low computing power and
memory, such as an IoT sensor/actuator, cannot operate in a blockchain as a fully functional node.
A lightweight blockchain provides practical blockchain availability over IoT networks. We propose
essential operational advances to develop a lightweight blockchain over IoT networks. A dynamic
network configuration enforced by deep clustering provides ad-hoc flexibility for IoT network
environments. The proposed graph neural network technique enhances the efficiency of dApp
(distributed application) spreading across IoT networks. In addition, the proposed blockchain
technology is highly implementable in software because it adopts the Hyperledger development
environment. Directly embedding the proposed blockchain middleware platform in small computing
devices proves the practicability of the proposed methods.

Keywords: internet of things; lightweight blockchain; deep clustering; GNN

1. Introduction

The enormous volume of data that is generated, collected, and utilized has changed
the modern industry. Data now facilitate digital transformations and act as essential
factors that promote the convergence of virtual spaces into physical spaces. The blockchain
is a key enabler for the implementation of transparent and reliable data transactions.
Blockchain technology provides a decentralized system that guarantees data reliability
across industrial domains. Unfortunately, common blockchain networks, such as Ethereum
or EOS, have an inherent problem in targeting network nodes with considerable computing
power. A full node (a device that validates transactions) usually owns a copy of the
entire blockchain, which also contains user accounts and balances. However, the IoT
network has significant limitations in adopting common blockchains; the requisite amount
of computing power is not available in IoT nodes. Energy consumption is another challenge
in IoT devices powered with batteries. For IoT blockchain networks, typical cloud-centered
IoT architectures have inherent vulnerabilities [1], having the cloud as a point of failure.
The fog or edge computing architecture offloads processing from the cloud to the edge of the
network. This type of architecture allows for multi-layered networking of IoT devices. In our
previous work [2], we reorganized the blockchain software structure and developed new
software modules, such as the consensus engine, validator, database, and data-serialization
functions, for small-scale IoT development devices. The developed blockchain software
module embedded in IoT sensor devices guarantees secure data transactions for distributed
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applications. The IoT device builds blocks and performs a consensus as a blockchain
validator. We proved that the proposed lightweight blockchain software module can enable
blockchain solutions for IoT applications.

However, these architecture designs, software modules, and efficient communication
methods are not sufficient for the practical operation of IoT blockchain networks. The most
important characteristic of IoT networks is the behavior of dynamic network nodes over
time. IoT nodes continuously change their positions and generate transactions with vari-
able rates. We suggest two essential operation strategies to cover dynamic node behaviors
in IoT blockchain networks: (1) dynamic IoT blockchain network configuration through
deep clustering and (2) reduced dApp (distributed application) spreading through graph
neural network (GNN) node classification. Recent machine learning frameworks, such as
deep clustering [3] and GNN [4], provide remarkable methodologies for IoT blockchain net-
works. The most important advantage of neural network is its usability under insufficient
information. Some IoT networks have operation instability, then the IoT node behavior data
can be hard to be harvested. The neural networks embedded in the proposed deep clus-
tering can provide extracted features even with insufficient behavioral data of IoT nodes.
The test simulation environment shows the practical applicability of the proposed operation
control methods. We built a cloud-based test environment using our custom-developed
blockchain software modules. The multiple virtual machines in the cloud employ the
blockchain software module using the Docker container. The superior performance of our
approach is effectively illustrated using the developed test environment.

2. Related Works

The use of decentralized systems has been suggested to create peer-to-peer IoT ap-
plications [5–7]. Blockchain has been effectively applied to IoT applications [8], such as
monitoring [9,10], data storage [11,12], identity handling [13], timestamping [14], living ser-
vices [15], transportation [16], wearable devices [17], supply chains [18], crowd sensing [19],
law [20], and security in mission-critical environments [21]. Blockchain technologies can
also be used in IoT agricultural applications. Tian [22] presented a traceable application
for the supply tracking of agricultural products. The application uses radio frequency
identification (RFID) chips and a blockchain to enhance food safety and quality while
reducing losses in logistics. Other researchers have provided an IoT device management
solution using a blockchain [23]. Researchers have also proposed a system for remote con-
trol of IoT devices. The system stores public keys in a public blockchain, such as Ethereum,
while saving private keys to each IoT device.

