
electronics

Article

Skyrmion Logic-In-Memory Architecture for
Maximum/Minimum Search

Luca Gnoli * , Fabrizio Riente , Marco Vacca , Massimo Ruo Roch and Mariagrazia Graziano

����������
�������

Citation: Gnoli, L.; Riente, F.;

Vacca, M.; Ruo Roch, M.;

Graziano, M. Skyrmion

Logic-In-Memory Architecture

for Maximum/Minimum Search.

Electronics 2021, 10, 155. https://

doi.org/10.3390/electronics10020155

Received: 19 October 2020

Accepted: 8 January 2021

Published: 12 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy;
fabrizio.riente@polito.it (F.R.); marco.vacca@polito.it (M.V.); massimo.ruoroch@polito.it (M.R.R.);
mariagrazia.graziano@polito.it (M.G.)
* Correspondence: luca.gnoli@polito.it

Abstract: In modern computing systems there is the need to utilize a large amount of data in
maintaining high efficiency. Limited memory bandwidth, coupled with the performance gap between
memory and logic, impacts heavily on algorithms performance, increasing the overall time and
energy required for computation. A possible approach to overcome such limitations is Logic-In-
Memory (LIM). In this paper, we propose a LIM architecture based on a non-volatile skyrmion-based
recetrack memory. The architecture can be used as a memory or can perform advanced logic functions
on the stored data, for example searching for the maximum/minimum number. The circuit has been
designed and validated using physical simulations for the memory array together with digital design
tools for the control logic. The results highlight the small area of the proposed architecture and its
good energy efficiency compared with a reference CMOS implementation.

Keywords: logic in memory; maximum search; skyrmions; spintronics

1. Introduction

In modern computing systems, the requirement to utilize large amounts of data to
maintain a high efficiency is becoming a major concern for design. Data that is stored
in the memory is read, elaborated in the processing units, and then written back. The
continuous scaling and improvement of the CMOS technology made processing units every
year more powerful. At the same time, memory technologies have not improved at the
same rate, creating a performance gap between storage and processing units. Moreover, the
limited bandwidth available for data transfer makes this limitation even more critical for
the overall performance of computing systems. In addition, the data movement from and
to the memory requires a non-negligible amount of energy that has a great impact on power
consumption [1]. To mitigate these issues, a solution proposed in the literature is to move
the computation inside the memory unit [2]. In this paradigm, called Logic-in-Memory
(LIM), the data stored is elaborated without the need of moving the data outside of memory.
The required logic is distributed inside the memory or in the peripheral circuitry.

Spintronic devices are particularly suitable for implementing this approach. These
devices have both memory and logic capabilities, taking advantage of phenomena linked to
magnetization manipulation. In particular, skyrmions have been proposed as a replacement
of plain domains in racetrack memories as proposed by Parkin in 2008 [3]. In this device,
information encoded in domains is written, shifted, and read serially on a magnetic nanos-
trip. Along with the memory application, many solutions for boolean and non-boolean
logic operations have been proposed in the literature. These solutions take advantage
of the skyrmion mutual repulsion and rich dynamic to obtain different logic functions.
In [4], a set of logic gates based on skyrmion-domain wall pair conversion was proposed.
The solution implementing OR and AND gates with patterned ferromagnetic structures
also provides a robust mechanism to duplicate the input information. Another solution
proposed in [5] takes advantage of natural deviation and mutual repulsion of skyrmions to

Electronics 2021, 10, 155. https://doi.org/10.3390/electronics10020155 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-3749-6225
https://orcid.org/0000-0003-4147-1098
https://orcid.org/0000-0003-2920-3357
https://orcid.org/0000-0001-7313-8017
https://doi.org/10.3390/electronics10020155
https://doi.org/10.3390/electronics10020155
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10020155
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/2/155?type=check_update&version=1


Electronics 2021, 10, 155 2 of 15

obtain logic functions, without the need of any conversion. The skyrmions, encoding the
input information, are pushed through a patterned structure to obtain the logic function.
Synchronization is also possible using patterned constrictions [6] or voltage-controlled
magnetic anisotropy barriers [7]. Finally, in [8,9] synaptic devices have been proposed,
taking advantage of interactions of skyrmion with potential barriers and mutual repulsion
between skymions. In such devices, the inner state, represented by a set of skyrmions is
modified by means of currents. The skyrmions pushed in and out from a reading zone
mimic the promotion and inhibition neural process.

Despite the proposal of many logic and memory devices based on skyrmions, the eval-
uation of digital architectures in which boolean information can be stored and processed is
still lacking. In the literature, examples of elaboration architectures based on skyrmion are
presented in [10,11]. In [10], the authors propose an accelerator for convolutional neural
networks based on skyrmions. The paper shows a device able to classify images stored
in the form of skyrmions. In [11], the authors propose a logic in memory implementation
for binary neural networks, in which skyrmion racetrack memory is used to accelerate the
computations. Finally, in [12] the authors propose a cache memory based on skyrmion and
evaluate its performance with respect to SRAM and other spintronic technologies. The
main contributions of this paper are the following:

• We designed a logic in memory architecture based on skyrmions that can find the
minimum or the maximum value stored within the memory;

• We designed a memory cell based on skyrmions, capable of operating not only as
memory but also as a computing device. From the storage point of view it can be
used as a classical RAM memory, but it integrates logic capabilities implementing
AND, OR Boolean functions without the need of and electric conversion for the
processing phase;

• The entire entire memory cell was studied through micromagnetic simulations. The
cell includes a processing zone, where the elaboration is non-destructive making
possible to maintain the information even after computation;

• We evaluated the entire system performance, with an increasing number of words
in the array starting from 2048 up to 65,536. The evaluation takes into account not
only the skyrmions-based memory array, but also the contribution coming from the
peripheral CMOS circuitry to control the array;

• We compared the array performance with an existing CMOS implementation in term
of dissipated power and the energy per bit.

