
electronics

Article

Android Malware Detection Based on Structural Features of the
Function Call Graph

Yang Yang 1,2, Xuehui Du 1,2,*, Zhi Yang 1,2 and Xing Liu 3

����������
�������

Citation: Yang, Y.; Du, X.; Yang, Z.;

Liu, X. Android Malware Detection

Based on Structural Features of the

Function Call Graph. Electronics 2021,

10, 186. https://doi.org/10.3390/

electronics10020186

Received: 15 December 2020

Accepted: 12 January 2021

Published: 15 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Zhengzhou Information Science and Technology Institute, Information Engineering University,
Zhengzhou 450001, China; yang_official@outlook.com (Y.Y.); zynoah@163.com (Z.Y.)

2 Henan Province Key Laboratory of Information Security, Information Engineering University,
Zhengzhou 450001, China

3 Information Security Research Center, China Electronics Standardization Institute, Beijing 100007, China;
liuxing3237@126.com

* Correspondence: dxh37139@sina.com

Abstract: The openness of Android operating system not only brings convenience to users, but
also leads to the attack threat from a large number of malicious applications (apps). Thus malware
detection has become the research focus in the field of mobile security. In order to solve the problem of
more coarse-grained feature selection and larger feature loss of graph structure existing in the current
detection methods, we put forward a method named DGCNDroid for Android malware detection,
which is based on the deep graph convolutional network. Our method starts by generating a function
call graph for the decompiled Android application. Then the function call subgraph containing the
sensitive application programming interface (API) is extracted. Finally, the function call subgraphs
with structural features are trained as the input of the deep graph convolutional network. Thus the
detection and classification of malicious apps can be realized. Through experimentation on a dataset
containing 11,120 Android apps, the method proposed in this paper can achieve detection accuracy
of 98.2%, which is higher than other existing detection methods.

Keywords: Android; malware detection; function call graph; graph convolutional network

1. Introduction

The Android operating system is widely used in smart mobile terminals such as
smartphones, tablets, and wearable devices. Statistics from International Data Corporation
(IDC) [1] show that Android occupies more than 85% of the global market of mobile
operating systems, which is more than five times the share of the second largest system, iOS.
As of May 2019, Android possesses more than 2.5 billion monthly active users [2], ranking
first among all operating systems including desktop operating systems. Android has
become very popular due to it being open source and free, but this has also made Android
a main target for malware attacks. An assessment report jointly issued by Kaspersky Lab
and INTERPOL [3] shows that more than 98% of mobile phone malware targets Android
devices. Another report [4] pointed out that about 5000 new mobile phone malicious
program samples were intercepted on an average day in 2019.

The traditional detection method based on signature is utilized by security protection
software, which detects malicious apps by extracting the signature from the application
installation package and comparing it with the signature in the known malware database.
However, signature-based detection method is unable to detect unknown apps outside the
database. At the same time, the number of Android malicious apps has surged. It takes a
lot of time and resources to detect massive malicious samples using manual methods. All
the above situations have brought great pressure on Android malware detection. In order
to meet the above challenges, Android malware detection based on machine learning have
been widely used and achieved good detection results, becoming a more effective choice
against emerging malicious apps.

Electronics 2021, 10, 186. https://doi.org/10.3390/electronics10020186 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics10020186
https://doi.org/10.3390/electronics10020186
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10020186
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/2/186?type=check_update&version=1

Electronics 2021, 10, 186 2 of 18

Android malware detection based on machine learning usually includes two main
steps: feature construction and classification. The first step is to extract the features of
the application sample set through static analysis or dynamic analysis. Static analysis is
mainly to analyze the application installation package to obtain the set of permissions,
components, operation code sequence and so on; the dynamic analysis is to analyze the
state of the application at runtime to obtain the API call sequence, stack usage or other
features. The second step is to use a suitable machine learning algorithm to train the feature
representation obtained in the first step, and the trained model can be generated to predict
the category of unknown apps.

In the feature construction step, previous research work has proposed many effective
feature representations. Researches [5–9] take the permission mechanism of Android as the
research object, mining the frequent item sets of permissions requested by the application
for machine learning training, and achieved a good classification detection effect. Android
apps interact with devices through API calls, and similar apps generally have similar API
call patterns. Therefore, researches [10–12] extract the set of API calls in the application
source code as features to detect malware. Compared with the simple combination of
permissions or API features, Pei et al. [13] utilize natural language processing to convert the
combination of permissions and API calls into a graph before further processing. Although
this method achieved better results than previous approaches, the call relationship between
APIs is not considered in the graph modeling, and it cannot reflect the potential behavior of
the application. The above approaches have achieved high detection accuracy in classifying
Android benign apps and malicious apps, but using this coarse-grained information to
describe the behavior of apps is not accurate and complete, because the permissions or APIs
used by benign apps and malicious apps may overlap, they cannot be well distinguished.
Therefore, the work of Fan et al. [14] and Ge et al. [15] focus on the behavior patterns of
apps, taking the function call graph of the application as the research object, and measuring
the similarity between apps by calculating the similarity of the graph; so as to realize the
classification and detection of malicious apps. Since the function call graph is a visualization
of the internal functions of the application and represents the potential behavior of the
application, on the one hand, it can obtain a more fine-grained feature representation than
the permissions or API combinations; on the other hand, malicious apps can be prevented,
to a certain extent, from using obfuscation means of changing function names to avoid
detection, because no matter how the function is renamed, the topological relationship
contained in the function call graph will not be changed. Therefore, this paper adopts a
function call graph with node structure attributes as the feature of application detection.

In the classification step, for the training of graph features, most of the previous
researches are to embed the node features of the graph into the vector space, and then
use convolutional neural networks (CNN) for training, and further realize the malware
detection. However, because the spatial features of graph data have two attributes, node
features and structural features, the previous methods [14,15] only consider node features
and ignore structural features, reducing the dimensionality of structured graph data to
vector space, which lose the topological information when the structural graph data is
reduced to vector space. The topological structure contained in the function call graph is an
effective representation of different application features, which can distinguish malicious
apps from benign apps. Therefore, taking structural features into account can achieve better
detection results. In recent years, with the emergence of large-scale graph data such as
social networks and recommendation systems, graph convolutional networks have begun
to appear in people’s visions. Because graph convolutional networks can automatically
learn the association information between nodes and extract the structural features of
graphs, it has been widely used in chemical molecular structure classification, citation
network node classification and social network division. In this paper, considering the
structural features of the function call graph, the graph convolutional network is applied
to Android malware detection, and a deep graph convolutional network framework that
directly conducts end-to-end learning of graph features is designed to achieve detection.

Electronics 2021, 10, 186 3 of 18

The main contributions of this paper are summarized as follows:

(1) We propose a feature representation of the function call graph with node structure
attributes, which not only expresses the calling relationship between functions, but
also contains the topology information between multi-hop function nodes;

(2) We implement a DGCNDroid framework that uses the deep graph convolutional
network for Android malware detection. The framework directly uses the function
call graph as the input of the depth map convolutional network to convert the ma-
licious application detection problem into a graph classification problem without
compressing the graph data into low-dimensional vectors, retaining more complete
graph structure information;

(3) Compared with the existing methods that use features of permission combination,
API combination and graph embedding, the method proposed in this paper has
higher detection accuracy rate and lower false positive rate.

The remainder of this paper is organized as follows. Section 2 reviews the related
work on Android malware detection based on machine learning and the development of
graph convolutional networks. Section 3 elaborates the proposed DGCNDroid framework.
Section 4 discusses results and evaluations of experiment. Finally, Section 5 concludes
the paper.

2. Related Work
2.1. Android Malware Detection Based on Machine Learning

According to the method of obtaining features, Android malware detection can be
divided into methods based on static analysis, methods based on dynamic analysis and
methods based on hybrid analysis.

Static analysis mainly analyzes and extracts features for the decompiled code and
configuration files of the Android .apk file, without actually executing the application.
Arp et al. [16] proposed a lightweight method for detecting Android malicious apps–-Drebin.
This method extracted eight static features such as permissions and components from the
decompiled code and manifest files of the application. Then the support vector machine
(SVM) was used to train the samples and achieved a detection rate of 94% in the case of low
false alarms. Zhu et al. [17] proposed DeepFlow, which is a detection method based on the
features of static data flow inside Android apps. It utilized deep brief network (DBN) to
establish a classification model and achieved an F1 score of 95.05%. Li et al. [18] used deep
neural network (DNN) to detect malicious apps based on the combination of permissions
and API features. This method can detect 97% of malicious software with a false positive
rate of 0.1%. Xu et al. [19] used long short-term memory (LSTM) training model on the
semantic features of Android bytecode, and the accuracy of detecting malware can reach
97.74%. Literature [20] used Hamming distance to measure the similarity of application
samples and proposed four malware detection methods based on improved K-nearest
neighbor (KNN). Permission, API and intention features were verified experimentally on
three different data sets. The results show that the accuracy of the proposed algorithm is
more than 90%, and the detection accuracy is up to 99% under the API features.

