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Abstract: Sol-gel processed SnO2 thin-film transistors (TFTs) were fabricated on SiO2/p+ Si sub-
strates. The SnO2 active channel layer was deposited by the sol-gel spin coating method. Precursor
concentration influenced the film thickness and surface roughness. As the concentration of the
precursor was increased, the deposited films were thicker and smoother. The device performance
was influenced by the thickness and roughness of the SnO2 active channel layer. Decreased precursor
concentration resulted in a fabricated device with lower field-effect mobility, larger subthreshold
swing (SS), and increased threshold voltage (Vth), originating from the lower free carrier concen-
tration and increase in trap sites. The fabricated SnO2 TFTs, with an optimized 0.030 M precursor,
had a field-effect mobility of 9.38 cm2/Vs, an SS of 1.99, an Ion/Ioff value of ~4.0 × 107, and showed
enhancement mode operation and positive Vth, equal to 9.83 V.

Keywords: sol-gel; thickness; precursor concentration; SnO2; thin-film transistor

1. Introduction

Metal-oxide semiconductors are promising channel layer materials for thin-film tran-
sistors (TFTs). Their field-effect mobility is higher than that of amorphous Si, and it is well
known that amorphous-phase metal-oxide semiconductors have the advantage of uniform
electrical properties compared to poly-Si semiconductors [1–6]. Currently, vacuum-based
fabrication processes are typically used to fabricate devices. However, vacuum-based
fabrication processes are cost-intensive. They require complex equipment and are not
suitable processes for large-area applications. However, to deposit metal-oxide semicon-
ductors, there are many useful processes for large-area applications, such as spin casting,
printing, and the sol-gel process [7–13]. There are three representative n-type semicon-
ductors fabricated by these processes: ZnO, In2O3, and SnO2. In particular, indium-based
metal oxide has received much attention due to its excellent electrical properties, which
originate from its electronic configuration (1s22s2p63s2p6d104s2p6d105s2p1). Unfortunately,
indium is a rare metal and mined in only a few locations worldwide. Therefore, SnO2 is an
attractive choice as an indium-free, abundant, metal-oxide semiconductor. SnO2 shows
the highest mobility, a large optical bandgap—which is required for highly transparent
applications—and a relatively lower melting point compared to ZnO and In2O3, making
crystallization easier and related to high conductivity [14]. These advantages are useful
for realizing high-performance transparent electronic devices [15–20]. In this work, sol-
gel processed SnO2 TFTs were fabricated. Precursor concentration was shown to impact
SnO2 film thickness and film uniformity. The changes in film thickness and uniformity
affected device performance, such as field effect mobility in the saturation regime and
the subthreshold swing (SS). A thick SnO2 active channel layer was formed with a high
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precursor concentration. The fabricated SnO2 thin-film transistor, consisting of thick films,
showed high performance, including a field-effect mobility of 10.83 cm2/Vs, on/off current
ratio of ~6.7 × 107, and SS of 1.04. In addition, the optimized precursor concentration
could successfully control the film thickness and carrier concentration. SnO2 TFTs, made of
0.030 M precursor, showed enhancement mode operation and good electrical properties,
including a field-effect mobility of 9.38 cm2/Vs, an on/off current ration of ~4.0 × 107, and
an SS of 1.99, at the same time.

