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Abstract: A millimeter-wave (mmWave) textile antenna operating at 26 GHz band for 5G cellular
networks is proposed in this paper. The electromagnetic characterization of the textile fabric used
as substrate at the operating frequency was measured. The textile antenna was integrated with
an electromagnetic bandgap (EBG) structure and placed on a polyester fabric substrate around the
antenna. Results showed that the proposed EBG significantly improved the performance of the
antenna. The gain and energy efficiency at 26 GHz were 8.65 dBi and 61%, respectively (an increase
of 2.52 dB and 7% compared to a conventional antenna), and the specific absorption rate (SAR) was
reduced by more than 69.9%. Good impedance matching of the fabricated antenna at the desired
frequency was observed when it was bent and worn on the human body. The structure is simple,
compact, and easy to manufacture. It may well be suitable for integration into applied clothing in
various fields, especially for future IoT applications.

Keywords: millimeter-wave; electromagnetic bandgap structure (EBG); 5G; Internet of Things (IoT)

1. Introduction

Over the past few years, interest in the millimeter-wave band (mm-wave) has grown
rapidly due to the abundance of unused bandwidth and the large available spectrum, open
new possibilities for various applications of body-centric wireless communication (e.g.,
healthcare, entertainment, remote monitoring, mobile computing etc.), that could play a
key role in fifth-generation (5G) to connect the billions of fixed and mobile devices for
future IoT applications [1].

Wearable antenna features attached to the body or clothing, like size, weight, cost,
performance and ease of integration, have been more enormously studied in past years.
However, most of these studies have been concentrated on microwave bands [2,3] and
more profound efforts are needed for the design and implementation of high-frequency
textile antennas to meet the future demand for integrating the IoT with connected clothes.
Developing textile antennas at millimeter waves will improve not only data rates but also
level of security and reliability. Besides, it should be noted that proposed bands around
20 and 60 GHz bring a challenge for deployment due to propagation and penetration
losses with high atmospheric absorption. Hence, to compensate for these losses, high-gain
directional antennas are desirable [4].

Recently, the design of textile antennas operating at millimeter-wave has rapidly
grown since they guarantee flexibility and comfortable, embedding into clothing while
satisfying the requirements of modern wearable systems. Previous studies have been
carried out at carrier frequencies to 60 GHz. The first textile Yagi-Uda antenna [5], has been
proposed, and shown that the antenna is matched in the 57–64 GHz band for future wireless
body area networks (BANs). But, this antenna is suffering from high backward radiation
that increases the radiation hazard to human users. Besides, a microstrip patch antenna
array printed on textile was proposed for off-body communications in the 60-GHz band
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and investigated numerically and experimentally [6]. However, the radiation efficiency of
this latter was not so promising (40%).

Moreover, a millimeter-wave textile antenna for 5G RF energy harvesting was pre-
sented in [7]. The proposed antenna is based on the broadband antipodal Vivaldi antenna
covering the 24–28 GHz bands with stable gain over 5 dBi.

However, these antennas for on-body worn applications suffer from certain limitations,
contain low radiation efficiency, gain and interaction between antenna and the human
body which can significantly affect the performance of the antenna.

Recently, an electromagnetic bandgap material (EBG) realized on a flexible substrate is
a standout amongst the best-known method to improve the performance of the antenna [8].
Thanks to its ability to suppress surface waves and generate a zero reflect phase, it offers
the potential advantage to improve e gain and quality factor and reduce the effects of e
proximity of the human body of the antenna [2,9]. It was shown that the EBG improved the
gain, bandwidth and backward radiation suppression of the coplanar waveguide (CPW)
antenna in the frequency range 20–40 GHz [10]. Moreover, an EBG based mm-wave flexible
multiple-input multiple-output (MIMO) antenna is reported in [11]. The results show
that the EBG surface can improve the gain by 1.9 dBi and reduce the backward radiation
by 8 dB at 24 GHz. However, these antennas use the EBG structure as a reflector, but
these geometries are inherently complex, Thus, their fabrication at millimeter-scale for
mm-wave applications is a real challenge. In addition, owing to its multilayer geometry,
there are issues of misalignment due to the different parts for assembly, while still retaining
a significant lateral dimension. Therefore, a low-profile textile antenna, as well as a single-
layer design, have the advantages of high gain and good isolation covering the allocated 5G
frequency, which is one of the most requested solutions. In this letter, we provide further
results from a study of a mm wave textile patch antenna surrounded by periodic unit cells
of EBG printed on a single textile substrate for future 5G and IoT applications [12]. We
extend and validate this work through further analysis and by using experimental results.
The proposed antenna has an extremely low height profile (0.35 mm) and simple design
with minimum parts of the assembly that offer low-cost and mass production suitable
for practical applications. Despite the small volume, the proposed antenna generates
higher gain and acceptable bandwidth and efficiency with low back radiation and reduced
SAR values.

