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Abstract: Electrostatic discharge (ESD) events can severely damage miniature components. Therefore,
ESD protection is critical in integrated circuits. In this study, drain-electrode-embedded horizontal
Schottky diode contact modulation and Schottky length reduction modulation were performed on
a high-voltage 60-V n-channel laterally diffused metal-oxide–semiconductor transistor (nLDMOS)
element. The effect of the on-voltage characteristics of cascade Schottky diodes on ESD protection
was investigated. By using a transmission-line pulse tester, the trigger voltage, holding voltage,
and secondary breakdown current (It2) of the nLDMOS element were determined using the I–V
characteristic. As the N+ area was gradually replaced by the parasitic Schottky area at the drain
electrode, an equivalent circuit of series Schottky diodes formed, which increased the on-resistance.
The larger the Schottky area was the higher the It2 value was. This characteristic can considerably
improve the ESD immunity of nLDMOS components (highest improvement of 104%). This is a good
strategy for improving ESD reliability without increasing the production steps and fabrication cost.

Keywords: electrostatic discharge (ESD); holding voltage (Vh); lateral diffusion MOS (LDMOS);
schottky diode; secondary breakdown current (It2); transmission-line pulse system (TLP system)

1. Introduction

Although the efficiency and speed of components have improved with the evolution
of semiconductor processes, component integration and cost considerations have become a
concern. Generally, compact components are desired. Although the economic benefits of
advanced components have increased, reliability uncertainties have also increased. Even
a small defect during manufacturing can cause considerable losses to the manufacturer.
Electrostatic discharge (ESD) events [1–10] for integrated circuits (ICs) are the major hazard
to reliability.

Common discrete ESD protection devices are laterally diffused metal-oxide–
semiconductor transistors (LDMOSs), gas discharge tube (GDTs), spark gap (SPGs), tran-
sient voltage suppressor (TVSs), and voltage-dependent resistor (VDRs). However, in
this paper, a power management high-voltage integrated circuit manufactured by a very-
large-scale interaction bipolar-CMOS-DMOS (VLSI BCD) process uses LDMOS devices
to form HV circuits and discusses how to protect their ESD reliability. This LDMOS ESD
protection device can be used to protect the I/O port of the circuit. Therefore, LDMOSs
have been effectively used in integrated circuits for power electronics, Internet of things
(IoT) applications, vehicle electronics, and ESD protection components [11–25], and their
importance is gradually increasing. A high-voltage LDMOS has a longer drift region and
shallow trench isolation (STI) region. Then, this device has a larger depletion region and
higher on-resistance (Ron) allowing it to operate under high voltage. However, the operat-
ing voltage of LDMOSs is considerably high. Good reliability and the ability to withstand
large currents are critical in high-current devices. Therefore, the effective discharge of large
currents is essential. However, the current density of these high-voltage LDMOS devices
is often concentrated between the drain and STI. Therefore, the LDMOS has lower ESD
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protection capabilities and at the same time is prone to disadvantages such as latch-up
effects [26–32]. Schottky diodes [33–39] typically include metals and semiconductor junc-
tions. In this work, we combined the low turn-on voltage characteristic of Schottky diodes
with nLDMOSs to form a parasitic horizontal Schottky region at the drain electrode of the
nLDMOS element. Such components exhibit superior reliability and can withstand high
ESD currents.