Dynamic analysis monitors and discovers malicious behavior of the application by
running the application on a real machine or simulator. Liang et al. [21] regarded the
system call sequence as text processing, then used CNN to train this feature and achieved a
detection accuracy of 93.16%. Ref. [22] proposed a detection framework called “Andromaly”
to monitor events such as the number of data packets sent by mobile devices through the
network, the number of running processes and battery power, then multiple classifiers
were used to classify the original dataset in different scenarios. Hou et al. [23] proposed
an Android malware detection system called “Deep4MalDroid”, which used the Linux
kernel system call graph as a feature. Finally, it used the stacked auto-encoder (SAE)
as a classifier and achieved 93.68% classification accuracy on a dataset that contained
3000 applications. Ananya et al. [24] proposed Sysdroid, a dynamic analysis method based
on system calls, and a new feature selection method to improve the performance of the

Electronics 2021, 10, 186 4 of 18

classifier. Experiment results on different classifiers showed that the accuracy is between
95% and 99%.

Hybrid analysis combines dynamic analysis with static analysis to obtain more com-
prehensive features. The authors in Ref. [25] firstly used dynamic analysis to extract
features such as system calls, network traffic and request permissions during application
running, and then used static analysis to extract features of application components, and
finally conducted classification detection through DNN with 95% accuracy. The Droid-Sec
method proposed by Yuan et al. [26] used static analysis and dynamic analysis to extract
more than 200 features for malicious application detection. Compared with traditional
machine learning methods such as decision tree and multi-layer perceptron, it shows that
the detection effect of the deep learning method is better, and it can achieve 96% accuracy
in a real Android application dataset. The authors in Ref. [27] proposed MADAM and
analyzed correlated features at four levels: kernel, application, user and package to detect
malicious behaviors, which made comprehensive use of both static and dynamic features
such as application metadata, API calls, user behavior, services short message service (SMS)
and system calls.

Compared with the methods that often use permissions, API or intention as features
in static analysis, the advantage of the proposed approach is that it uses the function call
graph for features. The features expressed in this paper have function call information and
can better describe the behavior of the application, while the combination of permissions,
API or intention cannot reflect the relationship between the feature elements. Compared
with other works using graph as the research object, we consider the structural feature of
the function call graph, and use a graph convolution network to further extract the feature.
However, previous work transformed the function call graph into a vector, which lost the
structural information of the function call graph.

Compared with dynamic analysis and hybrid analysis, the advantages of our method
are mainly reflected in the advantages of static analysis compared with dynamic analysis.
Static analysis has the characteristics of fast execution speed and high code coverage, while
dynamic analysis has high resource overhead and it is difficult to trigger all malicious
behaviors. Although static analysis is easily affected by code confusion, considering the
structure features in our approach, we can avoid the impact of function renaming to a
certain extent, because renaming will not change the topology of function call graphs.

2.2. Graph Convolutional Network

In recent years, machine learning has been widely used in various tasks such as
speech recognition, image classification and natural language processing. The data objects
processed in these tasks are usually represented as well-structured Euclidean space data.
For example, images can be represented as regularly arranged pixels in Euclidean pace.
Therefore, CNN can use the globally shared convolution kernel to learn the hidden layer
representation information. However, as non-Euclidean data such as relational networks
and knowledge graphs are increasingly being explored as research objects, the irregularities
of graph data pose challenges to existing machine learning algorithms. Unlike images,
which can be represented as a regular grid in Euclidean space, the graph is composed of
a series of nodes (objects) and edges (relationships), which express the interdependence
between objects, and the number of its neighbors is not fixed. The structure difference
between the image and the graph is shown in Figure 1. Figure 1a is an image of the number
“9” in the handwritten digit database from Modified National Institute of Standards and
Technology (MNIST), which is composed of a 28× 28 regular pixel grid. It can be expressed
as a matrix; Figure 1b is a graph composed of nodes and edges. The arrangement of
the nodes is irregular, and the number of neighbor nodes of the node is not fixed. The
traditional convolution operation used for image processing cannot be directly applied to
graph data. It is necessary to find a learnable convolution kernel suitable for graphs. So
recently there has been research on extending the application of CNN to graph data, which
is called the graph convolutional network (GCN).

Electronics 2021, 10, 186 5 of 18

Electronics 2021, 10, x FOR PEER REVIEW 5 of 18

r

(a) (b)

Figure 1. (a) An image of the number “9” in the MNIST handwritten digit database and (b) a graph
composed of nodes and edges.

Graph convolutional networks are mainly divided into two research directions,
spectral convolution and spatial convolution.

The method based on spectral convolution defines the graph convolution in the
spectral domain by calculating the eigenvector of the graph Laplacian matrix. Bruna et al.
[28] first proposed a graph convolution network based on spectrum, but the algorithm is
more complex for large graph data, so Defferrard et al. [29] used Chebyshev polynomials
to fit the convolution kernel, and the spectrum filter was parameterized by Chebyshev
polynomials of eigenvalues to reduce computational complexity. Kpif et al. [30] intro-
duced the first-order approximation ChebNet to improve previous work. This method
greatly improved the computational complexity of the previous method and has become
the most widely used method of graph convolution in spectral domain. The
above-mentioned methods based on the frequency domain have a common feature that
the graph Laplacian matrix used is a symmetric matrix, so this type of method is not
suitable for the processing of directed graph data.

The method based on spectral convolution defines the graph convolution by the
connection relationship of each node, and the graph convolution is defined by obtaining
information from the node itself and its neighboring nodes, which is closer to the con-
volution operation in the traditional CNN. Based on the idea of graph kernel, Zhang et al.
[31] proposed a deep graph convolutional network that extracts multi-scale nodes’ fea-
tures, and achieved good results in graph classification. The GraphSage method pro-
posed by Hamilton et al. [32] trained a set of aggregation functions to sample and ag-
gregate feature information such as different hops or search depths from the neighbor-
hood of the current node, without the need to perform convolution operations on the
entire graph. Niepert et al. [33] proposed a PATCHY-SAN framework that can convolve
any kind of graphs, by converting the graph structure into a sequence structure, then
they used CNN to perform convolution on the transformed sequence structure.

In summary, the method based on spectral domain is suitable for undirected graphs,
while the method based on spatial domain can be used for both undirected graphs and
directed graphs. Since the feature of the API call graph extracted in this paper is a di-
rected graph, in order to better retain the directed information of the call relationship, we
choose a graph convolution method based on spatial domain to train this feature.

Figure 1. (a) An image of the number “9” in the MNIST handwritten digit database and (b) a graph
composed of nodes and edges.

Graph convolutional networks are mainly divided into two research directions, spec-
tral convolution and spatial convolution.

The method based on spectral convolution defines the graph convolution in the spec-
tral domain by calculating the eigenvector of the graph Laplacian matrix. Bruna et al. [28]
first proposed a graph convolution network based on spectrum, but the algorithm is more
complex for large graph data, so Defferrard et al. [29] used Chebyshev polynomials to fit
the convolution kernel, and the spectrum filter was parameterized by Chebyshev poly-
nomials of eigenvalues to reduce computational complexity. Kpif et al. [30] introduced
the first-order approximation ChebNet to improve previous work. This method greatly
improved the computational complexity of the previous method and has become the most
widely used method of graph convolution in spectral domain. The above-mentioned
methods based on the frequency domain have a common feature that the graph Laplacian
matrix used is a symmetric matrix, so this type of method is not suitable for the processing
of directed graph data.

The method based on spectral convolution defines the graph convolution by the
connection relationship of each node, and the graph convolution is defined by obtaining
information from the node itself and its neighboring nodes, which is closer to the convolu-
tion operation in the traditional CNN. Based on the idea of graph kernel, Zhang et al. [31]
proposed a deep graph convolutional network that extracts multi-scale nodes’ features,
and achieved good results in graph classification. The GraphSage method proposed by
Hamilton et al. [32] trained a set of aggregation functions to sample and aggregate fea-
ture information such as different hops or search depths from the neighborhood of the
current node, without the need to perform convolution operations on the entire graph.
Niepert et al. [33] proposed a PATCHY-SAN framework that can convolve any kind of
graphs, by converting the graph structure into a sequence structure, then they used CNN
to perform convolution on the transformed sequence structure.

In summary, the method based on spectral domain is suitable for undirected graphs,
while the method based on spatial domain can be used for both undirected graphs and
directed graphs. Since the feature of the API call graph extracted in this paper is a directed
graph, in order to better retain the directed information of the call relationship, we choose
a graph convolution method based on spatial domain to train this feature.

