
electronics

Article

CBase-EC: Achieving Optimal Throughput-Storage Efficiency
Trade-Off Using Erasure Codes

Chuqiao Xiao * , Yefeng Xia , Qian Zhang , Xueqing Gong * and Liyan Zhu

����������
�������

Citation: Xiao, C.; Xia, Y.; Zhang, Q.;

Gong, X.; Zhu, L. CBase-EC:

Achieving Optimal Throughput-

Storage Efficiency Trade-Off Using

Erasure Codes. Electronics 2021, 10,

126. https://doi.org/10.3390/

electronics10020126

Received: 12 November 2020

Accepted: 5 January 2021

Published: 8 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Software Engineering Institute, East China Normal University, Shanghai 200062, China;
51184501163@stu.ecnu.edu.cn (Y.X.); 52184501012@stu.ecnu.edu.cn (Q.Z.); 51184501093@stu.ecnu.edu.cn (L.Z.)
* Correspondence: 52184501011@stu.ecnu.edu.cn (C.X.); xqgong@sei.ecnu.edu.cn (X.G.)

Abstract: Many distributed database systems that guarantee high concurrency and scalability adopt
read-write separation architecture. Simultaneously, these systems need to store massive amounts
of data daily, requiring different mechanisms for storing and accessing data, such as hot and cold
data access strategies. Unlike distributed storage systems, the distributed database splits a table into
sub-tables or shards, and the request frequency of each sub-table is not the same within a specific
time. Therefore, it is not only necessary to design hot-to-cold approaches to reduce storage overhead,
but also cold-to-hot methods to ensure high concurrency of those systems. We present a new
redundant strategy named CBase-EC, using erasure codes to trade the performances of transaction
processing and storage efficiency for CBase database systems developed for financial scenarios of
the Bank. Two algorithms are proposed: the hot-cold tablets (shards) recognition algorithm and the
hot-cold dynamic conversion algorithm. Then we adopt two optimization approaches to improve
CBase-EC performance. In the experiment, we compare CBase-EC with three-replicas in CBase. The
experimental results show that although the transaction processing performance declined by no more
than 6%, the storage efficiency increased by 18.4%.

Keywords: erasure codes; distributed database system; hot and cold separation; storage efficiency

1. Introduction

With the increasing complexity of the Internet business model, various Distributed
Database Management System (DDBMS) architectures are emerging and developing. Re-
lational DDBMSs have always been adopted by the master/slaver read-write separation
architecture adaptive for large-scale and highly concurrent business scenarios [1]. More-
over, DDBMSs store massive and various data on many commodity servers daily, and the
data access mechanisms and redundancy strategies of different data need dividing [2]. In
any distributed system, whether it is a DDBMS or a distributed storage system, system
reliability needs to be guaranteed. The reliability of data storage is ensured in part by
adopting redundancy in some form, such as simple replication or a more sophisticated
erasure code (EC) strategy. Some DDBMSs always use the complete data backup strategy,
also known as multi-replicas strategy, to guarantee high system reliability, but they have
low storage utilization [3]. Nevertheless, due to the requirements of business and user data
integrity, a large amount of data must be stored and cannot be deleted [4]. As time goes on,
a significant fraction of data stored in DDBMSs is rarely accessed. These data are named
cold data [5]. Cold data have been identified as the fastest-growing storage segment, with
a 60% cumulative annual growth rate [6].

At present, to deal with the unavailability, or loss, of data caused by error failure,
existing disk array storage systems and distributed storage systems often use EC strategies,
which can tolerate broader classes of failure scenarios with less extra storage overhead [7].
Disk array storage, such as the redundant array of independent disks (RAID) organizes
multiple independent storage devices (HDD, SSD) into a logically continuous storage space

Electronics 2021, 10, 126. https://doi.org/10.3390/electronics10020126 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-0716-1590
https://orcid.org/0000-0001-5855-2850
https://orcid.org/0000-0002-7919-7162
https://orcid.org/0000-0001-7532-7153
https://doi.org/10.3390/electronics10020126
https://doi.org/10.3390/electronics10020126
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10020126
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/2/126?type=check_update&version=1

Electronics 2021, 10, 126 2 of 16

to provide the system with larger storage space. In distributed storage systems, the design
of erasure coding technology has great practical significance. These studies included the
following aspects: trading off storage efficiency and repair bandwidth overhead, improving
recovery rates, selecting the optimal data block storage location, and optimizing utilization
of CPU resources.

However, data read and write performances of ECs are not as good as the multi-
replicas strategies on DDBMSs. The ECs are not suitable for DDBMSs for two reasons
from the perspective of query and update. First, transaction processing requires frequent
data access in DDBMSs. In the read-write separation architecture, the multi-replicas
mechanism can improve system throughput. Second, after completing the data update on
a master node, only the log needs to be transmitted to other slaver backup nodes to the
data asynchronous update. Although ECs are not as efficient as multi-replicas strategies in
terms of data access and data updates, it can significantly reduce storage overhead and
improve storage utilization [8].

