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Abstract: Selecting the most suitable filter method that will produce a subset of features with the
best performance remains an open problem that is known as filter rank selection problem. A viable
solution to this problem is to independently apply a mixture of filter methods and evaluate the
results. This study proposes novel rank aggregation-based multi-filter feature selection (FS) methods
to address high dimensionality and filter rank selection problem in software defect prediction
(SDP). The proposed methods combine rank lists generated by individual filter methods using rank
aggregation mechanisms into a single aggregated rank list. The proposed methods aim to resolve the
filter selection problem by using multiple filter methods of diverse computational characteristics to
produce a dis-joint and complete feature rank list superior to individual filter rank methods. The
effectiveness of the proposed method was evaluated with Decision Tree (DT) and Naïve Bayes (NB)
models on defect datasets from NASA repository. From the experimental results, the proposed
methods had a superior impact (positive) on prediction performances of NB and DT models than
other experimented FS methods. This makes the combination of filter rank methods a viable solution
to filter rank selection problem and enhancement of prediction models in SDP.

Keywords: high-dimensionality; rank aggregation; feature selection; software defect prediction

1. Introduction

Software development lifecycle (SDLC) is a defined process specifically created for
the development of reliable and high-quality software systems. The stages embedded
in SDLC such as requirement gathering, requirement analysis, system design, system
development and maintenance are stepwise and must be strictly observed to ensure a
timely and efficient software system [1–3]. Nonetheless, human errors or mistakes are
inevitable even though most of the stages in SDLC are conducted by professionals. In recent
times, these errors tend to be more profound as modern software systems are intrinsically
large, with co-dependent components and modules. Consequently, these errors if not
fixed immediately will bring about defective software systems and ultimately software
failure. In other words, having defects in software systems will lead to degraded and
unreliable software systems. In addition, software failures can generate dissatisfaction
from end-users and stakeholders alike as failed software does not meet user requirement(s)
after resources (time and effort) have been expiated [4,5]. Hence, it is imperative to consider
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early prediction and detection of software defects before software release. Early detection of
defective modules or components in a software system will grant spontaneous rectification
of such modules or components and judicious usage of available resources [6,7].

Software defect prediction (SDP) is the adoption of machine learning (ML) tech-
niques for determining the defectiveness of software modules or components. Specifically,
SDP is the application of ML techniques on software defect datasets which are char-
acterized by software metrics (as features) to ascertain defects in software modules or
components [8–10]. From studies, both supervised and unsupervised types of ML tech-
niques have been proposed and implemented for SDP [11–16]. However, the prediction
performance of SDP models categorically depends on the nature (quality) and charac-
teristics of software datasets used in developing SDP models. Software metrics used in
characterizing the reliability and quality of software systems is directly proportional to
the size of software systems. That is, large and robust software systems will require many
software metric mechanisms to generate features that best describes the quality of such
software systems [17,18]. Invariably, software systems with a high number of features as a
result of the proliferation of software metrics often consist of redundant and noisy features.
This phenomenon is usually referred to as a high dimensionality problem. Studies have
shown that high dimensionality problem negatively affects the prediction performances of
SDP models [19–21]. It is established in the literature that feature selection (FS) method is a
prominent way to solve high dimensionality problem. Mainly, all FS methods cull only
irredundant and important software features from the original software defect dataset for
any SDP processes [22–24].