3. Android Malware Detection Based on Structural Features of Function Call Graph

In this paper, a graph convolutional network is applied to Android malicious ap-
plication detection, and the detection framework DGCNDroid is designed. Its overall
architecture is shown in Figure 2. It is mainly composed of three stages: the first is the
feature construction stage, where sensitive API call graphs containing structural informa-
tion were extracted from the application training set; the next stage is deep learning by the
graph convolution network, where the features extracted in the first stage are sent to the
deep graph convolution network for training, and the classification model is generated;
and the last is the detection stage, where the classification model generated in the second
stage is used to classify the apps without labels in the test set, and the classification effect
of the model will be evaluated.

Electronics 2021, 10, 186 6 of 18

Electronics 2021, 10, x FOR PEER REVIEW 6 of 18

3. Android Malware Detection Based on Structural Features of Function Call Graph
In this paper, a graph convolutional network is applied to Android malicious ap-

plication detection, and the detection framework DGCNDroid is designed. Its overall
architecture is shown in Figure 2. It is mainly composed of three stages: the first is the
feature construction stage, where sensitive API call graphs containing structural infor-
mation were extracted from the application training set; the next stage is deep learning by
the graph convolution network, where the features extracted in the first stage are sent to
the deep graph convolution network for training, and the classification model is gener-
ated; and the last is the detection stage, where the classification model generated in the
second stage is used to classify the apps without labels in the test set, and the classifica-
tion effect of the model will be evaluated.

Figure 2. The overall architecture of DGCNDroid.

3.1. Constructing Features from Function Call Graphs
3.1.1. Extracting Function Call Graphs

Android apps are usually written in Java, compiled and stored in the classes.dex file
which is executable by the Dalvik virtual machine, and packaged as the .apk file together
with the required resources and manifest files. This paper utilizes the reverse analysis
tool Androguard to extract the function call graph of apps.

Definition 1. Function call graph of an Android application is a directed graph, repre-
sented by G = (V, E) and composed of a node set V and an edge set E. V = {vi|i = 1, 2, …, n}
represents the function set used by the application, and each vi∈V represents a function
name. 𝐸 = {〈vi, vj〉|vi, vj∈V} represents the set of call relationships between functions,
and the ordered pair 〈vi, vj〉 represents the call of function vi to vj. Figure 3 shows part
of the function call graph of a malicious application of the family DroidKungfu in the
dataset Drebin [16].

Figure 3. Part of the function call graph of the malware in DroidKungfu (SHA1:
a6f39574437c2de53ea881d589408753f2539e3c).

3.1.2. Generating Subgraphs with Sensitive APIs
The Android platform provides thousands of APIs. Analysis of all function calls not

only consumes a lot of computing resources, but also fails to highlight the differences
between different types of apps. Therefore, in the work of this paper, we focus on sensi-

Figure 2. The overall architecture of DGCNDroid.

3.1. Constructing Features from Function Call Graphs
3.1.1. Extracting Function Call Graphs

Android apps are usually written in Java, compiled and stored in the classes.dex file
which is executable by the Dalvik virtual machine, and packaged as the .apk file together
with the required resources and manifest files. This paper utilizes the reverse analysis tool
Androguard to extract the function call graph of apps.

Definition 1. Function call graph of an Android application is a directed graph, represented by
G =(V, E) and composed of a node set V and an edge set E. V ={vi|i = 1, 2, . . . , n} represents
the function set used by the application, and each vi ∈ V represents a function name. E ={〈

vi, vj
〉
|v i, vj ∈ V

}
represents the set of call relationships between functions, and the ordered

pair
〈
vi, vj

〉
represents the call of function vi to vj . Figure 3 shows part of the function call graph

of a malicious application of the family DroidKungfu in the dataset Drebin [16].

Electronics 2021, 10, x FOR PEER REVIEW 6 of 18

3. Android Malware Detection Based on Structural Features of Function Call Graph
In this paper, a graph convolutional network is applied to Android malicious ap-

plication detection, and the detection framework DGCNDroid is designed. Its overall
architecture is shown in Figure 2. It is mainly composed of three stages: the first is the
feature construction stage, where sensitive API call graphs containing structural infor-
mation were extracted from the application training set; the next stage is deep learning by
the graph convolution network, where the features extracted in the first stage are sent to
the deep graph convolution network for training, and the classification model is gener-
ated; and the last is the detection stage, where the classification model generated in the
second stage is used to classify the apps without labels in the test set, and the classifica-
tion effect of the model will be evaluated.

Figure 2. The overall architecture of DGCNDroid.

3.1. Constructing Features from Function Call Graphs
3.1.1. Extracting Function Call Graphs

Android apps are usually written in Java, compiled and stored in the classes.dex file
which is executable by the Dalvik virtual machine, and packaged as the .apk file together
with the required resources and manifest files. This paper utilizes the reverse analysis
tool Androguard to extract the function call graph of apps.

Definition 1. Function call graph of an Android application is a directed graph, repre-
sented by G = (V, E) and composed of a node set V and an edge set E. V = {vi|i = 1, 2, …, n}
represents the function set used by the application, and each vi∈V represents a function
name. 𝐸 = {〈vi, vj〉|vi, vj∈V} represents the set of call relationships between functions,
and the ordered pair 〈vi, vj〉 represents the call of function vi to vj. Figure 3 shows part
of the function call graph of a malicious application of the family DroidKungfu in the
dataset Drebin [16].

Figure 3. Part of the function call graph of the malware in DroidKungfu (SHA1:
a6f39574437c2de53ea881d589408753f2539e3c).

3.1.2. Generating Subgraphs with Sensitive APIs
The Android platform provides thousands of APIs. Analysis of all function calls not

only consumes a lot of computing resources, but also fails to highlight the differences
between different types of apps. Therefore, in the work of this paper, we focus on sensi-

Figure 3. Part of the function call graph of the malware in DroidKungfu (SHA1:
a6f39574437c2de53ea881d589408753f2539e3c).

3.1.2. Generating Subgraphs with Sensitive APIs

The Android platform provides thousands of APIs. Analysis of all function calls not
only consumes a lot of computing resources, but also fails to highlight the differences
between different types of apps. Therefore, in the work of this paper, we focus on sensitive
APIs controlled by Android permissions [34]. Android apps can access sensitive resources
and perform sensitive operations through sensitive APIs. We select APIs in 11 sensitive
packages that are often used by malicious applications. These 11 packages cover the most
sensitive resources of the Android system, such as messages, calls, location and network
information, as shown in Table 1.

Electronics 2021, 10, 186 7 of 18

Table 1. 11 Android sensitive class packages.

Class Name Sensitive Information/Operation Included

1 android.accounts User’s online account information
2 android.app Application management
3 android.bluetooth Bluetooth management
4 android.content Content sharing
5 android.location Geographical location information
6 android.media Multimedia management
7 android.net Networking
8 android.nfc Near Field Communication (NFC)
9 android.provider Storage accessing
10 android.telecom Calling management
11 android.telephony Message and device information

Definition 2. Subgraph of sensitive API calls is represented by SG = (V′, E′) and composed of the
set V′, which contains sensitive API call nodes and their neighbors, and the set E′, which contains edges
formed by these nodes. It is an induced subgraph of the original function call graph. The set of nodes
of sensitive API is denoted as Vs, then V′ =

{
vj
∣∣∃vi ∈ Vs ∪V, distance

(
vi, vj

)
= 0, 1, vj ∈ V′

}
,

E′ =
{〈

vi, vj
〉∣∣vi, vj ∈ V′} , where distance() is the function to calculate the shortest distance

between two nodes.

The pseudo code of the algorithm for generating the subgraph of sensitive API calls
from the original function call graph is shown in Algorithm 1.

Algorithm 1 Generating the subgraph of sensitive API calls

Electronics 2021, 10, x FOR PEER REVIEW 7 of 18

tive APIs controlled by Android permissions [34]. Android apps can access sensitive re-
sources and perform sensitive operations through sensitive APIs. We select APIs in 11
sensitive packages that are often used by malicious applications. These 11 packages cover
the most sensitive resources of the Android system, such as messages, calls, location and
network information, as shown in Table 1.

Table 1. 11 Android sensitive class packages.

Class Name Sensitive Information/Operation Included
1 android.accounts User's online account information
2 android.app Application management
3 android.bluetooth Bluetooth management
4 android.content Content sharing
5 android.location Geographical location information
6 android.media Multimedia management
7 android.net Networking
8 android.nfc Near Field Communication (NFC)
9 android.provider Storage accessing

10 android.telecom Calling management
11 android.telephony Message and device information

Definition 2. Subgraph of sensitive API calls is represented by 𝑆G = (V , E) and
composed of the set V , which contains sensitive API call nodes and their neighbors, and
the set E , which contains edges formed by these nodes. It is an induced subgraph of
the original function call graph. The set of nodes of sensitive API is denoted as Vs,
then V = vj|∃vi∈Vs∪V, distance(vi, vj)=0,1, vj∈𝑉 , E = {〈vi, vj〉|vi, vj∈V } , where dis-
tance() is the function to calculate the shortest distance between two nodes.