2. Sample Designs of the HV nLDMOS
2.1. HV nLDMOS Reference Device

High-voltage (HV) laterally diffused metal-oxide–semiconductor transistors (LDMOS)
are often used as ESD protection components at the input/output electrodes of circuits
to prevent the circuit latch-up effect, which causes the element to burn out. We designed
LDMOSs with a protective ring. Typically, to withstand high voltage, a long drift region
is necessary and various concentration regions of N-type and P-type doping are used to
form a concentration gradient. Furthermore, the element has a high drift region resistance.
Various concentration gradients are used to disperse strong electric fields and extend the
length of the depletion region to increase the breakdown voltage. Figure 1a displays the
cross-sectional view of the parasitic equivalent circuit of the LDMOS component, Figure 1b
displays the 3-D structure view, and Figure 1c displays the layout view of the HV nLDMOS
reference element. The test element used in this experiment was a nonbutted structure that
was fabricated using the TSMC 0.25-µm HV 60-V bipolar-CMOS-DMOS (BCD) process.
The component was developed to improve the ESD discharge current capability. The
multifinger symmetrical layout design was used in these HV LDMOS transistors to reduce
the layout area of elements. The total finger number is four. The channel width (Wf) of each
finger of the element was 75 µm. Therefore, the total channel width (Wtot) was 300 µm. A
gate-grounded nMOSFET configuration was used in the HV ESD protection structure. The
instantaneous ESD surge current was discharged through the parasitic BJT path below the
nLDMOS below nLDMOS.
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Figure 1. (a) Parasitic equivalent circuit & cross-sectional view, (b) 3-D structure view, and (c) layout
diagram of the high-voltage n-channel laterally diffused metal-oxide–semiconductor transistor (HV
nLDMOS) reference device.

2.2. HV nLDMOSs with Drain Electrode-Embedded Horizontal Schottky Elements (Contact
Rows Modulation)

In this study, we removed the N+ area in the nLDMOS_ref drain electrode to form an
equivalent series Schottky area structure. Figure 2a,b display the 3D structure view and
layout view, respectively, of the nLDMOS with the drain electrode parasitic full Schottky
diode modulation. The nLDMOS formed a Schottky diode and series parasitic BJT-NPN.
Arranging Schottky diodes in series increases the on-resistance of the HV nLDMOS.
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Figure 2. (a) 3D structure view and (b) layout diagram of the HV nLDMOS with the drain electrode-
embedded full Schottky device modulation.

Figure 3a–c are the 3D structure diagram, layout view, and equivalent circuit of
drain-electrode-embedded horizontal Schottky element modulation of the nLDMOS of
the nLDMOS. The parasitic Schottky area was modulated by varying the row of contact
of the Schottky area. The modulation method involves varying the Schottky area by
symmetrically adding the contact windows laying on the top and bottom rows above the
chip surface. The Schottky diode region was gradually increased to 2, 4, 8, 16, 32 and 36
rows of contact windows, and the effect of the increase in rows on ESD capability was
observed. The ratio of the heavily doped N+ areas to Schottky diode areas is displayed
in Table 1. Equivalently, from Figure 3c, the Ron will be increased as an HV nLDMOS by
adding series Schottky diodes in the drain side. Under this parasitic Schottky structure,
the drain electrode is equivalent to a series Schottky element and a high impedance R’drain.
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Furthermore, it is hoped that, through this technique, the It2 can be increased to improve
the ESD withstanding capability of the device.

Table 1. Area ratios of N+ and Schottky diode regions in the drain side.

nLDMOS N+ Area (%) Schottky Area (%)

Ref. DUT 100 0
HorSchottky_02 94 6
HorSchottky_04 84 16
HorSchottky_08 58 42
HorSchottky_16 42 58
HorSchottky_32 16 84
HorSchottky_36 6 94

Full Schottky 0 100
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Figure 3. (a) 3D structure view, (b) layout diagram, and (c) equivalent circuit of the HV nLDMOS
with the drain electrode-embedded horizontal Schottky elements modulation.

2.3. HV nLDMOSs with the Drain Electrode-Embedded Horizontal Schottky Elements
(Length Modulation)

Next, another Schottky modulation for the upper and lower rows of contact windows
were used as the variable parameter for Schottky length modulation. The Schottky area
was then gradually reduced, which effectively reduced the length of the Schottky area by
1.5 µm on the left and right sides, 3 µm on the left and right sides, and 4.5 µm on the left
and right sides. The effect of decreasing the ratio of the Schottky diode area and the length
of the current path to the drain electrode on ESD capability was observed. Finally, the
area ratio of heavily doped N+ to Schottky diode is listed in Table 2. Figure 4a,b display
the structure and layout diagrams of HV nLDMOSs with the drain electrode-embedded
horizontal Schottky length modulation.

Table 2. Area ratios of N+ and Schottky diode regions in the drain electrode.

nLDMOS N+ Area (%) Schottky Area (%)

Ref. DUT 100 0
DSchottky_450 98 2
DSchottky_300 97 3
DSchottky_150 96 4

DSchottky_0
(Same as HorSchottky_02) 94 6
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embedded horizontal Schottky length modulation.