The application of FS method will result in the creation of a subset of the initial dataset.
This subset contains the selection of important and irredundant features from a set of
irrelevant and excessive features, thereby resolving high dimensionality of a given dataset.
That is, FS methods capture only the important features while making sure the quality of
the dataset is intact. This ultimately resolves the high dimensionality problem in software
defect datasets. FS is an important data pre-processing task as it improves the quality
of dataset (i.e., noise removal), reduces computational complexity and mostly improves
the prediction performances of prediction models [25,26]. In general, FS methods can be
divided into groups: filter feature selection (FFS) and wrapper feature selection (WFS).
FFS methods assess and rank features of a dataset based on mathematical or statistical
measures. Thereafter, top-ranked features are selected based on a pre-determined threshold
value [22,23]. FFS are simple and are independent of ML classification algorithms (often
referred to as baseline classifiers). Unlike FSS, WFS method assesses and select features
based on its positive influence toward improving the accuracy of the underlying baseline
classifier. This makes WFS computationally expensive and hard to implement [27–29].
Based on these discriminatory qualities, researchers often choose and implement FSS
methods in SDP [19,30]. However, it was observed that some studies have investigated
the effect of FSS methods on prediction performances of SDP models with conflicting
research outcomes [16,20,23,24]. These conflicting research findings can be attributed to
the selection of an appropriate FFS method and the issue of incomplete and disjoint feature
ranking of FFS methods in SDP. Specifically, with the variety of different FFS methods,
selecting the most appropriate FFS method that will give the best performance is a difficult
task [19,31]. This is as a result of FFS methods having diverse and distinct underlining
computational characteristics in their respective approaches, hence, making the selection of
the FFS method in SDP is a hard choice. This study proposes as a solution, rank-aggregation
based multi-filter feature selection methods for SDP. The proposed methods aim to address
the filter selection problem by aggregating rank lists from multiple filter FS methods of
diverse computational characteristics to produce a more stable (i.e., non-disjoint) and
complete feature rank list better than individual filter methods employed.
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The main contributions of this study are as follows:

1. Development of novel rank-aggregation based multi-filter feature selection methods.
2. Empirical evaluation and analysis of the performance of rank-aggregation based

multi-filter feature selection methods in SDP.

2. Related Works

High dimensionality has been regarded as a data quality problem that dampens the
prediction efficacies of models in SDP. That is, the presence of irrelevant and redundant
software features as a result of the proliferation of software features (metrics) used to
characterize the reliability and quality of a software harms the effectiveness of SDP models.
From existing studies, FS methods are used to tackle high dimensionality problem by
culling only important features. Hence, many studies have proposed and developed
diverse FS methods for SDP.

Cynthia et al. [32] experimented on the effect of FS methods on SDP models using
various evaluation metrics. They concluded that the selection of important features from a
dataset can positively improve the prediction performance of models while substantially
reducing the training time and FFS had the best impact in their study. Nonetheless, their
study had a limitation in the type of filter-based feature selection considered.

Balogun et al. [22] in their study, investigated the impact of FS methods on models in
SDP based on applied search methods. The performances of eighteen FS methods using
four classifiers were analyzed. Their findings also support the notion of using FS methods
in SDP; however, the respective effect of FS methods on SDP varies across datasets and
applied classifiers. Additionally, they posited that filter-based feature selection methods
had stable accuracy values than other studied FS methods. Nonetheless, the filter methods
selection problem still lingers as the performance of the filter-based FS methods depends
on the dataset and classifier used for the SDP process.

In another study, Balogun et al. [23] conducted an extensive empirical study on the
impact of FS methods on SDP models based on some contradictions and inconsistencies
in existing studies as highlighted by Ghotra et al. [20] and Xu, et al. [24]. From their
experimental results, they further established that the efficacy of FS methods depends on
dataset and classifier deployed. Hence, there are no best FS methods. This further supports
the filter selection problem methods as each filter-based FS methods works differently.

Jia [33] proposed a hybrid FS method based on combining the strength of 3 filter
methods (chi-squared, information gain and correlation filter) for SDP. The average ranking
of each feature was deduced from the respective rank list and the TopK features were
selected. Their experimental results showed that models based on hybrid FS method were
better than models from the individual filter methods. Nonetheless, the effectiveness of
averaging rank lists of features can be affected by the skewed ranks of each feature [34].
Besides, selecting arbitrary TopK features may not be the best method as useful features
may be omitted during the selection process [32].