A multi-layer IoT architecture that deploys blockchain technology is described in [24].
The proposed architecture reduces the complexity of deployment by constructing a multi-
level IoT configuration and applying the blockchain to each level. A slightly different
approach is presented in [25]. This work evaluated the use of a cloud and fog computing
architecture to provide blockchain applications. The researchers evaluated the empirical
performance of the architecture by using IoT nodes based on Intel Edison boards and
IBM’s Bluemix as blockchain technology. Further, they noted that it is difficult to apply a
regular blockchain such as Ethereum or EOS on traditional resource-constrained IoT nodes.
Software defined networking (SDN) has also been suggested for deploying blockchain to
IoT architectures. One novel blockchain-based architecture used SDN to control the fog
nodes of an IoT network [26]. Another lightweight architecture compressed the commu-
nication overhead introduced by the use of a blockchain [27,28]. This work employed an
overlay network and a private ledger to replace regular blockchain technology.

Optimized network configuration plays a significant role in lightweight blockchain
operation by increasing the efficiency of transaction exchange within the blockchain net-
work. To increase transaction exchange efficiency, the blockchain network node compresses
transaction data between nodes (e.g., Compact Block [29], Xthin Block [30], Graphene [31])
or uses a relay facility dedicated to data processing within the network (e.g., FIBRE [32],
FALCON [33]). As the above method was intended for a large-scale public blockchain
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network on a global scale, it is not an effective method in the context of a private blockchain
network in an IoT environment. IBM’s ADEPT [34] model presents a decentralized network
structure in the IoT environment; however, it predefines the role of nodes, which restricts
the flexibility of network configuration and operation in an IoT network where the nodes
are frequently moved and relocated. Ardor [35] represents the regional proliferation and
activation of dApps to prevent performance degradation to a part of the network while
ensuring transaction data integrity.

Ahmed et al. [36] and Khan et al. [37] illustrate the reliability and security concerns in
the current IoT environment. Ahmed et al. [36] suggests a comprehensive and systematic
mapping study to IoT structure. It categorizes the research evidence for IoT quality
assurance appeared. Khan et al. [37] outlines the security requirements for IoT and the
state-of-the-art of security solutions. They discuss how blockchain can be a key enabler to
solving many IoT security problems.

3. Dynamic IoT Blockchain Network Configuration

Dynamic network clustering is an essential technique for flexible blockchain network
configuration in an IoT environment. Clusters of nearby nodes are formed from the posi-
tion information of the network nodes, and the cluster is managed by assigning a chain ID
(e.g., chain #:validator/client/center location/pubsub period) (see Figure 1a). The pub-
lish/subscribe (pub/sub) transaction exchange is the basic method of communication
in the IoT blockchain cluster. Transactions generated by network nodes are propagated
using the pub/sub method (e.g., MQTT [38], Kafka [39]). Figure 1b shows the pub/sub
transaction exchange method between blockchain network nodes in an IoT environment.
When the client node N5 creates a transaction and publishes it to the connected pub/sub
broker (N1), the validators (N1, N2, N3, and N4) forming the chain receive the transaction
through a subscription to N1. Then, the validators record the hash value of the exchanged
transactions to the distributed ledger.
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Deep clustering [3] is a clustering method that jointly trains the parameters of a deep
neural network and generates clusters of objects. Combined with a standard clustering
algorithm, such as k-means clustering, it iteratively groups the objects (more precisely,
it groups the coded features of objects) and uses the subsequent clustering as supervision
to update the weights of the feature extractor. Originally, deep clustering was applied to
image grouping (i.e., images are handled as objects). When there are no preliminary group
labels assigned to images, deep clustering is useful for assigning appropriate labels to
images. A feature extractor generates the coded features of images, and standard clustering
creates image groups using the features of images. The pseudo labels are obtained from
image groups (i.e., the pseudo label yij = 1 when the image i is assigned to group j).
For each iteration, the pseudo label is used to evaluate the correctness of the feature
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extractor (usually with a convolutional neural network). The parameters in the feature
extractor are updated to generate better features for images.