3. Test Method and Test Instrument

Transmission line pulse (TLP) systems [40–42] are generally used to measure the
high-voltage and high-current snapback behavior of a test device. This TLP system uses
LabVIEW software to control and match the peripheral electronic instruments such as
ESD pulse generators, high-frequency digital oscilloscopes, and digital power meters, thus
enabling automated measurement mechanisms. This machine can provide a continuous
rising square wave to track the I–V characteristic curve of the DUTs, and the short rise and
fall time of this continuous square wave can be used to simulate a fast ESD surge. The
TLP system is used to simulate the human body model. Thus, the voltage and current
response of the element can be obtained through element measurement, and the behavior
of short ESD pulses on the protection device can be simulated. Through the TLP system,
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we can measure I–V characteristics, such as the trigger voltage (Vt1), holding voltage (Vh),
secondary breakdown current (It2), and other physical parameters of the component.

4. Experimental Test Results
4.1. HV nLDMOSs with Drain Electrode-Embedded Horizontal Schottky Elements (Contact
Rows Modulation)

The TLP tester system was used to measure the HV nLDMOS reference device and
the DUTs characteristics with drain-electrode-embedded horizontal Schottky modulation
(contact rows modulation). The snapback I–V characteristic curve, Vt1/Vh distribution, and
secondary breakdown current distribution are displayed in Figures 5–7, respectively. The
number of contact window rows increased with the drain-electrode-embedded horizontal
Schottky area to completely remove the heavily doped N+ area. Obviously, from Figure 3c,
Schottky_Drain exhibited a higher secondary breakdown current performance than other
DUTs because the drain electrode in the series Schottky diode increased the on-resistance
(Ron) of the nLDMOS parasitic BJT. Meanwhile, through the measuring test, it can be found
that an nLDMOS with the parasitic horizontal Schottky diode at the drain electrode had
a limited effect on the breakdown voltage of the device. This modulation of the drain-
electrode-embedded horizontal Schottky did not obviously influence the DC breakdown
voltage (the maximum value only by 3.95%). Finally, all the measured parameters are
displayed in Table 3. The Schottky area increased with the increase in the drain side, which
increased It2 from 2.23 A in the nLDMOS reference device to a maximum of 4.55 A (104%
improvement). From the measured data, it is found that the area of the parasitic Schottky
diode in the drain side greatly affects the ESD capability. When the area percentage of an
nLDMOS drain side added the Schottky diode exceeds 50%, the ESD robustness (It2) of
the device is significantly increased. Then, the ESD immunity of nLDMOS was effectively
improved by using these techniques.
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Table 3. Snapback extracted parameters of HV nLDMOSs with the drain electrode-embedded
horizontal Schottky rows modulation.

nLDMOS Schottky Area % Vt1 (V) Vh (V) It2 (A)

Ref. DUT 0 105.18 34.80 2.23
HorSchottky_02 6 105.40 34.54 2.33
HorSchottky_04 16 106.75 35.07 2.34
HorSchottky_08 42 106.45 35.41 2.35
HorSchottky_16 58 106.65 35.11 2.63
HorSchottky_32 84 105.52 35.83 2.67
HorSchottky_36 94 107.20 37.15 2.73

Full Schottky 100 106.55 36.49 4.55
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4.2. HV nLDMOSs with the Drain Electrode-Embedded Horizontal Schottky Elements
(Length Modulations)

Furthermore, the Schottky length of the nLDMOS drain electrode was reduced to
achieve modulation. The components were measured using the TLP tester. The snapback
I–V characteristic curve, Vt1/Vh distribution, and secondary breakdown current distribu-
tion are displayed in Figures 8–10, respectively. When the length of the Schottky area was
decreased by reducing the length of the drain-electrode-embedded horizontal Schottky
diode. The Schottky area of the drain electrode of the element gradually decreased, and
the contact resistance of the drain electrode equivalent series to the Schottky diode also
decreased. Similarly, through the measuring test, it can be found that an nLDMOS with
the parasitic horizontal Schottky diode at the drain electrode of this modulation did not
influence the DC breakdown voltage (the maximum value was only 2.51%). The secondary
breakdown current of ESD immunity was reduced considerably. The measured parameters
measured are displayed in Table 4. As the area of Schottky decreased to its minimum value,
its It2 also reached the minimum (2.13 A).
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embedded horizontal Schottky length modulation.