The pseudo code of the algorithm for generating the subgraph of sensitive API calls
from the original function call graph is shown in Algorithm 1.

Algorithm 1 Generating the subgraph of sensitive API calls

Input: G = (V, E), Vs

Output: SG = (V´, E´)
1：initialize V´=Ø, E´=Ø
2：for each vi in Vs do
3： for each vj in V do
4： if vi in V and distance(vi, vj) = 1 then
5： V´=V´∪{vi}
6： if <vi, vj> in E then
7： E´=E´∪{<vi, vj>}
8： end if
9： if <vj, vi> in E then

10： E´ = E´∪{<vj, vi>}
11： end if
12： end if
13： end for
14：end for
15：SG = (V´, E´)
16：return SG

Time complexity of generating the subgraph of sensitive API calls algorithm is detailed
as follows:

Algorithm 1 is divided into two successive processes. First, it finds whether the
sensitive API nodes are included in the original graph, and then it finds the edges containing
sensitive nodes in the original graph. Suppose that the number of nodes in the original

Electronics 2021, 10, 186 8 of 18

function call graph G is n, and the number of nodes in the sensitive API nodes set Vs is
m. Every time one node is taken out from Vs and matched with all the nodes in G, it is
recorded as the node of subgraph SG. Each m node needs to be matched n times, so the
time complexity of the process of finding sensitive nodes is O (n × m). At the same time,
the edge of the sensitive function call subgraph is found. Suppose the number of sensitive
nodes found is k, and each sensitive node needs to be combined with the nodes in the
original graph G to determine whether the edge exists, then the time complexity of this
process is O (n × k). Therefore, the total time complexity should be O (n × m) + O (n × k) =
O (n × m).

3.1.3. Obtaining the Structural Features of the Sensitive API Call Subgraph

The structural features of the sensitive API call subgraph include two elements, the
adjacency matrix and the structural attributes of the nodes.

Definition 3. Adjacency matrix of the graph G =(V, E) is a square matrix with the follow-
ing properties.

Aij =

{
1,< vi, vj >∈ E(G)
0,< vi, vj >∈ E(G)

(1)

Although a large number of custom functions and third-party API nodes in the original
function call graph were deleted in the stage of generating the sensitive API call subgraph,
we calculated the two types of structural attribute features of the nodes in the sensitive API
subgraph, namely the centrality measure of nodes in the original function call graph and
the vector of the number of neighboring nodes within n-hops.

The centrality measure used in this paper includes the following two kinds:

(1) Betweenness centrality

The betweenness centrality of a node in the graph refers to the ratio of the number of
shortest paths passing through the node between two nodes in the graph to the number of
all the shortest paths between these two nodes, which indicates the degree of interaction
between a node and other nodes. In a graph, the node with higher betweenness centrality
has stronger control ability, because more information will be passed through the node.
The betweenness centrality B(v i) of node vi can be calculated by Equation (2), where σvsvt

is the sum of all shortest paths from source node vs to destination node vt, and σvsvt(v i)
represents the number of times that the shortest path passes through vi.

B(vi) = ∑
vs 6=vi 6=vt

σvsvt(vi)

σvsvt

(2)

(2) Closeness centrality

The closeness centrality of a node in the graph refers to the reciprocal of the average
distance between the node and other nodes. This indicator can be used to measure the
length of time that information is transmitted from the node to other nodes. The closeness
centrality C(v i) of node vi can be calculated from Equation (3), where N is the number of
all nodes, and distance (vi vj) represents the distance between vi and vj.

C(vi) =
N − 1

∑
j 6=i

distance(vi, vj)
(3)

Definition 4. N–hop neighboring nodes. If the shortest path between node vi and node vj in the
graph needs to pass through n edges, then node vj is the n-hop neighboring node of node vi. When
n-hop neighboring nodes are found, the edge of the function call graph is regarded as undirected
edge. As shown in Figure 4, for node v1, there are four 1-hop neighboring nodes as shown in yellow

Electronics 2021, 10, 186 9 of 18

and two 2-hop neighboring nodes as shown in blue. It is worth noting that although there are two
paths from v1 to v2 in the graph, we consider the shortest path and v2 should be regarded as the
1-hop neighboring node of v1.

Electronics 2021, 10, x FOR PEER REVIEW 9 of 18

Definition 4. N–hop neighboring nodes. If the shortest path between node vi and
node v in the graph needs to pass through n edges, then node v is the n-hop neigh-
boring node of node vi. When n-hop neighboring nodes are found, the edge of the func-
tion call graph is regarded as undirected edge. As shown in Figure 4, for node v1, there
are four 1-hop neighboring nodes as shown in yellow and two 2-hop neighboring nodes
as shown in blue. It is worth noting that although there are two paths from v1 to v in
the graph, we consider the shortest path and v should be regarded as the 1-hop
neighboring node of v1.

Figure 4. n-hop neighboring nodes of node v1.

The pseudo code of algorithm for calculating the vector of the number of neighbor-
ing nodes within n hops is shown in Algorithm 2.

Algorithm 2 Calculating the vector of the number of neighboring nodes within n hops

Input: G = (V, E), v0´, n

Output: N [1…n]
1：initialize N [1…n] = {0,…,0}, visited[v0,…,vi]={False…False}
2：for i = 1 to n do
3： num=0
4： q=new Queue ()
5： q.enqueue(v0´)
6： while q≠empty do
7： x=q.dequeue()
8： if visited[x]==False then
9： visited[x] = True

10： for each <x, vi> in E
11： if visited[vi]==False do
12： q.enqueue(vi)
13： num=num+1
14： end if
15： end for
16： N[i]=num
17： end if
18： end while
19：end for
20：return N [1…n]

Finally, after the above calculation, each node vi has a structural feature vector of
the following form:

() () () ()()x Ni i iv = B v ,C v , n1... (4)

v1

v3

v7
v5

v8

v6

v4
v2

Figure 4. n-hop neighboring nodes of node v1.

The pseudo code of algorithm for calculating the vector of the number of neighboring
nodes within n hops is shown in Algorithm 2.

Algorithm 2 Calculating the vector of the number of neighboring nodes within n hops

Electronics 2021, 10, x FOR PEER REVIEW 9 of 18

Definition 4. N–hop neighboring nodes. If the shortest path between node vi and
node v in the graph needs to pass through n edges, then node v is the n-hop neigh-
boring node of node vi. When n-hop neighboring nodes are found, the edge of the func-
tion call graph is regarded as undirected edge. As shown in Figure 4, for node v1, there
are four 1-hop neighboring nodes as shown in yellow and two 2-hop neighboring nodes
as shown in blue. It is worth noting that although there are two paths from v1 to v in
the graph, we consider the shortest path and v should be regarded as the 1-hop
neighboring node of v1.

Figure 4. n-hop neighboring nodes of node v1.

The pseudo code of algorithm for calculating the vector of the number of neighbor-
ing nodes within n hops is shown in Algorithm 2.

Algorithm 2 Calculating the vector of the number of neighboring nodes within n hops

Input: G = (V, E), v0´, n

Output: N [1…n]
1：initialize N [1…n] = {0,…,0}, visited[v0,…,vi]={False…False}
2：for i = 1 to n do
3： num=0
4： q=new Queue ()
5： q.enqueue(v0´)
6： while q≠empty do
7： x=q.dequeue()
8： if visited[x]==False then
9： visited[x] = True

10： for each <x, vi> in E
11： if visited[vi]==False do
12： q.enqueue(vi)
13： num=num+1
14： end if
15： end for
16： N[i]=num
17： end if
18： end while
19：end for
20：return N [1…n]

Finally, after the above calculation, each node vi has a structural feature vector of
the following form:

() () () ()()x Ni i iv = B v ,C v , n1... (4)

v1

v3

v7
v5

v8

v6

v4
v2

Finally, after the above calculation, each node vi has a structural feature vector of the
following form:

x(vi) = (B(vi), C(vi), N(1 . . . n)) (4)

3.2. Design of Deep Graph Convolutional Networks

The overall design of deep graph convolutional networks used in this paper is shown
in Figure 5. The processing of the input map data consists of three stages:

(1) Multi-layer graph convolution layers cascade to extract the structural features of
nodes of different depths;

(2) The global pooling layer sorts the nodes according to the PageRank score of the nodes,
and unifies the output size of each graph convolution layer;

Electronics 2021, 10, 186 10 of 18

(3) The traditional convolution layer further extracts the features represented by the
graph convolution, and the fully connected layer performs classification prediction.