The proposed design shows a small area occupation along with good energy and
timing performance especially for big memory sizes, compared with a reference Logic-in-
Memory implementations based on CMOS. Furthermore, since skyrmions are used to store
the information the system does not have static power consumption when operations are
not performed on data.

The paper is structured as follows: In Section 2, a background about skyrmions is
presented. In Section 3, the basic cell is described and a typical function is presented and
in Sections 4 and 5 the complete system is described. Section 7 contains the results of
performance evaluation, which are presented and discussed. Finally in Section 8, final
considerations and future prospects about the system are provided.

2. Background

Magnetic skyrmions are chiral magnetic configurations with unitary topological
charge. They can be found stable in materials with high spin orbit coupling lacking
inversion symmetry, in particular, bulk materials like B-20 ferromagnets [13] and thin films
with ferromagnets in contact with high spin orbit materials like Pt, Ir, W, and Ta [14,15].
The skyrmion state is stabilized by the Dzyaloshinskii–Moriya interaction (DMI). The
interaction between neighboring atoms can be expressed as −Di,j · (Si × Sj) where Si and
Sj are spins in sites i and j respectively and Di,j is the DMI vector [16].



Electronics 2021, 10, 155 3 of 15

The most interesting characteristics of skyrmions are the small size, the low depinning
currents, and the stability at room temperature. In the literature, many studies are focused
on memory applications. In particular, skyrmions have been proposed as a replacement
of the plain domain walls in racetrack memories [17] proposed by Parkin in 2008 [3]. In
racetracks, bits, encoded as physically connected magnetic domains, are written serially by
a write head to the memory. The domains are then shifted to be stored and later read if
needed.

Skyrmions can be moved by currents flowing either in the ferromagnet or in the
heavy metal. When the current flows in the ferromagnets, the texture moves due to the
Spin Transfer Torque (STT) effect. When the current is injected in the heavy metal a spin-
dependent scattering effect, called Spin Hall Effect (SHE), generates vertical spin currents
in the ferromagnet in contact with the metal. The current generated exert a torque on the
magnetic texture and consequently a movement. SHE is generally preferred as it is proved
to be more efficient for domain movement [16].

Skyrmions when pushed by currents show a significant longitudinal component
with respect to the current direction as highlighted in Figure 1 [16]. The deviation, called
Skyrmion Hall Effect (SkHE), limits the maximum speed achievable by skyrmions in a
track. The natural repulsion of skyrmions from track edges compensates the longitudinal
movement only up to a threshold current density over which the skyrmion is annihilated
on the track edges and the information is lost [6].

Figure 1. Skyrmion movement inside a plain nanostrip in response to a current flow. In the inset, the
encoding of binary information with skyrmions.

To reduce the magnitude of deviations possible solutions are: Synthetic Antiferro-
magnets (SAFs) [18], Potential gradients [19], and Curbed tracks [20]. SAFs require two
antiferromagnetically coupled ferromagnetic layers, in which information is stored as a
couple of skyrmions with opposite core directions coupled. The opposite core directions of
the two skyrmions and the consequent opposite deviations result in a zero net movement
in transverse direction.

Potential gradient allows the creation of a preferred path for skyrmion movement [19]
allowing to counteract the SkHE far from the edges, reducing greatly the chance of an-
nihilation and consequently rising the maximum current density. In addition, potential
gradients can be created and controlled by means of localized electric fields. Indeed, a
voltage applied across the material allows to rise or lower locally the magnetic anisotropy.
This effect is called Voltage Controlled Magnetic Anisotropy (VMCA) [21,22].

Finally, a curbed track constricts the movement of the skyrmions allowing the defini-
tion of a preferred movement path in which lateral deviation has a strong compensation.
Moreover in the last two solutions, the strength of demagnetizing and anisotropy related en-
ergies are different with respect to a plain track, resulting in different skyrmion dimensions
and increased velocities under the same current densities [19,20,23].



Electronics 2021, 10, 155 4 of 15

3. Memory Cell

The basic element of the proposed architecture is the memory cell. In Figure 2, a
portion of the track hosting the skyrmion is showed. The curb in the ferromagnet constricts
the movement of the skyrmion in a direction longitudinal to the current mitigating the
SkHE, allowing the skyrmion to reach higher speeds compared to a plain nanotrack [20].
The stack composition is W\Co20Fe60B20\MgO. The ferromagnet thickness is 1.5 nm at the
edges and 1.0 nm in the curb. The track is 56 nm wide, with a curb of 30 nm. The material
parameters are reported in Table 1.