Wang et al. [35] investigated the ensemble of FS methods in SDP to solve the filter
selection problem. 17 ensemble methods were implemented using 18 different filter FS
methods. The ensemble methods were based on averaging the ranks of features from
individual rank lists. From their experimental results, they reported the superiority of the
ensemble approaches. However, similar to Jia [33], averaging rank lists of features can be
affected by the skewed ranks of each feature.

Xia et al. [36] hybridized ReliefF and correlation analysis for selection of features in
metric-based SDP. the proposed method (ReliefF-Lc) checks correlation and redundancy
between modules concurrently. From their experimental results, ReliefF-Lc outperforms
other experimented methods (IG and REF). Additionally, Malik et al. [37] conducted an
empirical comparative study on the use of an attribute rank method. In particular, the
applicability of principal component analysis (PCA) with the ranker search method as a
filter FS method was investigated. They concluded that applying PCA with ranker search
method in the SDP process can improve the effectiveness of classifiers in SDP. Although
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their findings cannot be generalized due to the limited scope of their study, however, they
coincide with existing SDP studies on the application of FS methods in SDP.

Iqbal and Aftab [30] developed an SDP framework using multi-filter FS and multi-
layer perceptron (MLP). Besides, a random over-sampling (ROS) technique was integrated
to address the inherent class imbalance problem. The proposed multi-filter was developed
using correlation feature selection (CFS) with 4 different search methods. From their
experimental results, they concluded that the multi-filter method with ROS outperforms
other experimented methods.

Consequently, FS methods are efficient in minimizing or reducing features of a dataset
and amplifying the efficiency of models in SDP. Notwithstanding, selecting an appropriate
filter-based FS method is an open problem. Hence, this study presents an empirical analysis
of the impact of rank aggregation-based multi-filter FS method on prediction performances
of SDP models.

3. Methodology

In this section, the classification algorithms, filter-based FS methods, proposed rank
aggregation-based multi-filter, experimental framework, software defect datasets and
performance evaluation metrics are presented and discussed.

3.1. Classification Algorithms

Decision Tree (DT) and Naïve Bayes (NB) algorithms are used to fit base-line prediction
models in this study. DT and NB algorithms have been widely implemented in numerous
existing studies with satisfactory prediction capabilities. Besides, findings have shown that
DT and NB work well with class imbalance [22,38]. Table 1 presents parameter settings of
DT and NB algorithms as used in this study.

Table 1. Classification Algorithms.

Classification Algorithms Parameter Settings

Decision Tree (DT) ConfidenceFactor = 0.25; MinObj = 2

Naïve Bayes (NB) NumDecimalPlaces = 2;
NumAttrEval = Normal Dist.

3.2. Filter Feature Selection
3.2.1. Chi-Square (CS)

Chi-square (CS) filter method is a statistics-based FS method that tests the inde-
pendence of a feature to the class label by generating a score to determine the level of
independence. The higher the generated score, the higher the dependent relationship
between a feature and the class label. CS can be mathematically represented as:

X2(r, ci) =
N[P(r, ci)P(r, ci)–P(r, ci)P(r, ci)]

2

[P(r)P(r)P(ci)P(ci)]
(1)

3.2.2. ReliefF (REF)

ReliefF (REF) filter method deploys sampling method on a given dataset and then
locates the nearest neighbors from the same and alternate classes. The features of the
sampled instances are compared with those of its neighborhood and then subsequently
assign a relevant score of each feature. REF is an instance-based FS method that can be
applied on noisy and incomplete datasets. It can ascertain dependencies amongst features
with low bias.
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3.2.3. Information Gain (IG)

Information Gain (IG) filter method selects relevant features by reducing the uncertain-
ties attributed with identifying the class label based on the information theory mechanism
when the value of the feature is unknown. The information theory assesses and culls top
features before commencing the training process. The entropy of an instance (say X) can be
defined as thus:

H(X) = −∑
i

Pxi log2Pxi (2)

where Pxi represents the prior probabilities of X.
The entropy of X given another instance Y is represents as:

H(X|Y) = – ∑
i

Pyj ∑
i

Pxi |yj
log2Pxi |yj

(3)

Hence, the entropy is given as the level by which the entropy of X reduces to show
additional information concerning X as given by Y, and is defined thus:

IG(X|Y) = H(X)–H(X|Y) (4)

3.3. Rank Aggregation-Based Multi-Filter Feature Selection (RMFFS) Method

The proposed RMFFS is based on taking into consideration and combining the
strengths of individual filter ranks methods. The essence of this is to resolve the filter
method selection problem by considering multiple rank lists in the generation and subse-
quent selection of top-ranked features to be used in the prediction process. As depicted in
Algorithm 1, the individual rank list from CS, REF, and IG filter methods are generated
from the given dataset. These individual rank lists are mutually exclusive as each filter
methods considered are based on different computational characteristics. This is to ensure
diverse representations of features to be selected for the prediction process. Thereafter, the
generated rank lists are aggregated together using rank aggregation functions as presented
in Table 2. The respective rank aggregation function combines the individual rank lists into
a single aggregated list by leveraging on the relevance score attributed to each feature on
the individual rank lists. Minimum and maximum rank functions select the minimum and
maximum relevance score, respectively, produced by the aggregated rank list. The range
rank function selects features from the aggregated list based on the range value computed
from the relevance scores. The arithmetic mean, geometric mean and harmonic mean rank
functions combine the individual rank lists into a single aggregated list by computing the
arithmetic mean, geometric mean and harmonic mean, respectively, on the relevance score
attributed to each feature on the individual rank lists. This is to give equal representation
and consideration to each feature from each rank list. Features on the aggregated list
with high relevance scores indicates that such features are ranked low in the individual
rank list and as such can be dropped. A novel dynamic and automatic threshold value
based on geometric mean function are applied to the aggregated list to select relevant
features. The geometric mean of the aggregated relevance score is computed and features
with aggregated relevance score less than or equal to the computed threshold values are
selected. Geometric mean functions consider the dependency amongst the features and
the compounding effect in its computation. Finally, optimal features are selected as the
resulting features of the RMFFS method.
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Algorithm 1 Rank Aggregation based Multi-Filter Feature Selection (RMFFS) Method

Input:
N—Number of Filter Rank Method = {CS, REF, IG}

T—Threshold value for optimal features selections =
(

n
∏
i=1

Xi

) 1
n

= n
√

X1X2X3 . . . Xn

A—Aggregators A = {min{R1(a1...n), R2(a1...n), . . . Rm(a1...n)},
max{R1(a1...n), R2(a1...n), . . . Rm(a1...n)},

range{ R1(a1...n), R2(a1...n), . . . Rm(a1...n)}, mean{
(

m
∑

i=1
Ri(a1...n)

)
× 1

m }, g.mean{
m
∏
1

Ri(a1...n)
1
m },

h.mean{ m
∑m

i=1
1

Ri(a1...n)
}

P—Aggregated Features
Output:
P′t —Optimal Features Selected From Aggregated Rank List based on T
1. for i = 1 to N {do
2. Generate Rank list Rn for each filter rank method i
3. }
4. Generate Aggregated Rank list using Aggregator functions:
for i = 1 to An{ do
5. Pi = Ai
6. for i = 1 to Pi {
7. if (Pi ≤ T)
8. P′ = Pi //Select optimal features from P′ based on T
9. }
10. P′t = P′

11. return P′t
12. }

Table 2. Rank Aggregation Methods.