Electronics 2021, 10, x FOR PEER REVIEW 10 of 18

3.2. Design of Deep Graph Convolutional Networks
The overall design of deep graph convolutional networks used in this paper is

shown in Figure 5. The processing of the input map data consists of three stages:
(1) Multi-layer graph convolution layers cascade to extract the structural features of

nodes of different depths;
(2) The global pooling layer sorts the nodes according to the PageRank score of the

nodes, and unifies the output size of each graph convolution layer;
(3) The traditional convolution layer further extracts the features represented by the

graph convolution, and the fully connected layer performs classification prediction.

Figure 5. Overview of the model of deep graph convolutional network.

3.2.1. Graph Convolutional Layer
Given the graph G, A is the adjacent matrix of G, and n is the number of all nodes in

G. Each node has a c–dimension structural feature vector x, and the structural feature
vectors of all nodes constitute the feature matrix X.

As shown in Figure 6, the aggregation features of node vi can be obtained by the
weighted average of the structural features of their neighboring nodes, which can be
written as the matrix form:

ˆ ˆ–H f(D AXW)1= (5)

where 𝑨 𝑨 𝑰 and I is the identity matrix. The function of 𝑨 is to add features of
node vi itself by adding self-loops. 𝑨 is the degree matrix corresponding to 𝑨, and the

matrix element is ˆ ˆii ijj
D A= . W is the parameter matrix that the neural network

needs to train. f is the nonlinear activation function. H is the output matrix of the con-
volutional layer.

Figure 6. The aggregation of node structural features.

By iterating Equation (5), the output of multiple graph convolutional layers in
Equation (6) can be obtained.

ˆ ˆ–l+ l lH = f(D AH W)11 (6)

3.2.2. Global Pooling Layer

Aij

Xj

Xi vi

vj

Figure 5. Overview of the model of deep graph convolutional network.

3.2.1. Graph Convolutional Layer

Given the graph G, A is the adjacent matrix of G, and n is the number of all nodes in G.
Each node has a c–dimension structural feature vector x, and the structural feature vectors
of all nodes constitute the feature matrix X.

As shown in Figure 6, the aggregation features of node vi can be obtained by the
weighted average of the structural features of their neighboring nodes, which can be
written as the matrix form:

H = f(D̂−1ÂXW) (5)

where Â = A + I and I is the identity matrix. The function of Â is to add features of node
vi itself by adding self-loops. Â is the degree matrix corresponding to Â, and the matrix
element is D̂ii = ∑j Âij. W is the parameter matrix that the neural network needs to train. f
is the nonlinear activation function. H is the output matrix of the convolutional layer.

Electronics 2021, 10, x FOR PEER REVIEW 10 of 18

3.2. Design of Deep Graph Convolutional Networks
The overall design of deep graph convolutional networks used in this paper is

shown in Figure 5. The processing of the input map data consists of three stages:
(1) Multi-layer graph convolution layers cascade to extract the structural features of

nodes of different depths;
(2) The global pooling layer sorts the nodes according to the PageRank score of the

nodes, and unifies the output size of each graph convolution layer;
(3) The traditional convolution layer further extracts the features represented by the

graph convolution, and the fully connected layer performs classification prediction.

Figure 5. Overview of the model of deep graph convolutional network.

3.2.1. Graph Convolutional Layer
Given the graph G, A is the adjacent matrix of G, and n is the number of all nodes in

G. Each node has a c–dimension structural feature vector x, and the structural feature
vectors of all nodes constitute the feature matrix X.

As shown in Figure 6, the aggregation features of node vi can be obtained by the
weighted average of the structural features of their neighboring nodes, which can be
written as the matrix form:

ˆ ˆ–H f(D AXW)1= (5)

where 𝑨 𝑨 𝑰 and I is the identity matrix. The function of 𝑨 is to add features of
node vi itself by adding self-loops. 𝑨 is the degree matrix corresponding to 𝑨, and the

matrix element is ˆ ˆii ijj
D A= . W is the parameter matrix that the neural network

needs to train. f is the nonlinear activation function. H is the output matrix of the con-
volutional layer.

Figure 6. The aggregation of node structural features.

By iterating Equation (5), the output of multiple graph convolutional layers in
Equation (6) can be obtained.

ˆ ˆ–l+ l lH = f(D AH W)11 (6)

3.2.2. Global Pooling Layer

Aij

Xj

Xi vi

vj

Figure 6. The aggregation of node structural features.

By iterating Equation (5), the output of multiple graph convolutional layers in Equation (6)
can be obtained.

Hl+1 = f(D̂−1ÂHlWl) (6)

3.2.2. Global Pooling Layer

The main role of the global pooling layer is to sort the feature descriptions extracted
from the convolutional layer of the graph according to the importance of nodes, and then
cut them to a uniform size for input into the traditional convolutional layer and the fully
connected layer.

A basic assumption is that more important functions tend to be called by other
functions more. In the initial stage, each function node is given the same PageRank score,
and then according to the calling relationship between functions, the PageRank score of the
current node is updated by all the nodes that call it for multiple rounds until convergence.
In each round of PageRank score update, the calling node distributes its current PageRank
score to the edges on average, and the called node can update the current PageRank score
by summating all the scores passed by the edge pointing to this node. The PageRank score

Electronics 2021, 10, 186 11 of 18

of a node vi can be calculated by the following Equation (7), where vj is the function node
calling vi and PR(vj) is the PageRank score of node vj. L(vj) is the number of nodes vj
points to other nodes, d is the correction coefficient, N is the number of all nodes:

PR(vi) =
1− d

N
+ d∑

vj

PR(vj)

L(vj)
(7)

As shown in Figure 5, the output of the l-th graph convolution layer is
Hl , l = 1, 2, . . . , m, and the input of the global pooling layer is the output cascade

[H 1, H2, . . . , Hm
]

of each graph convolution layer. The output of the graph convolu-
tion layer is a n-dimension tensor, where each dimension is the feature description of a
node. By calculating the PageRank score of each node, the output tensor is sorted according
to the descending order of the score value. The output of the global pooling layer intercepts
the first output tensor in the way of top-k, which is usually taken as the number of nodes
that more than 60% of graphs have. In this paper, the value of k is 80. Finally, the output
tensor size is unified by deleting the last n − k lines or adding k − n zero lines when k > n.

3.2.3. Traditional Convolution Layer and Full Connection Layer

The traditional convolution layer and fully connected layer follow the global pooling
layer, including two one-dimensional convolution layers, one max pooling layer and one
fully connected layer. The first one-dimensional convolution layer has 16 output channels,
and the kernel size and stride are set to the number of nodes in the graph convolution layer.
The next is a maximum pooling layer, whose sampling kernel size is 2 and stride is 2. The
second one-dimensional convolution layer with a sampling kernel size of 5 and stride of 1
has 32 output channels. Then there is a fully connected layer with 128 hidden layer nodes.
Finally, the softmax function outputs the classification results.

4. The Experimental Evaluation
4.1. Experimental Platform and Dataset

In this paper, the experimental platform is equipped with an Intel(R) Core(TM) I7-
8750h@2.2 gHz CPU, NVIDIA GeForce GTX 1070 GPU and 32 GB memory. The operating
system is 64-bit Windows 10, and the machine learning platform is TensorFlow 2.1.0. The
code is all implemented in Python.

The experimental dataset used in this paper contains a total of 11,120 Android applica-
tions, including 5560 malicious application samples from the dataset Drebin [16] and 5560
benign application samples collected from 360 Mobile Assistant (http://zhushou.360.cn/).
Malicious application samples are classified according to the family, and the specific num-
ber of malicious application samples of top-20 families is shown in Table 2.

4.2. Metrics

In this paper, the confusion matrix is used as the basis metrics of the machine learning
model. The rows of the confusion matrix represent the predicted categories of machine
learning, and the columns represent the actual categories of the samples. As shown in
Table 3, true positive (TP) means that the predicted category is malicious application and
the actual category is also malicious application; false positive (FP) indicates that the
prediction category is malicious application but the actual category is benign application
and false negative (FN) means that the prediction category is benign application and the
actual category is exactly malicious application. True negative (TN) indicates that the
predicted category is a benign application but the actual category is benign application.

http://zhushou.360.cn/

Electronics 2021, 10, 186 12 of 18

Table 2. Sample distribution of top-20 families of malicious apps.

Id Malware Family Number Id Malware Family Number

1 FakeInstaller 925 11 ADRD 91
2 DroidKungFu 667 12 DroidDream 81
3 Plankton 625 13 LinuxLotoor 70
4 Opfake 613 14 GoldDream 69
5 GingerMaster 339 15 MobileTx 69
6 BaseBridge 330 16 FakeRun 61
7 Iconosys 152 17 SendPay 59
8 Kmin 147 18 Gappusin 58
9 FakeDoc 132 19 Imlog 43
10 Geinimi 92 20 SMSreg 41

Table 3. Confusion matrix.