Table 1. Parameters used for micromagnetic simulations and current distribution computation.

Simulation Parameters

Saturation Magnetization [16] 1 × 106 A m−1

Uniaxial Anisotropy Constant [16] 8 × 105 J m−2

Exchange Stiffness [16] 2 × 10−11

Damping constant [16] 0.015
Spin Hall Angle [24] 0.4
Film resistivity [24] 165 µΩ cm

Figure 2. Basic memory racetrack structure and stack composition. The track is connected to V+ and V− in order to move
the skyrmion in both directions.

The information, encoded in the presence or absence of the skyrmion, is stored in the
racetrack in a defined portion of the strip, occupied by the information only when all the
bits are correctly stored. From now on we will consider this section as the basic cell of the
memory. With respect to a common racetrack, the proposed design expands the capabilities
of the basic cell connecting a patterned structure on one side of the track in correspondence
of the zone storing the bit. The resulting structure is shown in Figure 3b.

The track shown on the left in the image is the racetrack memory. The skyrmion is
stored and moves here as long as memory operations are executed. The patterned structure
to process the information stored is connected on the right. The skyrmion is expected
to enter in the processing zone from the top track, in correspondence to the duplication
structure. Here the skyrmion, if present, is converted in a domain wall (DW)-pair to be
able to duplicate the information as proposed in [4]. The domain wall reaching the fork
splits in two. The two copies of the information produced, then, are converted back into
skyrmions. The one on the top of the racetrack will be the input for the masking operation.
The other input for the masking operation is nucleated by a write head. The skyrmion
produced by duplication on the bottom is put back in place inside the racetrack memory
through the track connected to the memory. Finally, the vertical track on the left in the
image collects the skyrmions coming from the operation guiding it in the direction of a
read head for further elaborations in the surrounding logic. The read head in the Read-Out
zone is present every two cells to reduce the collection latency. An example of the complete



Electronics 2021, 10, 155 5 of 15

movement of skyrmion during the elaboration phase is reported in Figure 4. To guide
the skyrmion, a set of contacts is needed for local current generation. Their position is
shown in Figure 3a. The contacts in figure are activated in groups during the different
phases of the elaboration. When a set of contacts is activated, the others are left floating to
reduce at the minimum sneaky currents and keep the control as simple as possible. The
contacts are connected to the W layer. The position of the contacts is also important for
power consumption as it will be discussed in Section 7. A current density of 1 × 1010 A m−2

is employed to move the skyrmion inside the racetrack. To unlock the skyrmion from a
notch, a current pulse of 30 × 1010 A m−2 and duration 0.3 ns is needed. Finally a pulse of
intensity 55 × 1010 A m−2 is needed to convert the skyrmion from and to a domain wall
pair. The duration for the two operations is 0.5 ns for the conversion from skyrmion to
domain wall pair and 0.6 ns for the conversion from domain wall pair to skyrmion.

(a)

(b)
Figure 3. In (a), the contacts for current generation in the memory cell. The grey area indicates the
tungsten layer. For every operation, a different set of contacts is involved to generate the required local
currents to move the skyrmion. In (b), the path followed by a skyrmion entering in the processing
zone in case a 1 is stored in the cell and the mask bit is set to 1.

3.1. Cell Operation

In this section, the complete operation of a memory cell will be presented. In Figure 4,
the cell operation is shown in the case a bit equal to 1 is stored inside the cell.



Electronics 2021, 10, 155 6 of 15

Figure 4. In figure the four phases of elaboration of the stored skyrmions. In (a) the information is moved from the memory
track into the duplication gate. In (b) the information is duplicated by means of skyrmion-domain wall conversion. In (c)
the information is processed on top and moved back to the memory cell on bottom. In (d) the result of the operation is read
on the left, the information is restored into the cell on the right.

The skyrmion processing is divided in four steps:

1. To start the circuit operation, the current in the racetrack is reversed and the skyrmion
can enter inside the processing zone (Figure 4a);

2. The skyrmion is guided inside the duplication element. The magnetic bubble, here,
converted in a domain wall pair is duplicated. The two domain wall pairs are pushed
to the edge of the constriction and then converted back into two skyrmions by means
of a second current pulse (Figure 4b). Both the skyrmions are then pushed to reach
the correspondent notches for synchronization. During this step another skyrmion
is nucleated by the write head inside the processing zone to perform the masking
operation;

3. The skyrmion in the top track is pushed over the notch to reach the AND gate to
execute the masking with the input from the mask operation. The skyrmion in the
bottom track enters in the return path to reach the memory cell (Figure 4c);

4. The result of the masking operation is guided through the racetrack to reach the
reading head in order to be collected. The skyrmion on the bottom is put back inside
the memory track (Figure 4d).

4. Memory Array

The modified memory array is based on the model of a racetrack memory. In the
memory array, every word is memorized in a different nanotrack. As shown in Figure 5,
a write head is present at the beginning of the nanotrack to nucleate the skyrmion. At
least one read head is present along the track. Words are written and read sequentially in
every racetrack.