The CBase (CBase Homepage: https://github.com/BankOfCommunications/CBASE.)
is a high availability distributed relational database developed for financial scenarios. It real-
izes cross-record and cross-table transactions on hundreds of terabytes (TB) of data and hun-
dreds of billions of records. The CBase adopts a distributed architecture with read-write sep-
aration based on OceanBase 0.4.2 (OceanBase Homepage: https://oceanbase.alipay.com/),
and its redundancy strategy is the three-replicas. It divides the data into baseline data
and incremental data and merges these data at a specific period. This system architecture
is representative of the research prototype, so relevant technical work on CBase can be
migrated and extended to other database systems.

Consequently, we trade off the transactions processing performance and storage
efficiency, and propose a new redundancy strategy CBase-EC, which can recognize and
dynamically convert the hot and cold tablets of CBase.

Our contributions:

1. We propose the redundancy strategy CBase-EC, which includes the hot and cold
tablets recognition algorithm, the hot and cold tablets dynamic conversion algorithm
and the load balance scheme.

2. The encoding and updating performances of CBase-EC based on locally repairable
codes (LRC) have been reduced, and we have designed the LRC increment the
update algorithm to optimize the updating process and have presented a heuristic
algorithm to find local optimal Bitmatrix of LRC to improve encoding and decoding
performances.

3. We use sysBench, a benchmark tool in the distributed database field, to compare
the storage efficiency and transaction processing performance of CBase-EC with the
original three-replicas strategy on the CBase database system. The experimental
results show that the strategy presented in this paper has no significant decrease
in transaction throughput, at most about 6%, but the storage efficiency improves
by 18.4%.

The remainder of this paper is organized as follows. In Section 2, we introduce some
basic concepts including the comparison between EC and the replication strategy and
basic concepts about the CBase database system. In Sections 3 and 4, we propose the new
redundancy strategy CBase-EC and introduce two optimization methods of encoding and
updating. In Section 5, we report on our comparative experiments, mainly comparing the
storage efficiency and transaction processing performances for new CBase with the original
CBase. The conclusion and future works are in Section 6.

2. Background

In this section, we introduce the technical terms of EC and compare the EC with the
replication strategy. Then we briefly describe the query and update process of the CBase
database system.

https://github.com/BankOfCommunications/CBASE
https://oceanbase.alipay.com/

Electronics 2021, 10, 126 3 of 16

2.1. Comparison of Replication and Erasure Codes (EC)

Figure 1a illustrates key terminology related to EC. A file is divided into equal units,
which are called data blocks. We divide each k of those blocks into a group, and for each
set of k data blocks, use any EC algorithm to obtain n− k parity blocks. The set consists of
both data and parity blocks called a block stripe. The data and parity blocks belonging to a
stripe are placed on different disks or nodes in a distributed storage system. If a disk/node
reliability is p, while those systems use EC, the system reliability is the following formula:

1−
k−1

∑
i=0

(
n
i

)
pi(1− p)n−i. (1)

In a distributed database, the system generally uses a partition algorithm to split large
tables into approximately equal partitions called shards or sub-tables. The shards are called
tablets in CBase. If they use the multi-replicas strategy, each tablet generates multiple
redundant tablets. The unreliability of the system means that the original data cannot
be recovered, that is any Ci

k types of data blocks are lost and the redundant blocks are
completely lost, and only a part of all the data blocks of the remaining (k − i) types of
blocks exists. The system’s reliability based on the replication strategy is shown as follows:

1−
k
∑

i=1

(
k
i

)
(1− p)

in
k

[n
k−1

∑
j=0

(n
k
j

)
(1− p)j p

n
k−j

]k−i

. (2)

Comparing Equations (1) and (2), Figure 1b shows the reliability of these two formulas
changing with redundancy r = n

k .

Figure 1. (a) Terminology of Erasure Code (EC). In the blue dashed box is a stripe consisting of k blue data blocks and n− k
orange parity blocks. (b) System reliability of EC and replication while reliability p = 0.8. The reliability of the replication
strategy is lower than EC while r is smaller, and EC can guarantee more than 90% reliability in any case.

2.2. CBase Database System

The CBase is a distributed relational database which adopts shared-nothing and
read-write separation architecture based on open-source OceanBase 0.4.2.