All the antenna simulations were done using computer simulation software (CST
Microwave Studio) and fabricated in the Laboratory of Electronics, Antennas and Telecom-
munications (LEAT) of the University Cote d’Azur, France. The rest of the paper organiza-
tion is as follows. The dielectric properties of the textile substrate are first characterized
at 26 GHz. Then, the patch antenna design, its fabrication process, simulated/measured
results and the characterization of the EBG structure are presented. Simulation and ex-
perimental results of the EBG-based antennas are compared to conventional designs to
appreciate the benefits of EBGs. The on-body performance of the antenna under bending
conditions, and SAR assessment, are discussed.

2. Characterization of the Textile for the Design of the Antenna

At millimeter waves, the choice and the characterization of the substrate layer in terms
of thickness, relative permittivity and loss tangent are very crucial features for any design.
In this section, we restrict our choice to the characterization of a well-known textile of
0.35 mm thickness; soft plain-woven polyester fabric.

Different measurement methods were used to determine the dielectric property values,
such as the hybrid microstrip-line method, stub resonator and a broadband method based
on a stripline cell [13,14]. In this case, the relative permittivity and losses were characterized
using the single frequency method based on an open-stub resonator [6,15].

The first step of the proposed methods was to set up calibration by measuring the
transmission coefficient S21 parameter for a microstrip line printed on the fabric. Next, the
S21 parameter for quarter-wavelength open stub resonator was measured (see Figure 1a,b),
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then, the S21 parameter for the stub resonator was simulated using CST Microwave Studio.
The relative permittivity and the dielectric losses of the textile were adjusted to match the
simulated S21 curve with measured one (Figure 1c).
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Figure 1. Characterization of the polyester fabric at 26 GH. (a) Prototypes of the microstrip line and microstrip T-resonator.
(b) Set-up of S-parameter measurement. (c) Simulation and measurement results of S21 parameter.

The proposed technique offers many advantages in terms of rapidity, simplicity and
no requirement for specific equipment in addition to its perfect adaptation to all types of
fabrics. The 50 Ω microstrip line width and open-stub length were equal to 1.10 mm and
1.90 mm, respectively. It was bonded on a piece of polyester fabric (10 × 18 × 0.35 mm).
The metallization of the stub and the ground plane was realized by adhesive copper foil.

The best agreement for the resonant frequency was achieved using εr = 2.17 and tan
δ = 0.0035. These values were used in the design of the antenna.

3. Antenna and EBG Design
3.1. Antenna Design and Fabrication

Figure 2a shows a conventional patch antenna which consists of a conductive layer and
0.35 mm-thickness of the polyester textile substrate layer. The rectangular patch antenna
is the easiest to construct and was fed by a microstrip transmission line to facilitate the
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integration into the textile. The dimensions of the antenna were calculated using equations
cited in [16] and are listed in Table 1.
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Figure 2. Conventional textile antenna. (a) Dimension of the textile antenna. (b) Simulation and measurement of the return
loss S11

Table 1. Dimensions of the proposed antenna.

Parameter Value (mm) Parameter Value (mm)

W 23 W2 0.2
L 18 L2 2.04

W1 4.46 W3 1
L1 3.3 h 0.35

The radiating element and feeding line were fabricated by using ultra-thin polyimide
copper laminates [17,18]. The etched polyimide copper laminates present good flexibility
compared to copper foils and the manufacturing imperfections were minimized, as mm
wave antenna dimensions are generally less than 1 mm. The nonpatterned metallic parts
(like the ground plane) were made of a thin layer of copper foil with adhesive backing.
Figure 3 shows a cross-section of the structure.
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The reflection coefficients frequency comparison between the measured and simulated
results of the conventional textile antenna are shown in Figure 2b. Both results were in
good agreement at 26 GHz, whereas the measured bandwidth was 0.91 GHz, which is
13.3% less than the predicted bandwidth of 1.05 GHz. This is because of the imperfections
reproduced during the fabrication process (soldering tolerance). The radiation patterns of
the antenna are described later, and the measured gain of this latter was 6.13 dB at 26 GHz.