To write the information inside the memory every new bit, nucleated at the write
head, is shifted along the racetrack. After a complete write operation, the bits of the word
are stored in precise portions of the track. To read the information stored in the track, the
skyrmions need to reach a read head. The skyrmions are pushed with a short current



Electronics 2021, 10, 155 7 of 15

pulse and then shifted in the direction of read head. Here, every skyrmion is sensed
as a variation in the resistance of a magnetic tunnel junction in which the ferromagnet,
hosting the skyrmion, corresponds to the free layer of the reading device [25]. As shown
in Figure 5, the value is compared with a reference resistance. With a single read head on
the track, the required latency for a read operation is equal to Nbit ∗ Tcycle. In order to
reduce the latency for a complete read operation more read heads are placed on the track,
as shown in Figure 5, allowing the read of multiple bits at every memory cycle. After the
read operation the word needs to be shifted back in the original position in order to be
ready for computation.

Figure 5. Read and write mechanism. The track has more than one read head to reduce the read
operation latency. In order to sense the skyrmion presence under the read-head, the value produced
is compared with a reference.

5. Logic in Memory
5.1. Maximum/Minimum Search Algorithm

The algorithm implemented allows the identification of the maximum or the minimum
value inside a set of words [26,27]. It exploits parallel operations in order to speedup the
computation and eventually make the latency independent from the number of words
processed. The latter, only if the resources allows such level of parallelization as the logic in
memory case. The algorithm, given a set of words of length N, searches for the maximum
(minimum) in the set.

Its pseudocode is reported in Algorithm 1. The first loop of the algorithm enables
all the words for the computation setting the enable signal to 1 for all the words in the
array. This matrix will signal step by step the words included in the comparison for the
maximum (minimum) search. Afterwards, the main loop starts, processing sequentially
all the bits of the stored words starting from the most significant bit (MSB). At line 4, the
x variable is evaluated to signal if the current iteration of the algorithm will be valid for
maximum (minimum) evaluation or if the algorithm will continue to the next step without
modifying the set of words in the comparison. In case of a maximum (minimum) search
all the selected bits are equal to 0 (1), the iteration will not alter the set of words left in the
comparison. Then, the enable signal will be recomputed for every word in parallel. The
enable signal will continue to be 1 if the bit under examination is 1 (0) or if the x variable is
set to 1 meaning all 0 s (1 s) were found in computation. In every other case, the enable
signal will change to 0. The algorithm will continue until the LSB is reached. The values
at 1 in the enable signal indicates the maximum position. The bits at every iteration of
the algorithm are selected by means of a mask applied to all words under examination.
The minimum search algorithm can be derived from the one above negating the bits of
the input.



Electronics 2021, 10, 155 8 of 15

Algorithm 1: Maximum algorithm.
Data: The input of the algorithm is the bit matrix containing all the bits stored in

memory.
MAXIMUM():

1 for i = 1 downto Nwords do
2 enableNbit,i=1

end
3 for j = Nbit downto 1 do
4 xj = (bitj,1 · enablej,1) + (bitj,2 · enablej,2) + ... + (bitj,Nword · enablej,Nword)

5 Parallel for k= 1 to Nwords do
6 enablek,j = (enablek-1,j · bitk,j) + (enablek-1,j · (xj))

end
end

7 return enable 0

5.2. Control Logic

A complete representation of the logic in memory architecture is shown in Figure 6.

Figure 6. Logic in memory architecture schematic. On the left the block diagram of the complete circuit. On the right the
basic cell of the array. The skyrmion is stored inside the memory in correspondence of the red dot.

The logic that surrounds the array provides the electrical interface and control for the
memory array to execute the memory operations and the additional logic. The TRACK
DECODER controls the word activation based on the input address or the tracks involved
into the operation. In case of reading and writing, the decoder activates only one track
based on the provided address, while for the maximum/minimum search, all the rows are
active for operation at the same time. To also control the memory array a ROW DECODER
is present. The block filters the control signals to activate only the elaboration of the
required bits, avoiding useless operations on the portion of the memory not involved in



Electronics 2021, 10, 155 9 of 15

the current step of the algorithm. A MASK GENERATOR block produces the mask bits
and controls the ROW DECODER. The mask generator is composed for the implemented
algorithm by a shift register with the same length as the width of the stored words. A
READING block is attached to the memory to read out the stored information and the
masking results. The TRACK DISABLER block controls the set of rows that will continue in
the next steps of the algorithms during the search operation based on the values provided
by the READING block. This information is shared with the TRACK DECODER block
during the search and the ENCODER for the final result. Finally all the operations are
coordinated by an finite state machine (FSM) control unit. The control unit synchronizes
the different blocks of the circuit and controls the generation of currents in the array to
correctly guide the stored skyrmions. To keep the FSM as simple as possible, the signals
generated are the same for every cell in the array. Only the cells activated by TRACK
and ROW DECODER blocks will be affected by the control signals. To trigger a search
operation an external signal, FIND, is connected as an input to the circuit.

The surrounding CMOS logic was described using VHDL language and synthesized
using Synopsys Design Compiler software. The software was used for area, power, and
timing estimations. The circuit was synthesized using the Nangate 15 nm library.