2. Materials and Methods

In this experiment, tin (II) chloride dihydrate (SnCl2·2H2O) was purchased from
Sigma Aldrich. To make the precursor solution, we dissolved tin (II) chloride dihydrate
into ethanol in ambient air at room temperature. Precursor solutions were made in three
different concentrations: 0.020 M, 0.030 M, and 0.033 M. To fabricate bottom-gate coplanar
type structures, a heavily doped p-type silicon wafer, which had a thermally grown
100-nm-thick SiO2 dielectric layer, was used. An e-beam evaporator was used to deposit a
50-nm-thick Au source/drain. The width and height of the electrodes were 1000 µm and
100 µm, respectively. After dicing the substrate into small pieces, the pieces were blown by
N2 and cleaned by a UV/ozone cleaner (SENLights SSP16-110) for 3 h to eliminate organic
impurities and to improve adhesion. The solutions, prepared with different concentrations,
were spin-coated at 3000 rpm for 50 sec. The spin-coated devices were soft-baked on a
hotplate (CORNING PC-420D) at 150 ◦C for 10 min to dry out the ethanol. Then, the
devices were annealed at 500 ◦C for 2 h in a furnace (U1Tech PTF-1203). After cooling
down, the SnO2 film active channel layer was patterned by mechanical removal to avoid
the fringing effect and gate leakage current. Transmission electron microscopy (TEM: Titan
G2 ChemiSTEM Cs Probe) was used to confirm the structural properties of the device, such
as the interface roughness, surface roughness, and film thickness. The cross-sectional TEM
specimens were fabricated by focused ion beam. The optical properties needed for the
calculation of the optical band gap were obtained through ultraviolet-visible spectroscopy
(UV-Vis; LAMBDA 265) measurements. To compare the chemical composition of the
SnO2 films, X-ray photoelectron spectroscopy (XPS: ULVAC-PHI) was used. The electrical
characteristics of the devices were investigated using a probe station (MST T-4000A) in
ambient air with a KEITHLEY 2636B Source Meter.

3. Results and Discussion

Figure 1a–c show cross-sectional TEM images of SnO2 films with a carbon protective
layer as a function of different precursor concentrations. The estimated film thickness was
below 6 nm for all precursor concentrations. All deposited films showed clearly regu-
lar atomic spacing, which indicated that the deposited films were in the polycrystalline
phase [21]. Figure 1d shows a schematic diagram illustrating the definition of parameters
to estimate the film thickness uniformity. The horizontal line through the profile repre-
sents the mean height. ∆T was defined as the maximum height of the profile above the
mean height line. The estimated T and ∆T values are plotted in Figure 1e,f, respectively.
Figure 1e reveals that film thickness increased with the increasing concentration of the
precursor, from 0.020 M to 0.033 M. These results are well-matched with the previous
report of W. W. Flack et al., who demonstrated that an increase in the concentration of the
precursor results in thicker films. Increased concentration leads to an increase in viscosity
and convective radical flow [22]. However, in terms of ∆T, thicker films, with higher
precursor concentrations, show lower ∆T values, which indicates smooth and uniform
film formation.
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Figure 1. (a–c) Cross-sectional TEM images of 0.020, 0.030, and 0.033 M SnO2 films, respectively. (d) Sche-
matic diagram illustrating the definition of parameters and estimated (e) average thickness and (f) ΔT parame-
ters.  

The optical properties of SnO2 films, as a function of precursor concentration, were 
investigated by UV-VIS spectroscopy. Figure 2a,b give the transmittance and absorbance 
spectra, respectively, of SnO2 thin films as a function of precursor concentration. The ob-
tained transmission results for all SnO2 films, ranging from 250 to 900 nm, revealed higher 
transmittance in the visible range. All SnO2 films showed high transmittance, over 97.0%, 
in the visible range. These values are adequate for the realization of a solar cell module, 
which requires over 95% transmittance. The dramatic drop in the ultraviolet regime, 
around 350 nm, originates from bandgap absorption, which has a value close to the in-
trinsic bandgap of SnO2 (3.60 eV). The energy band gap values were obtained by extrapo-
lating the line segment in Figure 2c. To extrapolate the line segment, the following equa-
tion is used: (𝛼ℎ𝜈) / = 𝐴 ℎ𝜈 − 𝐸 , (1)

where α is the absorption coefficient, A is a constant, and Eg is the bandgap of SnO2 films. 
The value 0.5 (direct transition) is used for the power factor (n). The obtained bandgap 
values are 4.24 eV, 3.86 eV, and 3.82 eV for 0.020 M, 0.030 M, and 0.033 M, respectively. 
The value 2 (indirect transition) is used for the power factor (n). The obtained bandgap 
values are 3.63 eV, 3.28 eV, and 3.15 eV for 0.020 M, 0.030 M, and 0.033 M, respectively. 
These values are larger than that of bulk SnO2. The increased bandgap with decreasing 
SnO2 film thickness originates from the quantum confinement effect since the thickness is 
close to the Bohr radius. It is well known that the Bohr radius of SnO2 is 2.7 nm. The change 
in energy bandgap can be expected by using the following equation [23–25]: Δ𝐸 = ( ∗ + ∗ ), (2)

Figure 1. (a–c) Cross-sectional TEM images of 0.020, 0.030, and 0.033 M SnO2 films, respectively. (d) Schematic diagram
illustrating the definition of parameters and estimated (e) average thickness and (f) ∆T parameters.