Aggregators Formula Description

Min () min{R1(a1...n), R2(a1...n), . . . Rm(a1...n)}
Selects the minimum of the
relevance scores produced by
the aggregated rank list

Max () max{R1(a1...n), R2(a1...n), . . . Rm(a1...n)}
Selects the maximum of the
relevance scores produced by
the aggregated rank list

Range () range{R1(a1...n), R2(a1...n), . . . Rm(a1...n)}
Selects the range of the
relevance scores produced by
the aggregated rank list

Mean () mean{
(

m
∑

i=1
Ri(a1...n)

)
× 1

m

Selects the mean of the
relevance scores produced by
the aggregated rank list

Geometric Mean () g.mean{
m
∏
1

Ri(a1...n)
1
m }

Selects the geometric mean of
the relevance scores produced
by the aggregated rank list

Harmonic Mean () h.mean{ m
∑m

i=1
1

Ri(a1...n)
}

Selects the harmonic mean of
the relevance scores produced
by the aggregated rank list

3.4. Software Defect Datasets

Table 3 presents the software defect datasets used for training and testing SDP models
in this study. These datasets are culled from NASA repository and have been widely used
in SDP. Specifically, the cleaned version of NASA datasets was used in the experimen-
tation [39,40]. Table 2 shows a description of the selected datasets with their respective
number of features and number of instances.
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Table 3. Description of selected NASA datasets.

Datasets Number of Features Number of Modules

CM1 38 327
KC1 22 1162
KC2 22 522
KC3 40 194

MW1 38 250
PC1 38 679
PC3 38 1077
PC4 38 1287
PC5 39 1711

3.5. Performance Evaluation Metrics

For evaluation of ensuing SDP models, Accuracy, F-Measure, and Area under Curve
(AUC) were selected. These evaluation metrics have been widely used and proven to be
reliable in SDP studies [7,41,42].

i. Accuracy is the number or percentage of correctly predicted data out of all total
amount of data.

Accuracy =
TP + TN

TP + FP + FN + TN
(5)

ii. F-Measure is defined as the weighted harmonic mean of the test’s precision and
recall

F−Measure = 2×
(

Precision × Recall
Precision + Recall

)
(6)

iii. The Area under Curve (AUC) indicates the trade-off between TP and FP. It shows
an aggregate measure of performance across all possible classification thresholds.

Recall =
(

TP
TP + FN

)
, Precision =

(
TP

TP + FP

)
, TP = True Positive (implies the accurate

classification); FP = False Positive (means inaccurate classification); TN = True Negative (im-
plies accurate misclassification); FN = False Negative (implies inaccurate misclassification).

3.6. Experimental Framework

The experimental framework of this study as depicted in Figure 1 is presented and
discussed in this section.

To assess effects of proposed RMFFS methods on prediction performances of SDP
models, software defect datasets (See Table 3) were used to build SDP models based on NB
and DT classifiers (See Table 1). Different scenarios are experimented to have unbiased and
standard performance comparison of the ensuing SDP models.

• Scenario 1 considered the application of the baseline classification algorithm (NB and
DT) on the original defect datasets. In this case, NB and DT will be trained and tested
with the original defect datasets. This is to determine the prediction performances of
the baseline classifiers on the defect datasets.

• Scenario 2 is based on the application of each filter rank method (CS, REF, and IG) on
the baseline classifiers. This is to determine and measure the individual effect of each
filter rank methods on prediction performances of NB and DT over the selected defect
datasets.

• Scenario 3 indicates the application of the proposed RMFFS method on the baseline
classifiers. Just as in Scenario 2, this is to determine and measure the effectiveness
of the proposed RMFFS method on prediction performances of NB and DT over the
selected defect datasets.
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Figure 1. Experimental Framework.

Experimental results and findings based on the aforementioned scenarios will be used
to answer the following research questions.

• RQ1. How effective are the proposed RMFFS methods compared to individual filter
FS methods?

• RQ2. Which of RMFFS methods had the highest positive impact on the prediction
performance of SDP models?

Ensuing SDP models from each scenario will be developed and evaluated based on
10-fold cross-validation (CV) technique. The application of 10-fold CV technique is to avoid
data variability problems and to produce SDP models with low bias and variance [43–46].
Besides, CV techniques have been widely used in many existing studies with SDP being
no exception. The prediction performances of ensuing models from each scenario will
be measured using selected performance metrics (See Section 3.5) and their predictive
performance will be analyzed and compared. All experiments are carried out using the
WEKA machine learning tool [47].