5.3. Maximum/Minimum Search Operation

The search of a maximum/minimum starts when the signal FIND is activated. The
mask is loaded by the MASK GENERATOR block and the processing of the word stored
starts from the MSB selected by the ROW DECODER. The FSM now goes through five
steps to process the information stored in memory as shown in Figure 7. The first four are
executed inside the memory array in which the information stored in the cell is processed as
explained in Section 3.1. When the selected bit has been processed, the results are collected
by the reading unit. In the fifth step, the result of evaluation is used to select the words
that will continue in the evaluation. The TRACK DISABLE based on the reading results
generates the signals to the TRACK decoder which tracks what will be disabled in the next
cycles. At every new repetition of the four cycle, the mask is shifted by one position. The
elaboration in the memory array and the evaluation of the results is repeated for Nbit times.
After the last evaluation, the output of the TRACK DISABLE block indicates the position
of the maximum. The FSM moves into the ENCODER state. The signal of track disable
is translated by the ENCODER block in the output address. Finally the FSM returns in
IDLE state.

Figure 7. FSM state diagram for maximum/minimum search.

5.4. Bitwise Operations between Rows and Columns

The cells composing the array, as shown in Figure 8, are connected in order to execute
bit-wise operations between columns and rows to allow further elaboration of the stored
information. In particular, the elaboration zone of each cell can be fed with the output
of the cell above, Figure 8a, allowing the concatenation of Boolean operations along the
column. Alternatively, the operation executed in the elaboration zone can involve the



Electronics 2021, 10, 155 10 of 15

data coming from neighbouring cells, Figure 8b, belonging to different columns allowing
row-wise operations. These operations allow further elaboration of the stored information
and the concatenation of logic operations for the execution of more complex algorithms.

To allow a more efficient movement between cells, VCMA gates are placed along the
tracks. These gates shown in Figure 8 with orange squares, are controlled electrically and
when active impose a potential barrier to the skyrmion allowing a more efficient movement
under current .

(a) (b)

Figure 8. Logical operation between rows and columns. (a) Column-wise operation and (b) row-wise operation.

To further expand the capabilities of the presented Logic-in-Memory device, the logic
section of each cell can be specialized to execute different logic operations with different
gates as shown in [5] in order to allow the mapping of even more complex algorithms
in memory.

6. Methods

The basic cells of memory array were simulated using a GPU accelerated micro-
magnetic simulation software, Mumax3 [28,29]. The simulation discretization is set to
1 × 1 × 0.5 nm3. The material parameters used in the micromagnetic simulation are re-
ported in Table 1. Micromagnetic simulations, as the one showed in Figure 4, were used
to verify the correct behavior of the designed circuit and to estimate the current density
needed to accomplish every operation.

The memory cells were then simulated with Elmer FEM software [30] with the static
current module. The simulations were performed in order to analyze the current distribu-
tion in the memory cell and evaluate the power consumption during circuit operation. The
basic cell was simulated with the currents required for the correct information movement
and elaboration. To generate the currents, a set of contacts was placed on the cell in the
positions showed in Figure 3a. The power of every operation was derived. The value of
resistivity used for the evaluation is reported in Table 1. An example of the simulation
results is showed in Figure 9. The figure shows the movement of the information inside
the processing zone.



Electronics 2021, 10, 155 11 of 15

The surrounding logic was synthesized with Synopsys Design Compiler with different
array dimensions. To extract the power consumption the array, was simulated during a
maximum search.

Figure 9. Current paths during duplication operation. The color gradient indicates the current
density inside the cell. In green the current path needed to move the skyrmion. In red the additional
path generated. The current flowing in this path is not needed for current operation and increase the
power consumption in the operation.

7. Results

In this section, the performances’s section of the array will be shown and compared
with a CMOS in memory implementation based on a modified CAM cell presented in [27].
The performance of the designed architecture is shown in Table 2 and in Figure 10. The
maximum frequency achievable by the architecture is restricted by the memory array to
285 MHz. The longest path the skyrmion has to travel limits the control logic in frequency
in the explored configurations. In particular, the critical paths inside the array are repre-
sented by the path the skyrmion has to travel to return into the memory array, and the
distance between consecutive cells inside the array. In the surrounding logic, the most
critical component is the encoder that sets the maximum working frequency of the circuit.
Compared to the reference CMOS implementation on 64 bits, it is possible to notice that
the achievable frequency is higher starting from sizes of memory bigger than 32Kword. To
execute the algorithm in the proposed implementation, the cycles required to process the
information are equal to 5*Nbit + 1. As shown in Table 2, the latency of a complete search
operation for skyrmion implementation is lower when the memory size increases. For the
logic in memory CMOS implementation, the latency reported was computed starting from
the values of frequency and latency reported in the article. In comparison, the skyrmion
implementation is able to achieve lower computational times for bigger memory sizes,
due to the higher working frequency despite the additional two cycles required at every
iteration of the basic steps.



Electronics 2021, 10, 155 12 of 15

Table 2. Area and timing, word width = 64 bit.