Deep clustering has greater flexibility to represent network node behaviors. The node
behavior (e.g., positions, generated transactions, the destination of transactions) can be
recoded to time series data. A two-dimensional tensor is suitable to record the time-varying
behavior of each network node. Then, a set of 2D tensors is used to fully represent node
behaviors in a network (see Figure 2). Node behaviors are recoded to the expandable 2D
tensor, and recent node behaviors within a time window are collected to build a network
behavior snapshot.
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The feature extractor uses a network behavior snapshot as input data, and a feature
vector obtained from the extractor is used to build network node clusters. A standard
clustering method, such as k-means, generates clusters. Network clusters provide pseudo
labels to their member nodes. The pseudo label is given as a 1D tensor, and the labels
of all network nodes are used to evaluate the quality of feature extraction (see Figure 3).
The generated features are continuously enhanced by the iterative operation of feature
extractor and standard clustering method. The standard clustering method uses the current
features and provides pseudo labels for IoT node clustering. The result of node clustering
is used to train the feature extractor.
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Equation (1) evaluates the quality of feature extraction. fθ denotes the feature mapping
of node behavior xn. We want to find a parameter θ∗ such that the mapping fθ∗ produces
good general-purpose features. A parameterized classifier gW predicts the correct labels
on top of the features xn (note that a softmax classifier is typically used). The parameter W
of the classifier and parameter θ of the mapping are then jointly learned by minimizing
Equation (1). l evaluates the difference between the prediction (gW) and pseudo label (yn).
L denotes the summation of l for all network nodes.

L = ∑
n

l(gW( fθ(xn)), yn) (1)

The proposed deep clustering adopts the Convolutional Neural Network (CNN) to
extract the behavioral features of IoT nodes. CNN learns the filters automatically without
mentioning them explicitly. These filters help in extracting the spatial and sequential
features from the input data. The gathered data from the IoT node have spatial cues
and sequential information. The position (i.e., longitude and latitude) data have a time-
consecutive feature. The destination of transactions provides the spatial information of the
network structure. Moreover, the advantage of deep clustering is from the benefit of the
CNN structure itself. The findings of Caron et al. [3] illustrate the structural advantage of
CNN in deep clustering. Even the untrained CNN adopted in deep clustering provides
generally acceptable performance of object clustering.

4. Reduced dApp Spreading Using GNN Node Classification

Blockchain networks spread distributed applications across the network, execute them,
and verify the results. The holistic spread of distributed applications across the network
guarantees transaction data integrity but is also a major cause of performance degradation
of the blockchain. To implement a lightweight blockchain, an efficient method of dApp
spreading is required. Optimized dApp spreading can significantly improve processing
speed during the transaction verification process (for example, peer review or result valida-
tion), which is mainly performed by the validators. Regional proliferation and activation of
dApps is one way to limit performance degradation to a part of the network while ensuring
transaction data integrity. Ardor [36] represents one such approach. However, Ardor currently
remains limited to the idea of restricting dApps in large and static networks. We propose a
dApp spreading method that can be linked with dynamic clustering in an IoT environment.
In the network cluster, a software agent powered by artificial intelligence assigns tags
(spread/skip/activation) to nodes according to their states and computing loads (see Figure 4).
The total amount of computing and communication loads in the cluster determines the
spreading speed of dApps.
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GNNs are a type of artificial neural network used in graph structures [4]. Commonly known
artificial neural networks include convolutional neural networks (CNNs) or recurrent
neural networks (RNNs). These artificial neural networks typically use vector or matrix
forms as the input data, whereas in the case of a GNN, the input is a graph structure.
GNNs can be used for node classification problems in a graph. Each node in a blockchain
cluster has a tight relationship with its adjacent nodes; this mutual influence between nodes
is important for the regional spread and activation of dApps. Learning in the blockchain
network clustering shares many ideas with the node classification by GNNs. For example,
we can use cross entropy loss as the loss function (l) for the proposed GNN. In addition,
we can apply batch training for all nodes in one cluster.