Whereas an on-body antenna in practice needs to be not only compact and lightweight
for better integration, it should also be efficient and induce minimal power absorption



Electronics 2021, 10, 154 5 of 12

inside the human body. Therefore, the surface waves excited by the edges of the antenna
can considerably deteriorate the performance of the antenna, such as radiation efficiency
and gain that may not satisfy anticipated future requirements.

To overcome this problem, a band-gap material (EBG) structure was integrated into
the design. Such metamaterial structures have two common configurations: in-phase
reflection and surface waves suppression due to the property of high impedance surface
(HIS) within a certain frequency band gap in which surface wave propagation is highly
restricted [19]. Figure 4 presents a generic flowchart, which explains the process of the
textile antenna design starting with the characterization of the fabric using as a substrate.
The EBG structure is patterned around a conventional patch antenna for performance
enhancement. Thereafter, measurement of the fabricated antenna was conducted. In
addition, further evaluation of the textile antenna on the human body was tested.
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3.2. EBG Design

The EBG unit cells have been reported in [20]. They were used to surround the patch
radiator, which offers the advantage of reducing the surface wave influence. Surface-
waves suppression can reduce the quantity of power wasted, and back radiation leads to
improved antenna performance aspects such as raising the gain, side-lobe and back-lobe
reduction, and improving the energy efficiency [21].

The size of the proposed EBG unit cell is shown in Figure 5. The fabric used was
polyester and the square patch was fabricated with the same copper sheets.

Diverse methods were employed to investigate the EBG characteristics at the res-
onant frequency, such as the dispersion diagram, reflection phase [22] and suspended
transmission line method. In this project, the suspended transmission line method was
considered. This technique has been usually used and gives many advantages such as
weak transmission loss, low dispersion characteristics and ease of fabrication [23]. For the
proposed technique, an insulating microstrip transmission line was hung over the EBG
array and excited such that one port acted as a source and the other as a matched load. The
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bandgap response was calculated with the optimized dimension of the square unit cell
EBG using the simulator CST MWS as shown in Figure 6.
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The simulation results are depicted in Figure 7. The transmission coefficient (S21)
presented a sufficiently well-defined bandgap in the frequency range from 25.53 GHz
to 28.12 GHz. After characterization, the EBG unit cell was used to surround the patch
antenna for the surface-wave suppression and helped to improve the performance of the
antenna [20].

3.3. Integration of Conventional Antenna and EBG Surface

In this section, the EBG unit cells were loaded in the top layer of the three-sided
rectangular patch antenna as shown in Figure 8a. The top face was made up of fourteen
EBG unit cells which were placed in an optimal position away from the edge of the antenna.
The other two sides (right and left) consisted of nine periodic squares of EBG unit cells and
were placed within one period of the edges of the patch. This arrangement between the
antenna and the EBG layers was made to obtain a better antenna return loss.

The new antenna had dimensions of 32.1 × 22 mm2. The size of the EBG unit cell was
3.2 × 3.2 mm2 and the space between the two cells was 0.2 mm.
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4. Discussion

The fabricated antenna prototype is shown in Figure 8b. To explain the antenna
performance, the reflection coefficient plot of the antenna measured in free space with and
without EBG is depicted in Figure 9.
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Figure 9. Return loss plot of the antenna measured in free space.

We can notice that the antenna with EBG offers a good impedance matching (|S11|
< −10 dB) for a bandwidth frequency ranging from 25.51 GHz to 26.27 GHz, which
corresponds to a bandwidth of 760 MHz. This value is sufficient for 5G—26 GHz operations.