Words Area (µm2) Frequency (MHz) Latency (ns)

Proposed [27] Ratio Proposed [27] Proposed [27] Ratio

2048 42,307 89,665 0.47 285 * 1785 1120 108 10.30
4096 95,036 181,694 0.52 285 * 1041 1120 183 6.20
8192 190,056 368,489 0.51 285 * 571 1120 373 3.00

16,384 381,625 747,729 0.51 285 * 298 1120 647 1.74
32,768 748,076 1,516,103 0.49 285 * 149 1120 1293 0.86
65,536 1,427,936 3,045,940 0.46 285 * 75 1120 2560 0.44

* limited by maximum array frequency.

The values of area, reported in table, were calculated by computing separately the area
of the surrounding logic and area of the array and then summing the two values together.
The results show that the area occupied by the circuit is half the one required for the CMOS
implementation in all the simulated combinations.

Figure 10. Delay area product with respect to the memory size of the proposed skyrmion implemen-
tation and CMOS [27].

Finally, the power and energy performance of the arrays were computed. In Table 3,
the consumption for the different stages of the memory operations are reported. The
reported values are referred to maximum search. The worst case among all simulated
datasets is reported. The worst case scenario is represented by the one in which all
the words remain valid during the complete algorithm. This case corresponds to the
memory filled with all equal numbers. In a common case, many of the words would be
discarded during the iteration of the algorithm reducing proportionally the power and
energy required for operation. The main contribution to power consumption is given
by the duplication phase. In this phase, the circuit, to correctly process the skyrmion,
requires two current pulses. The first, generated at the beginning of the phase unlocks
the movement of the skyrmion from its rest position and pushes the skyrmion toward the
skyrmion domain-wall pair conversion. The second, running at half cycle, is generated
to convert duplicated domain-wall pairs into skyrmions . This conversion requires a high
current density equal to 55 × 1010 A m−2 for 0.6 ns. Sneaky currents are also an important
contribution to power consumption. In the duplication phase shown in Figure 9, the V+
and V− contacts are connected not only through the fork structure used for the duplication
but also by the return path that will be used later to reinsert the skyrmion into the memory.
The same reasoning is valid for every other step executed in memory. The mean power
consumption and the energy per bit have been calculated and are reported in Table 4.



Electronics 2021, 10, 155 13 of 15

Table 3. Power consumption of a single memory cell for each phase.

Phase Power (uW)

Move Skyrmion 0.07
Duplication 21.67

AND 6.44
Collection 0.14

Table 4. Power and energy—Word width = 64 bit.

Words Power (mW) Energy per bit (pJ/bit)

Proposed [27] Proposed [27] Ratio

2048 34 25 327 20 16.35
4096 66 36 320 25 12.80
8192 74 54 193 38 5.00

16,384 133 85 177 52 1.92
32,768 227 148 157 90 1.74
65,536 574 270 153 164 0.93

Both the memory array and the surrounding logic contributions are taken into account.
The reference case is for a 64 bit word. Comparing these values with the reference CMOS
implementation, it is possible to see that CMOS implementation performs better for all
the tested combinations. The different trends in energy efficiency with respect to memory
dimensions, showed in Table 4, are mainly due to the fact that the frequency of operation
stays stable for skyrmions while for CMOS implementation, it decreases linearly with
increasing dimensions. For this reason, with dimensions greater than 32,568 words, the
skyrmion implementation becomes more efficient in terms of computation. The decreasing
trend in energy efficiency of the skyrmion implementation will continue until the mem-
ory array critical path sets the maximum frequency for the complete system like in the
presented combinations.

8. Conclusions

In this paper we proposed a Logic-in-Memory architecture based on magnetic
skyrmions for minimum/maximum search. The proposed circuit based on a new skyrmion
memory cell is able to store information and elaborate it, maintaining at the same time the
original information inside the memory. The memory can be used as a RAM memory or can
perform LIM operations. The functionality of the memory array and the control logic was
verified through micromagnetic simulations and hardware description language (HDL)
simulation tools. The circuit proved to be small in area and to have a good energy efficiency
and latency for big array dimensions with respect to a CMOS logic-in-memory reference
implementation. The proposed skyrmion LIM approach could be extended and enriched to
be adapted to other algorithms. The presented architecture could serve in future works as
a starting framework to develop more complex LIM architectures. Future works will focus
on further optimization of the structure in two aspects: (i) To explore new materials able
to host skyrmions in order to optimize the performance regarding movement, dimension,
and efficiency, and (ii) to further optimize the duplication mechanism section that in the
presented architecture impact heavily on the overall efficiency.

Author Contributions: Conceptualization, L.G.; methodology, L.G. and F.R. validation, L.G.; inves-
tigation, L.G.; data analysis, L.G.; writing—original draft preparation, L.G.; writing—review and
editing, L.G., F.R., M.V., M.R.R. and M.G.; visualization, L.G.; supervision, M.V., M.R.R. and M.G. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.



Electronics 2021, 10, 155 14 of 15

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We gratefully acknowledge the support of the NVIDIA Corporation with the
donation of the Titan XP GPU, which was used for this research. Moreover, we would like to
acknowledge Chiara Cannavò for her preliminary contribution to the presented study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Saulsbury, A.; Pong, F.; Nowatzyk, A. Missing the Memory Wall: The Case for Processor/Memory Integration. SIGARCH Comput.