First, we define the behavior embedding structure of nodes. The embedding tensor
described in Section 2 has a relatively simple form to present node behavior (note that we
focus on the time-varying behavior of nodes in Section 2). We expand the behavior structure
to address node capability and current status, such as computing power, communication
load, memory, ledger size, and the number of stored dApps. In addition, the feature is
specified for each time epoch. We track the time-specific behaviors of nodes using the time
index. The GNN has aggregation (AGGREGATE) and concatenation (CONCAT) functions
to extract the feature vectors of nodes. The input behavior tensor of a node is concatenated
with its adjacent nodes’ aggregated behaviors (see Figure 5). The iterative application
of AGGREGATE and CONCAT functions to each node in the cluster can determine the
features of all nodes in the cluster (see Box 1). Then, nodes are classified based on the
features obtained from AGGREGATE and CONCAT. The following pseudocode describes
feature extraction using the AGGREGATE and CONCAT functions:

Box 1. Aggregation and Concatenation.

for v ∈ V: #V is node set in cluster
xv = behavior tensor of node v
f 0
v = xv initial feature of node v

for k = 1 to K:
for v ∈ V:

a = AGGREGATE( f k−1
u

∣∣∣(u, v) ∈ E) #E is edge set in cluster

f i
v = CONCAT

(
f k−1
v , a

)
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f k
v denotes the extracted feature of node v at iteration k. The AGGREGATE function

simply averages the adjacent nodes’ features ( f k−1
u , (u, v) ∈ E) at the previous iteration

(i.e., iteration k− 1). The feature of the node v at the previous iteration ( f k−1
v ) is added to

the aggregation of adjacent nodes’ features (i.e., the CONCAT function is a simple adding
operation). Equation (2) shows the aforementioned feature extraction. Θk and Φk are the
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trainable parameters of the proposed GNN. σ indicates a nonlinear activation function,
such as ReLU or sigmoid.

f k
v = σ

Θk ∑
{u|(u,v)∈E}

f k−1
u

|{u|(u, v) ∈ E}| + Φk f k−1
v

 (2)

The trainable parameters Θk and Φk are updated to minimize the loss function (3).
The loss function of logistic regression is applied to evaluate the loss of the GNN. When two
nodes u and v are connected, the cosine similarity approaches 1. Otherwise (i.e., u and v
are disconnected), the cosine similarity is close to 0.

L = ∑
(u,v)∈E

log
(

σ
(
( f k

u)
T(

f k
v

)))
+ ∑

(u,v)/∈E
log
(

1− σ
(
( f k

u)
T(

f k
v

)))
(3)

Actual node classification is performed using the trained GNN. The trained classi-
fication function combined with the GNN determines the node class and assigns tags
(see spread/skip/activation in Figure 4). Note that a softmax classifier is typically used.

5. Experiments
5.1. Experiment Design

To demonstrate the superior performance of the proposed dynamic network con-
figuration and dApp spreading, we built a test blockchain network in a cloud system.
In our previous work [2], we reorganized and modified the Hyperledger sawtooth [40]
blockchain software. The consensus engine, validator, database, and data-serialization func-
tions were reorganized for small-scale IoT development devices. For convenience, we ap-
plied Docker [41] to the developed blockchain software module deployment. Docker is a
container-based open-source virtualization platform. A Docker container is created from
a Docker image, which contains the application to be run and its execution environment.
Docker guarantees the same execution in various computer environments and can use
services through images without complicated deployment steps [42]. We created a portable
Docker image for easy distribution and maintenance of the developed blockchain software
module. Figure 6a shows the Docker container installation to a virtual machine in the
cloud system. We used the private cloud system supported by KOREN (KOrea REsearch
Network). Our virtual blockchain testbed has a maximum of 100 virtual machines (VMs),
each of which employs a Docker engine and a sawtooth-based blockchain software module
(see Figure 6a). To emulate the network connectivity between VMs, we also deployed
a pub/sub transmission between VMs. A transmitter VM publishes a transaction and
a receiver VM subscribes to obtain the transaction. A broker node relays the pub/sub
operations. The broker stores published transactions and sends transactions to subscribed
receivers in each cluster. Note that the operational reliability of the broker is important
to pub/sub operation. The instability of broker operation could cause message transfer
failure. To prevent the broker failure, many popular pub/sub operation methods such
as MQTT provide the data recovery method. After network clustering, a single VM is
assigned to be a broker in each cluster. The position data of VMs and pub/sub connectivity
demonstrates the blockchain network testbed in the cloud system. Figure 6b presents the
visual diagram of the testbed. The NetAnim (network animation) simulator employs the
network configurations generated from the testbed and shows the status of the VMs.
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The VMs (i.e., network nodes in the blockchain network) are classified into two
classes, comprising 90 sensor nodes and 10 actuator nodes. The transaction generation
of nodes is also classified into two types: a reporting type with a normal distribution
(mean 1/min, standard deviation 6/min) and a requesting type with another normal
distribution (mean 6/h, standard deviation 10/h). The sensor nodes usually generate
reporting transactions, and the actuator nodes generally generate requesting transactions.
We assume that the destinations of the transactions are randomly selected. The network
fluctuation is emulated by the node on/off. The most important network fluctuation is
caused by membership changes in clusters. A randomly selected 10% of network nodes
are turned off every hour (the turned-off node will be regenerated at the beginning of
the next selection period) to emulate network fluctuation. In addition, we simulate node
movement. Only a small number of network nodes move in real situations. Many sensing
nodes, for example, are fixed to facilities or buildings. We randomly select 10% of VMs to
emulate node movement. The moving nodes change their position at a speed of 1 m/h in
random directions. The position data of moving nodes are continuously calculated and
recoded to the node behavior tensor described in Figure 2a.