Table 4. Snapback extracted parameters of HV nLDMOSs with the drain electrode-embedded
horizontal Schottky length modulation.

nLDMOS Schottky Area % Vt1 (V) Vh (V) It2 (A)

Ref. DUT 0 105.18 34.80 2.23
DSchottky_450 2 105.41 34.28 2.13
DSchottky_300 3 106.60 35.21 2.22
DSchottky_150 4 105.34 34.99 2.26

DSchottky_0 6 105.40 34.54 2.33

4.3. Summary of HV nLDMOSs with Drain Electrode-Embedded Horizontal Schottky Elements

As described above, the ESD capability (It2) value and Schottky-area percentage
comparisons of HV nLDMOSs with the drain electrode-embedded horizontal Schottky
elements by the row and length modulations are organized as shown in Figure 11a,b,
respectively. According to the equivalent circuit diagram of Figure 3c, if the Schottky diode
is parasitically embedded in the drain side of an nLDMOS, the ESD transient current under
the action of an ESD will flow through the path (1) (the partial nLDMOS) and the path
(2) (the parasitic Schottky diode). In the case of an HV nLDMOS with the drain electrode-
embedded horizontal Schottky elements, the conduction-on resistance of this nLDMOS
with a parasitic Schottky diode (path (2)) is higher than that of others nLDMOS part (path
(1)). The main ESD current flows through the nLDMOS path (1). However, when the area
of the Schottky diode increases, it means that the area of the drain-electrode for removing
heavily doped N+ increases. Due to the low-doped NWell under the drain-electrode, it
has a high impedance and favor to limit the ESD current. Therefore, when the Schottky
area of the component is higher, the improvement of It2 is more obvious, especially as
the area percentage of an nLDMOS drain side added to the Schottky diode exceeds 50%.
When the area percentage of drain-side added the Schottky diode exceeds 94%, this ESD
transient current cannot have more path options (it will be more uniform), the robustness
(It2) of the device is significantly increased. This is also the reason why the It2 will be the
highest value for an nLDMOS device with drain side covered 100% full parasitic Schottky
diode. However, as the area ratio of the parasitic Schottky diode is small, the conduction
path of the device is dominated by the nLDMOS path (1). Then, the characteristics of the
parasitic series Schottky diode are not obvious. This leads to the lower It2 values of these
components corresponding to Figure 11b.
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Figure 11. ESD capability (It2) values and Schottky-area % comparison of HV nLDMOSs with the
drain electrode-embedded horizontal Schottky elements by the (a) row modulation and (b) length
modulation.

5. Conclusions

This study described the effect of the drain-electrode of horizontal Schottky mod-
ulation on ESD protection. When the contact row modulation was performed for the
drain-electrode-embedded horizontal Schottky diode, the area of the Schottky diode grad-
ually increased. Under the parasitic Schottky structure of part or all of the drain electrode,
the equivalent ON-resistance of the overall HV LDMOS device will be increased. Therefore,
a higher Schottky area in the drain electrode of the element results in a higher secondary
breakdown current. The component can withstand a larger ESD current. Therefore, when
the area of the drain electrode Schottky diode increases, the ESD immunity will increase
significantly, especially when the area percentage of the Schottky diode exceeds 50%. Espe-
cially, when the nLDMOS drain side is all covered with the parasitic Schottky diode, its
ESD capability (It2) will increase from 2.23 A in the nLDMOS Reference device to a maxi-
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mum value of 4.55 A (an increase of 104%). The It2 was excellent, and the ESD protection
capability of the device was also satisfactory.
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Abbreviations

BCD Bipolar-CMOS-DMOS
BJT Bipolar transistor
ESD Electrostatic discharge
GDT Gas discharge tube
HV High-voltage
It2 Secondary breakdown current
LDMOS Lateral diffused metal-oxide-semiconductor transistor
SPG Spark gap
STI Shallow trench isolation
TLP Transmission-line Pulse
TVS Transient voltage suppressor
VDR Voltage-dependent resistor
Vh Holding voltage
VLSI Very-large-scale integration
Vt1 Trigger voltage
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