Archit. News 1996, 24, 90–101. [CrossRef]
2. Santoro, G.; Turvani, G.; Graziano, M. New logic-in-memory paradigms: An architectural and technological perspective.

Micromachines 2019, 10, 368. [CrossRef] [PubMed]
3. Parkin, S.S.P.; Hayashi, M.; Thomas, L. Magnetic Domain-Wall Racetrack Memory. Science 2008, 320, 190–194. [CrossRef]
4. Zhang, X.; Ezawa, M.; Zhou, Y. Magnetic skyrmion logic gates: Conversion, duplication and merging of skyrmions. Sci. Rep.

2015, 5, 1–8.
5. Chauwin, M.; Hu, X.; Garcia-Sanchez, F.; Betrabet, N.; Paler, A.; Moutafis, C.; Friedman, J.S. Skyrmion Logic System for

Large-Scale Reversible Computation. Phys. Rev. Appl. 2019, 12, 064053. [CrossRef]
6. Sampaio, J.; Cros, V.; Rohart, S.; Thiaville, A.; Fert, A. Nucleation, stability and current-induced motion of isolated magnetic

skyrmions in nanostructures. Nat. Nanotechnol. 2013, 8, 839–844. [CrossRef] [PubMed]
7. Kang, W.; Zheng, C.; Huang, Y.; Zhang, X.; Zhou, Y.; Lv, W.; Zhao, W. Complementary Skyrmion Racetrack Memory With Voltage

Manipulation. IEEE Electron Device Lett. 2016, 37, 924–927. [CrossRef]
8. Huang, Y.; Kang, W.; Zhang, X.; Zhou, Y.; Zhao, W. Magnetic skyrmion-based synaptic devices. Nanotechnology 2017, 28, 08LT02.

[CrossRef]
9. Song, K.M.; Jeong, J.S.; Pan, B.; Zhang, X.; Xia, J.; Cha, S.; Park, T.E.; Kim, K.; Finizio, S.; Raabe, J.; et al. Skyrmion-based artificial

synapses for neuromorphic computing. Nat. Electron. 2020, 3, 148–155. [CrossRef]
10. Liu, B.; Gu, S.; Chen, M.; Kang, W.; Hu, J.; Zhuge, Q.; Sha, E.H.M. An efficient racetrack memory-based Processing-in-memory

architecture for convolutional neural networks. In Proceedings of the 2017 IEEE International Symposium on Parallel and Dis-
tributed Processing with Applications and 2017 IEEE International Conference on Ubiquitous Computing and Communications
(ISPA/IUCC), Guangzhou, China, 12–15 December 2017; pp. 383–390.

11. Pan, Y.; Ouyang, P.; Zhao, Y.; Yin, S.; Zhang, Y.; Wei, S.; Zhao, W. A Skyrmion Racetrack Memory Based Computing In-
Memory Architecture for Binary Neural Convolutional Network. In Proceedings of the 2019 on Great Lakes Symposium on
VLSI, GLSVLSI’19, Washington, DC, USA, 9–11 May 2019; Association for Computing Machinery: New York, NY, USA, 2019;
pp. 271–274. [CrossRef]

12. Chen, M.; Ranjan, A.; Raghunathan, A.; Roy, K. Cache Memory Design with Magnetic Skyrmions in a Long Nanotrack. IEEE
Trans. Magn. 2019, 55, 1–9. [CrossRef]

13. Huang, S.X.; Chien, C.L. Extended Skyrmion Phase in Epitaxial FeGe(111) Thin Films. Phys. Rev. Lett. 2012, 108, 267201.
[CrossRef] [PubMed]

14. Jiang, W.; Zhang, X.; Yu, G.; Zhang, W.; Wang, X.; Jungfleisch, M.B.; Pearson, J.E.; Cheng, X.; Heinonen, O.; Wang, K.L.; et al.
Direct observation of the skyrmion Hall effect. Nat. Phys. 2017, 13, 162–169. [CrossRef]

15. Woo, S.; Litzius, K.; Krüger, B.; Im, M.Y.; Caretta, L.; Richter, K.; Mann, M.; Krone, A.; Reeve, R.M.; Weigand, M.; et al. Observation
of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 2016,
15, 501–506. [CrossRef] [PubMed]

16. Tomasello, R.; Martinez, E.; Zivieri, R.; Torres, L.; Carpentieri, M.; Finocchio, G. A strategy for the design of skyrmion racetrack
memories. Sci. Rep. 2014, 4, 6784. [CrossRef] [PubMed]

17. Fert, A.; Cros, V.; Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 2013, 8, 152–156. [CrossRef] [PubMed]
18. Tomasello, R.; Puliafito, V.; Martinez, E.; Manchon, A.; Ricci, M.; Carpentieri, M.; Finocchio, G. Performance of synthetic

antiferromagnetic racetrack memory: Domain wall versus skyrmion. J. Phys. D Appl. Phys. 2017, 50, 325302. [CrossRef]
19. Fook, H.T.; Gan, W.L.; Lew, W.S. Gateable skyrmion transport via field-induced potential barrier modulation. Sci. Rep. 2016,

6, 21099. [CrossRef]
20. Fook, H.T.; Gan, W.L.; Purnama, I.; Lew, W.S. Mitigation of magnus force in current-induced skyrmion dynamics. IEEE Trans.