5.2. Results: Dynamic IoT Blockchain Configuration

First, we show the effect of the proposed deep clustering for IoT blockchain networks.
We use a standard CNN architecture, which consists of five convolutional layers with
16, 32, 64, 32, and 16 filters, and two fully connected layers. Deep clustering is a sort of
unsupervised learning methods. Thus, we do not need to label the network nodes for
training. To train the CNN for deep clustering, we generate 24-h transactions with node
on/off data as a single epoch. A total of 20 training iterations of epoch are performed to
train the CNN. The test data are obtained from another 12-h set of transactions and node
behaviors. Note that, the IoT node behavior model applied to the NS-3 network simulator.
The NS-3 simulator can provide node behavioral data as the tensor form described in
Figures 3 and 5. Figure 7 shows the effect of the proposed deep clustering method for
lightweight blockchain networks. For comparison, we also illustrate successive k-means
clustering with multiple iteration periods (1 h, 2 h, 3 h, 4 h). In the case of k-means
with a 1-h iteration period, we apply k-means clustering every hour to the lightweight
blockchain network.
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Figure 7. Performance of proposed deep clustering in lightweight IoT blockchain network.

The first measure used to evaluate the proposed deep clustering is the intra-cluster
transaction ratio. It is obvious that the transactions within a cluster require smaller trans-
action costs compared to those of inter-cluster transactions. The deep clustering method
allows over 90% of transactions to be processed as intra-cluster transactions for the first
hour of the test. The intra-cluster transaction ratio gradually decreases over time. At the
end of the test, the intra-cluster transaction ratio is close to 60%. Applying only single deep
clustering, we observe that over 60% of transactions are processed inside the cluster for
12 h. The successive k-means clustering has a relatively low intra-cluster transaction ratio
at the beginning of the test (i.e., roughly 75% or less). The successive application of k-means
clustering prevents excessive performance degradation. For example, applying k-means
clustering every 3 h (i.e., k-means (3 h) in Figure 7a) restores the highest intra-cluster
transaction ratio for every 3 h. However, repeated clustering requires extra data gathering
and calculation of a central unit. Practically, repeated clustering should be avoided to
maintain network configuration stability. Figure 7b estimates the energy consumption
of transactions in the network. We assume WiFi connectivity between nodes. A report
from Gomez et al. [43] illustrated the energy consumption per WiFi message transmission.
We assume that the transmission power of the network node is 10 dBm with 10 mW needed
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to publish a single transaction (we fix the transmission speed to 100 kbps, which is sufficient
for sensing or actuating IoT nodes). In our experiment, all IoT nodes are located within a
circle with 100 m radius. To simulate both of intra-cluster and inter-cluster transactions,
100 m radius is enough to consist multiple clusters. An intra-cluster transaction requires
single-transaction publishing to the broker in the cluster. The transmission energy of a
single message is sufficient for intra-cluster transactions. However, inter-cluster transac-
tions require multiple transmissions. The published transaction should be relayed over
the brokers. The broker of the published side relays the transaction to the broker of the
subscribed side.