4. Results and Discussion

In this section, experimental results based on the experimental framework as illus-
trated in Figure 1 is presented and discussed.

Figures 2–4 presents box-plots representation of the prediction performances based
on accuracy, AUC and f-measure of NB and DT models with No FS method, IG, REF,
CS and proposed RMFFS methods. Figure 2 presents the accuracy values of NB and DT
models with respective FS (IG, CS, REF and RMFFS) and No FS methods. Both NB and
DT had good accuracy values on the software defect dataset. However, the application of
individual FS methods (IG, CS and REF) further improves the accuracy values of NB and
DT. This can be seen in their respective average accuracy values as depicted in Figure 2.
Application of NB and DT models with No FS method recorded average accuracy values
of 76.33 and 83.01%, respectively. However, CS averagely improved the accuracy values of
NB (81.12%) and DT (84.56%) by +6.28 and +1.87%. A similar occurrence was observed on
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prediction models with REF (NB: 81.47% and DT: 83.26%) with improved average accuracy
values of +6.73 and +0.3%, respectively. Additionally, IG averagely improved the accuracy
values of NB (80.48%) and DT (84.45%) by +5.66 and +1.73%.
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Concerning prediction performance based on AUC values, Figure 3 presents the box-
plot representations of NB and DT AUC values. Improved AUC values were observed
on NB and DT models with IG, CS, and REF methods. IG averagely improved the AUC
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values of NB and DT models by +3 and +3.68%, respectively. In the case NB and DT models
with the CS method, there was +2.75 and +5.12% increment in the average AUC values
of ensuing models. Additionally, REF increased the average AUC values of NB and DT
models by +3.44 and 0.8%, respectively. A similar observation was recorded on F-measure
values. Specifically, NB models with IG, CS and REF methods had +3/88, +4.66, and +3.49%
increase in their respective average f-measure values. Concerning DT models, although DT
models with IG and CS had a slight increment of +0.12 and +0.36% in average f-measure
values, DT models with REF method performed poorly with a−1.1% decrease in f-measure
value. From these results, it can be observed and concluded that FS methods can enhance
the predictive performance of SDP models. Particularly, studied FFS methods (CS, IG,
and REF) improved the prediction performance of NB and DT models. This observation
positively correlates with findings in existing studies where FS methods are applied in
SDP [20,22–24]. However, it can be deduced that the efficacy of FFS methods (IG, REF, and
CS) varies across datasets and depends on the choice of prediction models. Based on no
free lunch theorem, since there is no overall best FFS method, selecting an appropriate FFS
method for SDP becomes crucial and hence, the filter selection problem. Consequently, this
observation further supports the aim of the study on the development of the multi-filter FS
method for SDP.

As presented in Figures 2–4, the proposed RMFFS methods (Mean, Min, Max, Range,
GMean, HMean) not only had a superior positive impact on NB and DT models but also
had a better positive impact than the individual CS, IG and REF FS methods. Particularly,
Tables 4 and 5 presents the prediction performances (average accuracy, average AUC, and
average f-measure) of NB and DT models with proposed RMFFS methods and individual
FFS methods, respectively.

Table 4. Comparison of NB models with proposed RMFFS methods, IG, CS, REF and No FS method.

Models Average
Accuracy Average AUC Average

F-Measure

NB 76.33 0.726 0.773
NB + Chi 81.12 0.746 0.809
NB + IG 80.48 0.748 0.803

NB + ReF 81.47 0.751 0.800
Mean 81.65 0.756 0.807
Min 82.11 0.764 0.811
Max 81.69 0.761 0.808

Range 81.50 0.741 0.803
GMean 82.01 0.761 0.812
HMean 82.40 0.764 0.815

Table 5. Comparison of DT models with proposed FS methods, IG, CS, REF and No FS method.