The measured radiation pattern plots of the two designed textile antennas in both E
and H planes were obtained in an anechoic chamber as shown in Figure 10a. From the
results of Figure 10b, it can be seen that the textile antenna loaded with EBG significantly
narrowed the main radiation beam compared to the antenna without EBG. In particular,
the half-power beamwidth (HPBW) in the E-plane was substantially reduced by 33.2◦, thus
enhancing its radiation directivity and gain.
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Table 2 shows the directivity, radiation efficiency and gain of the proposed and
conventional patch antennas, both at their operating frequency. It can be seen from this
table that the directivity and the measured gain of the antenna with EBG increased by 2 dBi
compared to the classic patch antenna without EBG. As a result, the measurement results of
the antenna achieved an improved radiation efficiency of about 7% when EBG was added.

Table 2. Radiation parameters of the two patch antennas at 26 GHz.

Antennas
without EBG with EBG

Simulated Measured Simulated Measured

Gain (dBi) 6.97 6.13 9.79 8.65
Directivity (dBi) 7.71 8.3 11.1 10.4

Efficiency (%) 72 54 77 61

5. Antenna on the Human Body
5.1. Bending the Antenna

In mobile systems, a wearable antenna made of flexible textile is expected to bend
due to the movements of the human body. The proposed textile antenna with EBGs was
measured when bent over a rolled foam of 60 mm diameter along the x-axis and y-axis,
thus modeling the forearm of an adult human, to study the performance of this latter under
deformation, as can be seen in Figure 11a. The measured S11 when bent in both planes in
the x and y axis are plotted in Figure 11b and compared to the when the antenna was flat.
It is clear from the results that the resonant frequency of the antenna when bent increased
slightly and the bandwidth remained the same. It can be concluded that the EBG textile
antenna remained in an acceptable frequency range even when bent.

5.2. Effects of Human Tissues on Reflection Coefficient

To verify the antenna performance on the human body, the fabricated antenna with
EBG was placed and tested on different parts such as the forearm, leg and arm of a real
male volunteer who weighed 90 kg and was 183 cm in height as shown in Figure 12a. The
measured S11 curves of the proposed antenna on the body are plotted in Figure 12b. There
was a slight difference between the curves due to the high dielectric nature of human tissue.
However, the curves and the bandwidths of |S11| < −10 dB covered the desired band
26 GHz in all conditions.
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(b) measured return loss S11.

5.3. SAR Evaluation

To further investigate the interaction between the antenna and the human body when
exposed to an electromagnetic field, the specific absorption rate (SAR) of the antenna
without and with EBG were simulated and compared in CST MWS using a simplified
human model. To calculate the specific absorption rate value, the following formula
was used:

SAR = σ
|E|2

ρ

where ρ is the volume density of the human, σ is the conductivity of human tissues and E
is the electric field.
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The human tissue model was added below the antenna and was made using a rect-
angle with three layers of skin, fat and muscle. The dielectric properties of the layers,
which vary with frequency, were retrieved from the works of the Italian National Research
Council, which is available online [24] and are tabulated in Table 3. The size of the model
was 50 × 50 × 47 mm3, and the distance between the model and the prototype was 1 mm.

Table 3. Material properties of the human body model at 26 GHz.

Dielectric Constant εr Loss Tangent tanδ Conductivity σ (S/m) Thickness (mm)

Dry skin 19.78 0.86 24.74 2
Fat 3.76 0.29 1.59 5

Muscle 25.84 0.84 31.59 40

The SAR value of the antenna with and without EBG using the IEEE C95.3 averaging
method for 10 g of tissue volume were 0.096 W/Kg and 0.32 W/Kg, respectively. In both
cases, the maximum SAR value was less than the safe level for the European standard
2 W/Kg thanks to the presence of the large area of the ground plane which reduced the
backward radiation, whereas in the EBG case, the results were better; 69.9% lower than
those without EBG.

6. Conclusions

A mm-wave textile antenna intended to be integrated into clothing for future 5G
and IoT applications was presented in this article. The dielectric properties of the textile
fabric used as a substrate were characterized at 26 GHz using the open-stub technique. A
description of the design and manufacturing procedure was detailed. The proposed textile
antenna was surrounded by a layer of electromagnetic bandgap structure. The introduction
of this type of structure improved the gain by 2.52 dBi and the radiation efficiency by 7%.
Finally, bending and an on-body scenario measurement carried out with the prototype
produced, led to good results in terms of radiation parameters and specific absorption rate.

The prototype can be seen as a very promising solution for 5G and IoT applications of
the mm-wave range thanks to its simple geometry, high gain and good ability to function
when folded and worn on the human body.
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