The optical properties of SnO2 films, as a function of precursor concentration, were
investigated by UV-VIS spectroscopy. Figure 2a,b give the transmittance and absorbance
spectra, respectively, of SnO2 thin films as a function of precursor concentration. The ob-
tained transmission results for all SnO2 films, ranging from 250 to 900 nm, revealed higher
transmittance in the visible range. All SnO2 films showed high transmittance, over 97.0%,
in the visible range. These values are adequate for the realization of a solar cell mod-
ule, which requires over 95% transmittance. The dramatic drop in the ultraviolet regime,
around 350 nm, originates from bandgap absorption, which has a value close to the intrinsic
bandgap of SnO2 (3.60 eV). The energy band gap values were obtained by extrapolating the
line segment in Figure 2c. To extrapolate the line segment, the following equation is used:

(αhν)1/n = A
(
hν− Eg

)
, (1)

where α is the absorption coefficient, A is a constant, and Eg is the bandgap of SnO2 films.
The value 0.5 (direct transition) is used for the power factor (n). The obtained bandgap
values are 4.24 eV, 3.86 eV, and 3.82 eV for 0.020 M, 0.030 M, and 0.033 M, respectively.
The value 2 (indirect transition) is used for the power factor (n). The obtained bandgap
values are 3.63 eV, 3.28 eV, and 3.15 eV for 0.020 M, 0.030 M, and 0.033 M, respectively.
These values are larger than that of bulk SnO2. The increased bandgap with decreasing
SnO2 film thickness originates from the quantum confinement effect since the thickness is
close to the Bohr radius. It is well known that the Bohr radius of SnO2 is 2.7 nm. The change
in energy bandgap can be expected by using the following equation [23–25]:

∆Eg =
h2

8t2

(
1

m∗e
+

1
m∗h

)
, (2)
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where h is Plank’s constant, t is the film thickness, me
* is the effective mass of electrons,

and mh
* is the effective mass of holes. The calculated bandgap values are 4.23 eV, 3.93 eV,

and 3.9 eV, showing a similar trend to the experimentally obtained values of energy
quantization. The reduced film thickness affects the physical properties due to the energy
quantization phenomena.

XPS analysis of SnO2 thin films as a function of precursor concentrations was con-
ducted to determine the chemical state of the elements. Figure 3a–c show the O1s spectra.
All SnO2 films show three components. Three peaks, occurring at 529.8 eV, 530.7 eV, and
531.9 eV corresponded to the oxygen ions (O2−) (OLattice) combined with metal cations, the
oxygen vacancy (OVacancy) in the structure, and the hydroxyl groups (-OH), respectively.
Figure 3d shows the relative contents of the OLattice, OVacancy, and –OH of SnO2 thin films
after the annealing process. As the film thickness is decreased, it is noted that the amount
of the oxygen vacancy is increased. Based on the cross-sectional TEM images, the thinnest
SnO2 film, made of a low precursor concentration, showed rougher surface characteris-
tics and an increase in air-exposed surface area during the annealing process. It is well
known that the increase of the exposure area accelerates the increase of oxygen vacancy
formation [26].

Figure 4 shows the representative output curve and transfer curve of the fabricated
SnO2 TFTs as a function of precursor concentration. All the fabricated SnO2 TFTs show
conventional n-type semiconductor properties. All output curves show a similar tendency,
except for the value of drain current. All four graphs exhibit non-linear properties at
low drain voltage, indicating that a Schottky contact is formed between the source/drain
electrode and the Au electrode. This originates from the high work function of Au [9].
The electrical characteristics of the fabricated SnO2 TFTs were estimated by extracting
the representative four parameters, such as field-effect mobility in the saturation regime,
subthreshold swing (SS), on/off current ratio, and threshold voltage (Vth). The formulas
used for analysis are