Actual Positive Actual Negative

Predicted positive TP FP
Predicted negative FN TN

According to the results of confusion matrix, more detailed metrics can be obtained,
including accuracy (ACC), true positive rate (TPR), false positive rate (FPR), receiver
operating curve (ROC) and area under curve (AUC). The specific calculation method and
meaning of metrics are shown in Table 4.

Table 4. Detailed evaluation metrics.

Metrics Calculation Method

ACC (TP + TN)/(TP + TN + FP + FN)
TPR TP/(TP + FN)
FPR FP/(FP + TN)
ROC The curve drawn with FPR as the x-axis and TPR as the y-axis
AUC Area under ROC curve

4.3. Experimental Results and Discussion

A total of 11,120 sensitive API call subgraphs are extracted from the experiment. On
average, each subgraph has 159 nodes and 271 edges. The largest subgraph has 668 nodes
and 1372 edges, and the smallest subgraph has 12 nodes and 10 edges. Each API called
subgraph is labeled with 0 or 1, where 0 means benign application and 1 means malicious
application. Through stratified sampling, 80% of benign apps and malicious apps are used
for training, and 10-fold cross validation is used in training. The remaining 20% is used for
testing. The adjacent matrix and node structure feature vectors of the labeled sensitive API
call subgraph are trained as the input of DGCNDroid. During the training, function tanh is
used as the activation function in the graph convolution layer, function ReLU is used as the
activation function in other layers, and the back propagation is optimized by stochastic
gradient descent algorithm. In order to evaluate the experimental effect, we propose the
following three research questions:

(1) Question 1: In the training stage, when the best classification effect is obtained,
what are the values of the number of graph convolutional layers, the nodes’ number of
each graph convolutional layer and n of n-hop neighboring nodes?

In order to control the variables, the structural feature vector of nodes temporarily
only retains the centrality measure, while the number of neighboring nodes within n hops
is discussed in the next step. Experiments are carried out on the combination of different
layers of the graph convolutional layer and the number of layer nodes, and the detection
accuracy is utilized to evaluate the classification effect. The results are shown in Table 5. It

Electronics 2021, 10, 186 13 of 18

can be seen that when the number of convolutional layers is 4 and the number of nodes
in each layer is 64, the best detection accuracy is achieved. Although similar accuracy is
obtained when the number of convolutional layers is 5 and the number of layer nodes is
32, as the number of convolutional layers increases, the training overhead also increases.
Therefore, the graph convolution structure determined by the method in this paper utilizes
4 graph convolutional layers, and the number of nodes in each layer is 64.

Table 5. The detection accuracy of different graph convolutional layers and nodes.

Number of Graph Convolution Layer
Nodes Number in Each Layer

16 32 64 128

2 0.911 0.905 0.901 0.869
3 0.929 0.939 0.907 0.901
4 0.905 0.901 0.962 0.935
5 0.901 0.961 0.885 0.891

Furthermore, we choose the value of the number of hops n. At this time, the structural
feature vector of the graph node is composed of the centrality measure and the number
of neighboring nodes within n hops. Based on a graph convolutional network with 4
graph convolutional layers and 64 nodes in each layer, experiments were performed on the
number of hops n in the range of 1 to 10, and the results are shown in Figure 7. It can be
seen that the best detection accuracy of 98.2% is obtained when the value of n is 5Electronics 2021, 10, x FOR PEER REVIEW 14 of 18

Figure 7. The detection accuracy of different hops.

In summary, the answer to question 1 is that the structure of the graph convolutional
layer is determined to be 4 layers with 64 nodes for each, and the value of the hop num-
ber n is 5, so the graph node feature vector is composed of two centrality measures and
the number of adjacent nodes within 5 hops.

(2) Question 2: Compared with the three existing approaches, namely the approach [5]
of using permission combinations as features, the approach [17] of using API combina-
tions as features and the approach [15] of embedding graphs into vector space, how ef-
fective is the detection method proposed in this paper?

We compare DGCNDroid with the approach SigPID [5], which uses permission
combination as a feature, DeepFlow [17], which uses API combination as a feature and
AMDroid [15], an approach to embed graphs into a vector space. As shown in Table 6
and Figure 8.

Table 6. Comparison of DGCNDroid with three existing methods.

Approaches ACC TPR FPR AUC
SigPID [5] 0.938 0.968 0.091 0.945

DeepFlow [17] 0.964 0.948 0.020 0.967
AMDroid [15] 0.972 0.971 0.028 0.975
DGCNDroid 0.982 0.975 0.012 0.991

It can be seen from Table 6 that DGCNDroid has a detection accuracy of up to 98%
and a false positive rate of only 1.2%. Figure 8 shows the comparison of ROC curves
between DGCNDroid, SigPID [5], DeepFlow [17] and AMDroid [15]. The ideal area un-
der the ROC curve, in other words, AUC, is 1, so the closer the AUC area is to 1, the better
the performance of the classifier. In the shape of the curve, the closer the inflection point
of the curve is to the upper left corner, the higher the detection rate is and the lower the
false positive rate is. It can be seen that compared with the ROC curves of the other three
methods, the ROC curve of DGCNDroid is closer to the upper left corner, so it is more
sensitive to malware detection and can better identify malware than other methods. At
the same time, the curve of DGCNDroid is above the other three curves, so the area un-
der the curve of DGCNDroid is significantly higher than that of the other three methods,
which means that the DGCNDroid has a larger area under the curve.

Figure 7. The detection accuracy of different hops.

In summary, the answer to question 1 is that the structure of the graph convolutional
layer is determined to be 4 layers with 64 nodes for each, and the value of the hop number
n is 5, so the graph node feature vector is composed of two centrality measures and the
number of adjacent nodes within 5 hops.

(2) Question 2: Compared with the three existing approaches, namely the approach [5]
of using permission combinations as features, the approach [17] of using API combinations
as features and the approach [15] of embedding graphs into vector space, how effective is
the detection method proposed in this paper?

Electronics 2021, 10, 186 14 of 18

We compare DGCNDroid with the approach SigPID [5], which uses permission
combination as a feature, DeepFlow [17], which uses API combination as a feature and
AMDroid [15], an approach to embed graphs into a vector space. As shown in Table 6
and Figure 8.

Table 6. Comparison of DGCNDroid with three existing methods.

Approaches ACC TPR FPR AUC

SigPID [5] 0.938 0.968 0.091 0.945
DeepFlow [17] 0.964 0.948 0.020 0.967
AMDroid [15] 0.972 0.971 0.028 0.975
DGCNDroid 0.982 0.975 0.012 0.991

Electronics 2021, 10, x FOR PEER REVIEW 15 of 18

Figure 8. ROC curve of different methods.

In summary, the answer to Question 2 is that compared with the other three existing
approaches, the approach in this paper has higher detection accuracy, recall rate and
lower false positive rate, so the detection effect is better.

(3) Question 3: Can the approach of this paper be applied to multi-classification of
malicious families, and how effective is the classification?

Although there are a large number of new malicious apps, most of them are variants
of existing malicious applications. Malicious application developers usually use code
reuse methods to modify or add new features based on the existing malicious application
source code to achieve rapid release and cost reduction. Therefore, malicious applications
will be aggregated in the form of families, and samples in the same family have similar
malicious behaviors. As shown in Figure 9, malicious application (a) and application (b)
belong to the family SndApp. Their malicious behavior is to obtain information such as
device ID, email address and phone number and upload it to a remote server. By ob-
serving and comparing their function call graphs, it can be found that the two have a high
degree of similarity in the structure of the corresponding parts marked in red. Therefore,
given that DGCNDroid can capture the structural features of the function call graph, we
also conducted experiments on its multi-classification of malicious application families.

①

②

③

④

⑤

①

②

③

④

⑤

(a) (b)

Figure 9. Comparison of function call graph structure of two malicious apps in SndApp family.

In order to compare with the results of the malicious family classification methods in
literature [14] and literature [35], we utilize the same Android Malware Genome Project

Figure 8. ROC curve of different methods.

It can be seen from Table 6 that DGCNDroid has a detection accuracy of up to 98%
and a false positive rate of only 1.2%. Figure 8 shows the comparison of ROC curves
between DGCNDroid, SigPID [5], DeepFlow [17] and AMDroid [15]. The ideal area under
the ROC curve, in other words, AUC, is 1, so the closer the AUC area is to 1, the better
the performance of the classifier. In the shape of the curve, the closer the inflection point
of the curve is to the upper left corner, the higher the detection rate is and the lower the
false positive rate is. It can be seen that compared with the ROC curves of the other three
methods, the ROC curve of DGCNDroid is closer to the upper left corner, so it is more
sensitive to malware detection and can better identify malware than other methods. At the
same time, the curve of DGCNDroid is above the other three curves, so the area under the
curve of DGCNDroid is significantly higher than that of the other three methods, which
means that the DGCNDroid has a larger area under the curve.

In summary, the answer to Question 2 is that compared with the other three existing
approaches, the approach in this paper has higher detection accuracy, recall rate and lower
false positive rate, so the detection effect is better.