Magn. 2015, 51, 1–4. [CrossRef]
21. Amiri, P.K.; Wang, K.L. Voltage-controlled magnetic anisotropy in spintronic devices. In Spin; World Scientific: Singapore, 2012;

Volume 2, p. 1240002.
22. Li, X.; Fitzell, K.; Wu, D.; Karaba, C.T.; Buditama, A.; Yu, G.; Wong, K.L.; Altieri, N.; Grezes, C.; Kioussis, N.; et al. Enhancement

of voltage-controlled magnetic anisotropy through precise control of Mg insertion thickness at CoFeB| MgO interface. Appl.
Phys. Lett. 2017, 110, 052401. [CrossRef]

23. Martinez, J.; Lew, W.; Gan, W.; Jalil, M. Theory of current-induced skyrmion dynamics close to a boundary. J. Magn. Magn. Mater.
2018, 465, 685–691. [CrossRef]

http://doi.org/10.1145/232974.232984
http://dx.doi.org/10.3390/mi10060368
http://www.ncbi.nlm.nih.gov/pubmed/31159236
http://dx.doi.org/10.1126/science.1145799
http://dx.doi.org/10.1103/PhysRevApplied.12.064053
http://dx.doi.org/10.1038/nnano.2013.210
http://www.ncbi.nlm.nih.gov/pubmed/24162000
http://dx.doi.org/10.1109/LED.2016.2574916
http://dx.doi.org/10.1088/1361-6528/aa5838
http://dx.doi.org/10.1038/s41928-020-0385-0
http://dx.doi.org/10.1145/3299874.3318015
http://dx.doi.org/10.1109/TMAG.2019.2909188
http://dx.doi.org/10.1103/PhysRevLett.108.267201
http://www.ncbi.nlm.nih.gov/pubmed/23005010
http://dx.doi.org/10.1038/nphys3883
http://dx.doi.org/10.1038/nmat4593
http://www.ncbi.nlm.nih.gov/pubmed/26928640
http://dx.doi.org/10.1038/srep06784
http://www.ncbi.nlm.nih.gov/pubmed/25351135
http://dx.doi.org/10.1038/nnano.2013.29
http://www.ncbi.nlm.nih.gov/pubmed/23459548
http://dx.doi.org/10.1088/1361-6463/aa7a98
http://dx.doi.org/10.1038/srep21099
http://dx.doi.org/10.1109/TMAG.2015.2433677
http://dx.doi.org/10.1063/1.4975160
http://dx.doi.org/10.1016/j.jmmm.2018.06.031


Electronics 2021, 10, 155 15 of 15

24. Zhang, C.; Fukami, S.; Watanabe, K.; Ohkawara, A.; DuttaGupta, S.; Sato, H.; Matsukura, F.; Ohno, H. Critical role of W deposition
condition on spin-orbit torque induced magnetization switching in nanoscale W/CoFeB/MgO. Appl. Phys. Lett. 2016, 109, 192405.
[CrossRef]

25. Penthorn, N.E.; Hao, X.; Wang, Z.; Huai, Y.; Jiang, H.W. Experimental Observation of Single Skyrmion Signatures in a Magnetic
Tunnel Junction. Phys. Rev. Lett. 2019, 122, 257201. [CrossRef] [PubMed]

26. Vai, M.; Moy, M. Real-time maximum value determination on an easily testable VLSI architecture. IEEE Trans. Circuits Syst. I
Fundam. Theory Appl. 1993, 40, 283–285. [CrossRef]

27. Vacca, M.; Tavva, Y.; Chattopadhyay, A.; Calimera, A. Logic-In-Memory Architecture For Min/Max Search. In Proceedings of the
2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Bordeaux, France, 9–12 December 2018;
pp. 853–856.

28. Vansteenkiste, A.; Leliaert, J.; Dvornik, M.; Helsen, M.; Garcia-Sanchez, F.; Van Waeyenberge, B. The design and verification of
Mumax3. AIP Adv. 2014, 4, 107133. [CrossRef]

29. Mulkers, J.; Van Waeyenberge, B.; Milošević, M.V. Effects of spatially-engineered Dzyaloshinskii-Moriya interaction in ferromag-
netic films. Phys. Rev. B 2017, 95, 144401. [CrossRef]

30. ElmerFEM. Open Source Multiphysical Simulation Software. Available online: http://www.elmerfem.org/ (accessed on 15
September 2020).

http://dx.doi.org/10.1063/1.4967475
http://dx.doi.org/10.1103/PhysRevLett.122.257201
http://www.ncbi.nlm.nih.gov/pubmed/31347909
http://dx.doi.org/10.1109/81.224304
http://dx.doi.org/10.1063/1.4899186
http://dx.doi.org/10.1103/PhysRevB.95.144401
http://www.elmerfem.org/

	Introduction
	Background
	Memory Cell
	Cell Operation

	Memory Array
	Logic in Memory
	Maximum/Minimum Search Algorithm
	Control Logic
	Maximum/Minimum Search Operation
	Bitwise Operations between Rows and Columns

	Methods
	Results
	Conclusions
	References