ID = µCi
W
2L

(VG −Vth)
2 (3)

and

SS =

(
∂logID

∂VG

)−1
(4)

where Ci (insulator capacitance) = 3.45 × 10−8 F/cm2, W (channel width) = 1000 µm, and L
(channel length) = 100 µm. For precursor concentrations of 0.020 M, 0.030 M, and 0.033 M,
the field-effect mobilities were 1.01 cm2/Vs, 9.38 cm2/Vs, and 10.83 cm2/Vs, SS values
were 2.51 V/decade, 1.99 V/decade, and 1.04 V/decade, and on/off ratios were 1.5 × 106,
4.0 × 107, and 6.7 × 107, respectively. The extracted Vth was 14.9 V, 9.83 V, and −6.77 V
for precursor concentrations of 0.020 M, 0.030 M, and 0.033 M, respectively. In order to
check the statistical distribution of performance parameters, we compared the extracted
parameters of each TFTs (10 devices each). Extracted performance parameters are plotted
in Figure 5.
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Figure 5. Extracted thin-film transistor performance parameters: (a) field-effect mobility in saturation
regime, (b) subthreshold swing (SS), (c) Vth, and (d) Ion and Ioff.
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The thicker films showed better performance with respect to field-effect mobility in the
saturation regime, on/off current ratio, and SS. The field-effect mobility in the saturation
regime increased with increasing precursor concentration. The increased precursor concen-
tration leads to an increase in channel layer thickness. This phenomenon, the relationship
between field-effect mobility and active channel thickness, is similar to the results for other
metal-oxide and amorphous-silicon-based TFTs. The free carrier concentration per unit
accumulation area is proportional to the active channel layer thickness. Thicker films made
with higher precursor concentrations have higher free carrier concentrations and show
increased film conductivity [27,28]. This results in strong n-type semiconductor properties
with high electron carrier concentrations. The increased induced carrier concentration
shifts Vth to negative values, causing the transistors to turn on early. In addition, fabricated
SnO2 TFTs consisting of thicker channel layers exhibit a lower value of SS. It is well known
that the SS values are strongly affected by the trap density (Nt) of the interfaces between
the semiconductor and dielectric layers [29] by

Nt =

[
SSlog(e)10

kT
q

− 1

](
Ci
q

)
, (5)

where SS is the subthreshold swing, k is Boltzmann’s constant, T is the temperature,
q is the electron charge, and Ci is the capacitance of the dielectric layer. The SnO2 TFTs
consisting of a thinner channel layer show higher and poorer SS values, indicating the
formation of a larger number of trap sites between the semiconductor and dielectric layers.
The conductivity and the concentration of trap sites at the surface of the channel layer can
be changed by the chemisorption process. It is well known that the adsorption of O2 or
H2O molecules on the back-channel of the metal oxide can change device performance.
O2 and H2O molecules can capture the electrons from the conduction band and form a
depletion region in the back-channel, resulting in a positive Vth shift [30]. The following
formulas illustrate the electron capture:

O2 + e− → O−2 (6)

and
H2O + O2 → H2O+ + O−2 , (7)

which work as the surface trap center in the back-channel. Even though the chemisorption
can be constant, regardless of film thickness, this phenomenon can more dominantly affect
thinner films. In addition, the rougher surface of thinner films is more sensitive to this
chemisorption, resulting in the degradation of device performance.

4. Conclusions

Sol-gel processed SnO2 TFTs were fabricated on SiO2/p+ Si substrates. The SnO2
active channel layer was deposited by the sol-gel spin coating method. The precursor
concentration influenced the film thickness and surface roughness. As the concentration
of the precursor was increased, the deposited films were thicker and smoother. It was
found that the device performance was influenced by the film thickness and roughness of
the SnO2 active channel layer. As the concentration of the precursor was decreased, the
fabricated device showed lower field-effect mobility, larger subthreshold swing (SS), and
increased threshold voltage (Vth), originating from the lower free carrier concentration and
increased trap sites. The fabricated SnO2 TFTs with the optimum precursor concentration
of 0.030 M had a field-effect mobility of 9.38 cm2/Vs, a subthreshold swing of 1.99, an
Ion/Ioff value of ~4.0 × 107, and showed enhancement mode operation, with positive Vth
equal to 9.83 V.
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