Models Average
Accuracy

Average
AUC

Average
F-Measure

DT 83.01 0.625 0.816
DT + Chi 84.56 0.657 0.819
DT + IG 84.45 0.648 0.817

DT + ReF 83.26 0.630 0.807
Mean 85.10 0.680 0.830
Min 84.58 0.690 0.826
Max 84.62 0.686 0.825

Range 84.53 0.668 0.813
G-Mean 85.29 0.694 0.830
H-Mean 85.04 0.686 0.828

From Table 4, NB models with proposed RMFFS methods had superior average
accuracy values than NB models with individual FFS (IG, CS and REF) methods. NB
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models with HMean-based RMFFS recorded the highest average accuracy value of 82.4%.
Range-based RMFFS had the least average accuracy value out of all the proposed RMFFS
methods. NB models with HMean-based RMFFS and Min-based RMFFS had the highest
average AUC values of 0.764, respectively. NB models with Range-based RMFFS had worst
average AUC values (0.741) amongst the proposed RMFFS methods and even worse than
NB models with CS (0.746), REF (0.751) and IG (0.748). Concerning average f-measure
values, NB models with HMean-based RMFFS was still superior to other experimented
methods. These results show that the proposed RMFFS methods are superior to individual
FSS (CS, IG, and REF) methods.

Additionally, Table 5 presents experimental results of DT models with proposed
RMFFS methods and individual FSS (IG, CS and REF) methods. DT models with GMean-
based RMFFS recorded the highest average accuracy value of 85.29%. Range-based RMFFS
had the least average accuracy value out of all the proposed RMFFS methods. DT models
with GMean-based RMFFS had the highest average AUC values of 0.694. DT models with
Range-based RMFFS had the worst average AUC values (0.668) amongst the proposed
RMFFS methods and it outperforms DT models with CS (0.657), REF (0.630) and IG (0.648).
Concerning average f-measure values, DT models with GMean-based RMFFS was superior
to other experimented methods. These results show that the proposed RMFFS methods are
superior to individual FSS (CS, IG, and REF) methods.

Furthermore, Scott-KnottESD statistical rank tests, a mean comparison approach
that uses hierarchical clustering to separate mean values into statistically distinct clusters
with non-negligible mean differences was conducted [48,49] to show significant statistical
differences in the mean values of experimented methods and results. Models that have the
same color means they are in the same category and there are no statistically significant
differences amongst them. Likewise, models with different color indications signify that
models in that region are statistically significant to other methods.

Figures 5–7 show the Scott-KnottESD Rank test of experimented FS methods on NB
and DT models based on average accuracy, average AUC and average f-measure values,
respectively. Table 6 summarized the statistical rank test of FS methods on NB and DT
models.
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Table 6. Summary of the Scott-Knott Rank Test of experimented FS methods on NB and DT models.