(3) Question 3: Can the approach of this paper be applied to multi-classification of
malicious families, and how effective is the classification?

Although there are a large number of new malicious apps, most of them are variants
of existing malicious applications. Malicious application developers usually use code reuse
methods to modify or add new features based on the existing malicious application source
code to achieve rapid release and cost reduction. Therefore, malicious applications will be
aggregated in the form of families, and samples in the same family have similar malicious
behaviors. As shown in Figure 9, malicious application (a) and application (b) belong to

Electronics 2021, 10, 186 15 of 18

the family SndApp. Their malicious behavior is to obtain information such as device ID,
email address and phone number and upload it to a remote server. By observing and
comparing their function call graphs, it can be found that the two have a high degree
of similarity in the structure of the corresponding parts marked in red. Therefore, given
that DGCNDroid can capture the structural features of the function call graph, we also
conducted experiments on its multi-classification of malicious application families.

Electronics 2021, 10, x FOR PEER REVIEW 15 of 18

Figure 8. ROC curve of different methods.

In summary, the answer to Question 2 is that compared with the other three existing
approaches, the approach in this paper has higher detection accuracy, recall rate and
lower false positive rate, so the detection effect is better.

(3) Question 3: Can the approach of this paper be applied to multi-classification of
malicious families, and how effective is the classification?

Although there are a large number of new malicious apps, most of them are variants
of existing malicious applications. Malicious application developers usually use code
reuse methods to modify or add new features based on the existing malicious application
source code to achieve rapid release and cost reduction. Therefore, malicious applications
will be aggregated in the form of families, and samples in the same family have similar
malicious behaviors. As shown in Figure 9, malicious application (a) and application (b)
belong to the family SndApp. Their malicious behavior is to obtain information such as
device ID, email address and phone number and upload it to a remote server. By ob-
serving and comparing their function call graphs, it can be found that the two have a high
degree of similarity in the structure of the corresponding parts marked in red. Therefore,
given that DGCNDroid can capture the structural features of the function call graph, we
also conducted experiments on its multi-classification of malicious application families.

①

②

③

④

⑤

①

②

③

④

⑤

(a) (b)

Figure 9. Comparison of function call graph structure of two malicious apps in SndApp family.

In order to compare with the results of the malicious family classification methods in
literature [14] and literature [35], we utilize the same Android Malware Genome Project

Figure 9. Although there are a large number of new malicious apps, most of them are variants of
existing malicious applications. Malicious application developers usually use code reuse methods
to modify or add new features based on the existing malicious application source code to achieve
rapid release and cost reduction. Therefore, malicious applications will be aggregated in the form of
families, and samples in the same family have similar malicious behaviors. As shown in Figure 9,
malicious application (a) and application (b) belong to the family SndApp. Their malicious behavior
is to obtain information such as device ID, email address and phone number and upload it to a remote
server. By observing and comparing their function call graphs in Figure 9, it can be found that the
two have a high similarity in the structure of the corresponding parts with the same number circled
in red. Therefore, given that DGCNDroid can capture the structural features of the function call
graph, we also conducted experiments on its multi-classification of malicious application families.

In order to compare with the results of the malicious family classification methods in
literature [14] and literature [35], we utilize the same Android Malware Genome Project
dataset [36] that is part of Drebin dataset [16] and contains 1260 applications from 49 fami-
lies. For multi-classification, families containing only one sample need to be removed, and
finally the dataset retains 1244 apps from 33 families. During training, the samples are
sampled in a stratified manner at a ratio of 50%, and the remaining 50% of the samples are
used for classification testing. When training the multi-classification model, the training
samples are divided into 33 categories from 0 to 32. The structure of the deep graph
convolutional network still follows the structure discussed in the binary classification, but
the difference is that the final softmax output nodes are changed from 2 to 33. The macro
accuracy is used to measure the classification effect on test set. The results are shown
in Table 7.

Table 7. Multiple classification results of different approaches.

Approaches Accuracy

FalDroid [14] 0.972
Dendroid [35] 0.942
DGCNDroid 0.969

Electronics 2021, 10, 186 16 of 18

Compared with approach [14] and approach [35] using the same data set, DGCNDroid
achieves higher classification accuracy than the approach Dendroid [35] based on code
structure mining. The classification effect of approach [14] is slightly better than that of
DGCNDroid, but FalDroid [14] takes an average of 4.6 s to extract the graph features of an
application [14], and it takes an average of 3.9 s to extract the features of an application
using the approach of this paper. Therefore, the approach in this paper is better in terms of
time overhead than approach [14].

In summary, the answer to question 3 is that the method in this article can also be
applied to multi-classification of malicious families. The classification effect is close to
the current advanced methods, but the time cost of feature extraction is better than the
existing approaches.

5. Conclusions

This paper applies the deep graph convolutional network to Android malicious
application detection, and proposes a malicious application detection method DGCNDroid
based on the structural features of the function call graph. This method extracts the function
call graph with sensitive API from the application, calculates the structural feature vector of
the nodes in the graph, trains the extracted features through the depth graph convolutional
network and retains more complete graph structure information. Through experiments
on 11,120 application data sets, the method proposed in this paper has an accuracy rate of
98.2% in malicious application detection, which is better than other detection methods. At
the same time, in the multi-classification of malicious application families, the method in
this paper has also achieved a classification effect close to the advanced method. Because
the method used in this article is a static analysis method, it will inevitably be affected by
software hardening and code obfuscation, and it lacks effective handling of reflection and
dynamic code loading. In the future, we will combine it with dynamic analysis methods to
achieve comprehensive detection of Android malicious applications.

Author Contributions: Conceptualization, Y.Y., X.D., Z.Y. and X.L.; methodology, Y.Y., X.D. and Z.Y.;
software, Y.Y.; validation, Y.Y., X.D. and Z.Y.; formal analysis, Y.Y., X.D., Z.Y. and X.L.; investigation,
Y.Y., X.D. and Z.Y.; writing—original draft preparation, Y.Y.; writing—review and editing, Y.Y., X.D.
and Z.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Key Research and Development Program of
China under Grants 2018YFB0803603, 2016YFB050190104, the National Natural Science Foundation
of China under Grant 61972040, and the Premium Funding Project for Academic Human Resources
Development in Beijing Union University under Grant BPHR2020AZ03.

Data Availability Statement: The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Smartphone Market Share. Available online: https://www.idc.com/promo/smartphone-market-share/os (accessed on

22 August 2020).
2. Android Passes 2.5 Billion Monthly Active Devices. Available online: https://venturebeat.com/2019/05/07/android-passes-2-5-

billion-monthly-active-devices/ (accessed on 30 October 2020).
3. Mobile Cyber Threats. Available online: https://media.kaspersky.com/pdf/Kaspersky-Lab-KSN-Report-mobile-cyberthreats-

web.pdf (accessed on 20 August 2020).
4. Mobile Phone Security Status Report of 2019. Available online: http://zt.360.cn/1101061855.php?dtid=1101061451&did=610435

085 (accessed on 20 August 2020).
5. Li, J.; Sun, L.; Yan, Q.; Li, Z.; Srisa-An, W.; Ye, H. Significant Permission Identification for Machine-Learning-Based Android

Malware Detection. IEEE Trans. Ind. Inform. 2018, 14, 3216–3225. [CrossRef]
6. Sokolova, K.; Perez, C.; Lemercier, M. Android Application Classification and Anomaly Detection with Graph-Based Permission

Patterns. Decis. Support Syst. 2017, 93, 62–76. [CrossRef]
7. Song, J.; Han, C.; Wang, K.; Zhao, J.; Ranjan, R.; Wang, L. An Integrated Static Detection and Analysis Framework for Android.

Pervasive Mob. Comput. 2016, 32, 15–25. [CrossRef]

https://www.idc.com/promo/smartphone-market-share/os
https://venturebeat.com/2019/05/07/android-passes-2-5-billion-monthly-active-devices/
https://venturebeat.com/2019/05/07/android-passes-2-5-billion-monthly-active-devices/
https://media.kaspersky.com/pdf/Kaspersky-Lab-KSN-Report-mobile-cyberthreats-web.pdf
https://media.kaspersky.com/pdf/Kaspersky-Lab-KSN-Report-mobile-cyberthreats-web.pdf
http://zt.360.cn/1101061855.php?dtid=1101061451&did=610435085
http://zt.360.cn/1101061855.php?dtid=1101061451&did=610435085
http://doi.org/10.1109/TII.2017.2789219
http://doi.org/10.1016/j.dss.2016.09.006
http://doi.org/10.1016/j.pmcj.2016.03.003

Electronics 2021, 10, 186 17 of 18

8. Dai, G.; Ge, J.; Cai, M.; Xu, D.; Li, W. Svm-Based Malware Detection for Android Applications. In Proceedings of the 8th ACM
Conference on Security & Privacy in Wireless and Mobile Networks, New York, NY, USA, 22 June 2015; pp. 1–2.