Figure 7 also illustrates the performance of dynamic clustering based on the genetic
algorithm (GA) [44]. To optimize the clustering with historical data of network and IoT
node behaviors, they built initial clustering solutions and try to converge to the optimal
clustering. The input node behaviors and suggested fitness function are similar to the two-
dimensional input tensor form and the loss function of our proposed method. The energy
consumption and the ratio of intra-cluster transactions illustrated in Figure 7 are similar to
the proposed deep clustering. However, the converging time of GA is greater than the deep
clustering. GA needs a relatively long time to converge to the final solution (the minimum
converging time is 2600 ms and the maximum is measured at 4300 ms). Because of the
slow convergence of GA to find the final solution, the GA clustering is hard to apply the
practical clustering in a real-time fashion. Note that, the convergence time is measured in
1.2 Ghz CPU and 1GB RAM of VM. The specified CPU and RAM capability is the popular
specifications of RasberryPi3.

5.3. Discussion: Dynamic IoT Blockchain Configuration

Using deep clustering, we can build the cluster configuration for the IoT blockchain
network and then classify the intra- and inter-cluster transactions. The energy consump-
tion patterns illustrated in Figure 7b show the inverse form of the patterns in Figure 7a
(i.e., the patterns of intra-cluster transaction ratios). This reciprocal relationship is nat-
ural because a high intra-cluster transaction ratio guarantees large energy savings for
transaction publishing.

5.4. Results: Reduced dApp Spreading using GNN Node Classification

Here, we show the effect of the proposed GNN for IoT blockchain networks. To train
the GNN for node classification (i.e., assigning node tags such as spread/skip/activation),
we prepared two types of dApps: concurrent sensing transaction publishing and serial
sensing transaction publishing (see Figure 8).
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The concurrent sensing-type dApp is initiated by a set of adjacent sensor nodes.
When the adjacent sensor nodes detect the same situation, they generate concurrent sens-
ing transactions, and then an actuator node starts its action. The broker processes and
relays the published concurrent sensing transactions to the actuator node. For example,
high temperature measured by adjacent sensor nodes in a factory activates an alarm and
air conditioning systems. The serial sensing-type dApp is initiated by a single sensor node.
When a single sensor node detects the same situation over a predetermined time interval,
actuation is performed in the actuator. The broker has the same role as in concurrent
sensing-type transactions. An example of a serial sensing-type dApp is the detection of ma-
chine malfunctions. A single error detection is not sufficient to determine the malfunction;
multiple consecutive error detections are required. For GNN parameter training, fifty con-
current sensing types and the same number of serial sensing-type dApps are used in our
experiment. The adjacent node sets and their actuators are randomly selected for each
concurrent sensing-type dApp. A single sensing node and its actuator are also randomly
selected for each serial sensing-type dApp. The information of node status is gathered
from the monitoring module of each IoT node. The sawtooth-based blockchain software
employed in the VMs has a monitoring module to report status of IoT nodes. After the
selection of sensor and actuator nodes, the broker nodes can be determined according to
the cluster configurations. The broker belonging to the same cluster as the sensor nodes
relays the sensing transactions and employs the dApp.