Statistical
Rank

Average Accuracy Average AUC Average F-Measure

NB DT NB DT NB DT

1

HMean, Min,
GMean, Max,
Mean, Range,

NB + REF

GMean, Mean,
HMean, Max,
Min, DT + CS,

Range, DT + IG

Min, HMean,
GMean, Max,

Mean

GMean, Min,
Max, HMean,

Mean

HMean,
GMean, Min,

NB + CS, Max,
Mean

GMean, Mean,
HMean, Min,

Max

2 NB + CS, NB +
IG DT + REF, DT

NB + REF, NB +
IG, NB + CS,

Range
Range, DT + CS Range, NB + IG,

NB + REF
DT, DT + CS,

Range, DT + IG

3 NB - NB DT + IG NB DT + REF

4 - - - DT - -

5 - - - DT + REF - -

From Figure 5A, concerning average accuracy values, NB models with HMean, Min,
GMean, Max, Mean, Range-based RMFFS methods and NB + REF fall into the same
category. These set of models are superior in performance and there are statistically
significant differences in their means to other NB models. NB + CS and NB + IG models
rank second while NB model with NO FS method ranks third. Additionally, from Figure 5B,
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DT models with GMean, Mean, HMean, Max, Min, DT + CS, Range, DT + IG are statistically
superior and ranks higher than DT + REF and DT models. Additionally, the ordering of
models from the statistical rank test is important and models which appear first (from left
to right) are superior to the other models regardless of their groupings. Similarly, based
on average AUC values as presented in Figure 6, NB models with Min, HMean, GMean,
Max, Mean-based RMFFS ranks first, while NB + REF, NB + IG, NB + CS and Range-based
RMFFS ranks second and NB with no FS method ranks last. DT models GMean, Min, Max,
HMean, Mean-based RMFFS ranks first, Range-based RMFFS and DT + CS ranks second,
DT + IG ranks third, DT with no FS methods ranks fourth and DT + REF ranks fifth.

Lastly, Figure 7 presents the Scott-Knott rant test results using average f-measure
values. NB models with HMean, GMean, Min, NB + CS, Max, Mean-based RMFFS are
superior and ranks first while NB models based on Range RMFFS, NB + IG and NB +
REF ranks second and NB with NO FS method came last. DT models with GMean, Mean,
HMean, Min and Max-based RMFFS ranks first, DT with NO FS method, DT + CS, Range-
based RMFFS and DT + IG ranks second while DT + REF ranks third. Table 6 summarizes
the analysis of the Scott-Knott Rank Test of experimented FS methods on NB and DT
models.

Summarily, from the experimental results and statistical test, the proposed RMFFS
methods recorded superior positive impact on the prediction performances of SDP models
(NB and DT) than individual FSS (IG, REF and CS) methods on the studied defect datasets.
Whereas, the GMean-based RMFFS method outperforms all experimented FS methods.
These findings, therefore, answers RQ1 and RQ2 (see Section 3.6) as presented in Table 7.
Additionally, the effectiveness of RMFFS addresses filter selection problem by combining
the strength of individual filter FS methods in SDP. Hence, it is recommended as a viable
option to combine filter (multi-filter) methods to harness the strength of respective FFS and
capabilities of filter-filter relationships in selecting germane features for during FS methods
as conducted in this study.

Table 7. Answers to Research Questions.

Research Questions Answers

RQ1. How effective are the proposed RMFFS
methods compared to individual filter FS
methods?

The proposed RMFFS outperforms individual
FFS methods with significant differences.

RQ2. Which of RMFFS methods had the
highest positive impact on the prediction
performance of SDP models?

GMean-based RMFFS method was superior to
other RMFFS methods.

5. Conclusions

This study addresses high dimensionality and filter selection problems in software
defect prediction by proposing novel rank aggregation-based Multi-Filter Feature Selection
Methods (RMFFS). The selection of an appropriate filter rank method is often a hard choice
as the performance of filter methods depends on datasets and classifier used. Consequently,
RMFFS combines individual rank lists generated by independent FFS methods from the
software defect dataset into a single rank list based on rank aggregation methods. Addition-
ally, a geometric mean function was used to automatically select top-ranked features from
the aggregated list. For assessment, features generated by RMFFS and other experimented
filter methods (IG, CS, REF and No FS method) were applied with NB and DT classifiers
on software defect datasets from NASA repository. Analysis from the experimental results
showed the effectiveness and superiority of RMFFS methods as they had a superior positive
impact on the prediction performances of NB and DT classifiers than other experimented
FS methods in most cases. That is, the proposed RMFFS was able to generate a more stable
and complete subset of features that best represent studied datasets. Hence, this makes the
combining of individual filter rank methods a viable solution to the filter rank selection
problem and enhancement of prediction models in SDP. In a broader perspective, findings
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from this study can be used in experts and researchers in SDP and other applicable research
domains that require FS methods as a method of address high dimensionality and filter
selection problem.

As a limitation to this study, we intend to explore and extend the scope of this study
by investigating other ensemble configurations of FS method with more prediction models
as future works. Additionally, the effect of threshold values on the efficacies of FFS is worth
investigating as the adequate threshold value to an extent relies on the used dataset.
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