9. Liu, Z.; Lai, Y.; Chen, Y. Android Malware Detection Based on Permission Combinations. Int. J. Simul. Process. Model. 2015, 10,
315–326. [CrossRef]

10. Yusof, M.; Saudi, M.M.; Ridzuan, F. A New Mobile Botnet Classification Based on Permission and API Calls. In Proceedings
of the 2017 Seventh International Conference on Emerging Security Technologies (EST), Canterbury, UK, 6–8 September 2017;
pp. 122–127.

11. Zhu, J.; Wu, Z.; Guan, Z.; Chen, Z. API Sequences Based Malware Detection for Android. In Proceedings of the 2015 IEEE 12th
Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and
2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom),
Beijing, China, 10–14 August 2015; pp. 673–676.

12. Martín, A.; Menéndez, H.D.; Camacho, D. MOCDroid: Multi-Objective Evolutionary Classifier for Android Malware Detection.
Soft Comput. 2017, 21, 7405–7415. [CrossRef]

13. Pei, X.; Yu, L.; Tian, S. AMalNet: A Deep Learning Framework Based on Graph Convolutional Networks for Malware Detection.
Comput. Secur. 2020, 101792. [CrossRef]

14. Fan, M.; Liu, J.; Luo, X.; Chen, K.; Tian, Z.; Zheng, Q.; Liu, T. Android Malware Familial Classification and Representative Sample
Selection via Frequent Subgraph Analysis. IEEE Trans. Inf. Forensics Secur. 2018, 13, 1890–1905. [CrossRef]

15. Ge, X.; Pan, Y.; Fan, Y.; Fang, C. AMDroid: Android Malware Detection Using Function Call Graphs. In Proceedings of the 2019
IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C), Sofia, Bulgaria, 22–26 July
2019; pp. 71–77.

16. Arp, D.; Spreitzenbarth, M.; Hubner, M.; Gascon, H.; Rieck, K.; Siemens, C. Drebin: Effective and Explainable Detection of
Android Malware in Your Pocket. In Proceedings of the Network and Distributed System Security Symposium (NDSS), San
Diego, CA, USA, 23–26 February 2014; Volume 14, pp. 23–26. [CrossRef]

17. Zhu, D.; Jin, H.; Yang, Y.; Wu, D.; Chen, W. DeepFlow: Deep Learning-Based Malware Detection by Mining Android Application
for Abnormal Usage of Sensitive Data. In Proceedings of the 2017 IEEE Symposium on Computers and Communications (ISCC),
Heraklion, Greece, 3–6 July 2017; pp. 438–443.

18. Li, D.; Wang, Z.; Xue, Y. Fine-Grained Android Malware Detection Based on Deep Learning. In Proceedings of the 2018 IEEE
Conference on Communications and Network Security (CNS), Beijing, China, 30 May–1 June 2018; pp. 1–2.

19. Xu, K.; Li, Y.; Deng, R.H.; Chen, K. Deeprefiner: Multi-Layer Android Malware Detection System Applying Deep Neural
Networks. In Proceedings of the 2018 IEEE European Symposium on Security and Privacy (EuroS&P), London, UK, 24–26 April
2018; pp. 473–487.

20. Taheri, R.; Ghahramani, M.; Javidan, R.; Shojafar, M.; Pooranian, Z.; Conti, M. Similarity-Based Android Malware Detection
Using Hamming Distance of Static Binary Features. Future Gener. Comput. Syst. 2020, 105, 230–247. [CrossRef]

21. Liang, H.; Song, Y.; Xiao, D. An End-to-End Model for Android Malware Detection. In Proceedings of the 2017 IEEE International
Conference on Intelligence and Security Informatics (ISI), Beijing, China, 22–24 July 2017; pp. 140–142.

22. Shabtai, A.; Kanonov, U.; Elovici, Y.; Glezer, C.; Weiss, Y. “Andromaly”: A Behavioral Malware Detection Framework for Android
Devices. J. Intell. Inf. Syst. 2012, 38, 161–190. [CrossRef]

23. Hou, S.; Saas, A.; Chen, L.; Ye, Y. Deep4maldroid: A Deep Learning Framework for Android Malware Detection Based on
Linux Kernel System Call Graphs. In Proceedings of the 2016 IEEE/WIC/ACM International Conference on Web Intelligence
Workshops (WIW), Omaha, NE, USA, 13–16 October 2016; pp. 104–111.

24. Ananya, A.; Aswathy, A.; Amal, T.R.; Swathy, P.G.; Vinod, P.; Mohammad, S. SysDroid: A Dynamic ML-Based Android Malware
Analyzer Using System Call Traces. Clust. Comput. 2020, 23, 2789–2808. [CrossRef]

25. Alshahrani, H.; Mansourt, H.; Thorn, S.; Alshehri, A.; Alzahrani, A.; Fu, H. DDefender: Android Application Threat Detection
Using Static and Dynamic Analysis. In Proceedings of the 2018 IEEE International Conference on Consumer Electronics (ICCE),
Berlin, Germany, 12–14 January 2018; pp. 1–6.

26. Yuan, Z.; Lu, Y.; Wang, Z.; Xue, Y. Droid-Sec: Deep Learning in Android Malware Detection. In Proceedings of the 2014 ACM
Conference on SIGCOMM, Chicago, IL, USA, 19 August 2014; pp. 371–372.

27. Saracino, A.; Sgandurra, D.; Dini, G.; Martinelli, F. MADAM: Effective and Efficient Behavior-Based Android Malware Detection
and Prevention. IEEE Trans. Dependable Secur. Comput. 2018, 15, 83–97. [CrossRef]

28. Estrach, J.B.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral Networks and Deep Locally Connected Networks on Graphs. In
Proceedings of the 2nd International Conference on Learning Representations, Banff, AB, Canada, 14–16 April 2014.

29. Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering.
In Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 30 April 2016;
pp. 3844–3852.

30. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the 5th Interna-
tional Conference on Learning Representations, Toulon, France, 24–26 April 2017.

31. Zhang, M.; Cui, Z.; Neumann, M.; Chen, Y. An End-to-End Deep Learning Architecture for Graph Classification. In Proceedings
of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 18, pp. 4438–4445.

http://doi.org/10.1504/IJSPM.2015.072522
http://doi.org/10.1007/s00500-016-2283-y
http://doi.org/10.1016/j.cose.2020.101792
http://doi.org/10.1109/TIFS.2018.2806891
http://doi.org/10.14722/NDSS.2014.23247
http://doi.org/10.1016/j.future.2019.11.034
http://doi.org/10.1007/s10844-010-0148-x
http://doi.org/10.1007/s10586-019-03045-6
http://doi.org/10.1109/TDSC.2016.2536605

Electronics 2021, 10, 186 18 of 18

32. Hamilton, W.; Ying, Z.; Leskovec, J. Inductive Representation Learning on Large Graphs. In Proceedings of the Advances in
Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 1024–1034.

33. Niepert, M.; Ahmed, M.; Kutzkov, K. Learning Convolutional Neural Networks for Graphs. In Proceedings of the International
Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 2014–2023.

34. Backes, M.; Bugiel, S.; Derr, E.; McDaniel, P.; Octeau, D.; Weisgerber, S. On Demystifying the Android Application Framework:
Re-Visiting Android Permission Specification Analysis. In Proceedings of the 25th USENIX Security Symposium (USENIX
Security 16), Austin, TX, USA, 10–12 August 2016; pp. 1101–1118.

35. Suarez-Tangil, G.; Tapiador, J.E.; Peris-Lopez, P.; Blasco, J. Dendroid: A Text Mining Approach to Analyzing and Classifying
Code Structures in Android Malware Families. Expert Syst. Appl. 2014, 41, 1104–1117. [CrossRef]

36. Zhou, Y.; Jiang, X. Dissecting Android Malware: Characterization and Evolution. In Proceedings of the 2012 IEEE Symposium on
Security and Privacy, Francisco, CA, USA, 24–25 May 2012; pp. 95–109.

http://doi.org/10.1016/j.eswa.2013.07.106

	Introduction
	Related Work
	Android Malware Detection Based on Machine Learning
	Graph Convolutional Network

	Android Malware Detection Based on Structural Features of Function Call Graph
	Constructing Features from Function Call Graphs
	Extracting Function Call Graphs
	Generating Subgraphs with Sensitive APIs
	Obtaining the Structural Features of the Sensitive API Call Subgraph

	Design of Deep Graph Convolutional Networks
	Graph Convolutional Layer
	Global Pooling Layer
	Traditional Convolution Layer and Full Connection Layer

	The Experimental Evaluation
	Experimental Platform and Dataset
	Metrics
	Experimental Results and Discussion

	Conclusions
	References