To prove the effectiveness of the proposed GNN method for node classification, we gen-
erate 1000 transactions that initialize the dApps to actuators. Of these transactions, 50% ini-
tiate concurrent sensing-type dApps and the other 50% initiate serial sensing-type dApps.
The transactions cause changes in the behavior tensor of the nodes xv; then, the trained
GNN determines the dApp spreading to the actuators and brokers. The performance of the
proposed GNN can be measured by the failure of dApp spreading. Incorrect spreading of
the dApp necessitates impending dApp downloads to brokers and actuators. These im-
pending downloads should be avoided. The delay caused by these downloads can easily
lead to the failure of dApp execution. The flooding of dApps across the network is the
basic operational process to avoid execution failure. However, broad proliferation requires
excessive memory for IoT nodes, imposing a heavy burden on memory-constrained IoT
nodes. Our GNN-based node classification for dApp spreading guarantees the successful
execution of dApps while minimizing the unnecessary excessive proliferation of dApps.
Figure 9a shows the frequency of impending downloads for brokers and actuators, which are
caused by incorrect node classification and dApp spreading. A total of 1000 transactions
are tested. Each transaction initiates the dApp. The dApps should be activated through the
spreading line (both the relaying brokers and actuator). The failures of node classification
(i.e., causing impending dApp downloads for a broker or actuator) are restricted to 3%–5%
for every transaction interval (we divide 1000 transactions into 10 intervals, where each
interval has 100 transactions). Note that the impending downloads for both the broker and
actuator have similar patterns. The impending downloads for both are restricted to very
small portions.

Figure 9b shows the memory requirements of each IoT node. Because of the character-
istic feature of the blockchain, dApp flooding involves a large memory requirement for
every network node.
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5.5. Discussion: Reduced dApp Spreading Using GNN Node Classification

Theoretically, every network node must store all dApps (i.e., 1000 dApps for this
test) to ensure successful operation between sensors and actuators. The GNN-based
node classification for dApp spreading dramatically reduces the memory requirement.
Sensor nodes store only 21 dApps, actuation nodes have under 65 dApps, and bro-
ker nodes store only 106 dApps to handle the total 1000 test transactions. In addition,
Figure 9b shows that the volume of stored dApps increases gradually until the middle
section (i.e., 601–700 transaction interval) and then converges to a plateau. This observation
suggests that the increase in stored dApps can be restricted to a certain level, even for
continuous transaction generation.

5.6. Data Security Validataion

To test the reliability of the proposed methods, we add the attack agent that generates
the fake transactions. The attack agent monitors the status of IoT blockchain node and
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determines the fake transaction generation. The status of the node is described by the
node reputation and block validity. The node reputation is measured by the number of
blocks the node has generated so far. Usually, the more block generation means the higher
reputation of the node. Block validity is determined by the number of block-approved
nodes. When a block is generated and spreads to the network, the member nodes of the
network check the validity of the block and approve the block. The more nodes that have
approved the block, the higher the validity of the block. The attack agent has a function for
fake transaction generation.

f = rand
(

0, ae−b(r×h)
)

(4)

The f denotes the number of generated fake transactions. r means the node reputation
and h means block validity. a and b denote the constants that control the maximum
level of fake transaction generations and the composite effect of (r× h). f is randomly
selected between 0 and ae−b(r×h). We apply the attack agent to the selected IoT nodes
in the tested network. Because of the robust consensus algorithm (i.e., Proof of Elapsed
Time) and the Merkle tree validation of the sawtooth blockchain, the fake transactions
cannot be included in the generated blocks. One hundred percent of fake transactions
are detected and excluded in the transaction validation process of sawtooth consensus.
However, if the attack agents penetrate above the critical points, for example over 1/3
of all nodes, the network can be vulnerable from fake transactions. (Practical Byzantium
Fault Tolerance consensus can guarantee the fault-free if we have 2/3 correctly working
nodes. An agreement on block validation can be reached with 2/3 validation of correctly
working nodes). The data security and reliability essentially depend on the blockchain itself.
The cross validation of blocks, Merkle tree, consensus, and encryption keys of blockchain
provide the network security. The clustering or node classification proposed from our
research work aims to the efficient operation of the IoT blockchain network while keeping
the flawless reliability of blockchain. The embedded sawtooth software module faithfully
guarantees the transaction security and zero tolerance of blockchain.

6. Threats to Validity

The essential limitation is the limited validation of proposed works. We evaluate the
performance of proposed methods under the general network environment. We defined
experimental setup including IoT node classes, transaction types, transaction generation
patterns, network fluctuation caused by node movement, and dApp classes. This exper-
imental setup illustrates a normal IoT network environment. However, we must apply
to various situations to prove the completeness of the proposed methods. Because of the
computing power limitation of the tested simulation system and insufficient flexibility of
VM operations, we cannot have the experimental diversity. Another limitation is caused by
VM. The VMs are operated over the private cloud system supported by KOREN. Because of
the limited budget to employ the blockchain software module to real IoT nodes, we built
homogeneous VMs over the cloud system. The homogeneous VM cannot reflect the actual
operations of various IoT nodes. Moreover, the number of VMs is limited to 100 nodes for
the experiments. We could not obtain sufficient VMs from the cloud system provider.

7. Conclusions

Machines need to be connected, including vehicles, robots, drones, home appliances,
displays, smart sensors installed in various infrastructures, construction machinery, and fac-
tory equipment. A tremendous amount of data associated with hundreds of billions of
connected machines and humans needs to be collected and utilized for advanced user
services. To accomplish this, artificial intelligence will need to be embedded in all sys-
tem components. The native AI allows all system components to obtain and evaluate
an enormous amount of online/offline data. The massively connected devices and data
will increase the openness of communication networks and hence increase the attack sur-
face. This could make the entire system more vulnerable to security and privacy threats.
The lightweight blockchain software module can be applied to common IoT devices;
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its practical applicability in this context is guaranteed by its enhanced modular architecture
and lightweight consensus mechanism. Direct embedding of the lightweight blockchain
middleware module in small computing devices was proved to be practicable in our former
works. The highly compatible blockchain software platform ensures end-to-end secure
transaction transfer and eliminates the oracle risk of a typical blockchain platform.

However, the development of a highly compatible blockchain software module is not
sufficient for practical networks. Effective configuration of blockchain networks and opera-
tion procedures are particularly important for actual service provision. We have proposed
dynamic network clustering and node classification for blockchain network deployment
and operation. The proposed deep clustering builds iterative clusters for IoT blockchain
networks. A two-dimensional tensor is suitable to record the time-varying behaviors of
each network node, and the feature extractor uses a network behavior snapshot as input
data. A feature vector obtained from the extractor is used to build network node clusters.
GNN-based node classification guarantees optimized dApp spreading. This approach
can significantly improve the processing speed during the transaction verification process.
We propose a spreading method for dApps that can be linked with dynamic clustering in an
IoT environment. In the network cluster, a software agent powered by artificial intelligence
assigns tags to nodes according to their states and computing loads. Deep clustering and
GNN are originally proposed to apply for object classification. The original deep clustering
was invented for image classification. The CNN structure embedded in deep clustering
is best suitable for image data that has a two-dimensional tensor form. The compactness
and fast computing of CNN structure are fully beneficial to the higher performance for
image classification of the deep clustering. The proposed time-varying two-dimensional
tensor that records whole network behavior expands the applicability of deep clustering
to IoT blockchain node clustering. The expanded coverage of deep clustering and the
two-dimensional tensor structure for network behavior representation imply the theoretical
advance of proposed works. The usability of deep clustering can be drastically penetrated
to various application fields. The computation results of IoT node clustering illustrate the
practical applicability of deep clustering to IoT blockchain networks. The proposed deep
clustering derives better robustness compared to successive k-means clustering and GA
(Genetic Algorithm)-based clustering. Even a single applying of deep clustering surpasses
the repetitive execution of traditional k-means clustering.

The iterative feature updates by GNN derive the advantage for node classification.
The GNN has aggregation and concatenation functions to extract the feature vectors of
nodes. The input behavior tensor of a node is concatenated with its adjacent nodes’ ag-
gregated behaviors. To enhance of whole blockchain network performance, each network
node should have a specific role for the dApp distribution. The original GNN has the
advantage to identify the object relationship in static social graphs. The proposed node clas-
sification by GNN also expands the usability of GNN to dynamic communication networks.
The practical implication of the proposed GNN-based IoT blockchain node classification is
illustrated from the computational results. The very low impending downloads of dApp
and the reduced memory requirement for each IoT node prove the practical superiority of
GNN-based node classification.

The proposed clustering and node classification using the lightweight blockchain
module can be easily applied to various blockchain networks. Our lightweight blockchain
deployment and operation is most applicable to massive IoT networks, one of the essential
5G network structures. Various small IoT devices embedded in a lightweight blockchain
module can provide very stable and efficient services using the proposed blockchain
network configuration and operation procedures.
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