As shown in Figure 2, there are four types of modules in the CBase: RootServer (RS),
UpdateServer (UPS), ChunkServer (CS) and MergeServer (MS). RS is responsible for all
modules in management and stores a RootTable of metadata that records the range of
primary keys and locations for each tablet. The CS node stores baseline data and their
replicas, which are snapshots of data sorted by the primary key. UPS buffers the incremental
data use the MemTable structure in memory, that as an LSM structure can optimize for

Electronics 2021, 10, 126 4 of 16

frequent updates (insert, update and delete operations) [9]. Once the active MemTable
reaches the set threshold, it becomes a frozen MemTable that is immutable and UPS makes
a new active MemTable. Incremental data are regularly merged with the baseline data over
a period of time on CS nodes. MS receives query/update requests and forwards them to
the corresponding CSs and UPS, and then merges the results back to the client. The query
process is executed as depicted in Figure 2.

1. The client sends a query request to a MS node.
2. MS asks RS to get the distribution of data from RootTable and sends the request to CS

nodes where the baseline data are located.
3. Each tablet stored on CS nodes involved in the request gets its incremental data from

the active MemTable and frozen MemTables on UPS and returns results to MS.
4. MS merges the results that come from CS nodes.
5. MS returns the results to the client.

The execution processes of the updates differ from the query requests. Shown also in
Figure 2, after parsing the request to obtain an execution plan, MS asks CSs to get baseline
data, and then sends the data and execution plan to UPS. UPS executes the updates and
returns the results to MS. Finally, MS returns results to the client.

Figure 2. CBase Architecture. The CBase system includes query and updates operations. The blue markers are the same
part of these two operations, the green markers are query-specific operations, and the red markers are update-specific
operations. The top left corner is a schematic diagram of the database tables divided by primary key range, with warm
colors representing hot partitions and cold colors representing cold partitions. However, in the original CBase system, there
is no distinction between hot and cold data, and the redundant backup strategy is the three-replicas.

3. Dynamic Conversion of Hot and Cold Data Storage

In this section, we introduce our new redundancy strategy CBase-EC for the CBase
Database system in more detail. CBase-EC includes hot and cold tablets recognition stage
on RS node and dynamic conversion of hot and cold tablets stage on CS nodes. As shown
in Figure 2, when the incremental data of the MemTable reaches the upper threshold, CBase
merges the incremental data with baseline data. Additionally, it triggers daily merges at an

Electronics 2021, 10, 126 5 of 16

idle time every night. The new conversion period T(n) of the CBase-EC strategy will start
after the daily merges of the last period T(n− 1) are completed.

3.1. Hot and Cold Tablets Recognition

At the beginning of the new period T, the RS node obtains the access frequency of
each tablet from the HashTable in all CS nodes. The key of the HashTable is the Tbid of
the tablet stored in that CS node, and the value is the update and query frequency of this
tablet. As shown in Figure 2, CS node can get Tbid from the query or update request, and
then add 1 to the value of this Tbid in HashTable. Then RS calculates new temperatures
and updates the result of the t column of the RootTable. RS rejudges the hot and cold state
of all tablets according to the hot data ratio Rhot (default 20%), and updates the result of
the HC column. Finally, RS can obtain the cold2hot Tbid set and the hot2cold Tbid set by
judging whether the HC and r columns’ values are equal. The modified contents of the
RootTable is shown in Table 1. The RI column uses (CSi, CSj, CSk) store locations of hot
tablet copies and stores all tablets’ information (Tbid, CSx, num) of the tablet-stripe except
this cold tablet. The detailed description of the hot and cold tablets recognition processes
as shown in Algorithm 1.

Table 1. New RootTable Structure.

Name Definitions

TableID Table id
PK Primary Key Range

Tbid Tablet id
HC (0 is hot, 1 is cold) Hot and Cold state

r (0 is 3-replicas, 1 is EC) Redundancy Strategy (last period)
t Temperature

RI Redundant Information
size Tablet Size

v Baseline data version

Algorithm 1: Hot and cold tablets recognition algorithm

Input: T(tn−1), F(tn−1)of each tablet, Theat = 1, α, Rhot = 20%
Output: cold2hot-Tbid set, hot2cold-Tbid set

1 Initialize Tbidmax is the sum of tablets;
2 Initialize Tbid is the id of this tablet;
3 Initialize tn is current time and tn−1 is the end time of last period;
4 while Tbid ≤ Tbidmax do
5 T(tn)Tbid = T(tn−1)Tbide−α(tn−tn−1) + Theat × F(tn−1)Tbid;

6 Use any sorting algorithm to rank the tablet temperature in descending order;
7 sTbid is sorted position of this tablet;
8 if sTbid ≤ Rhot × Tbidmax then
9 HCTbid = 1;

10 if HCTbid 6= rTbid then
11 cold2hot-Tbid.insert(Tbid);

12 else
13 HCTbid = 0;
14 if HCTbid 6= rTbid then
15 hot2cold-Tbid.insert(Tbid);
16 Add another Tbid in the same tablet stripe into hot2cold-Tbid set;

Based on the understanding of Newton’s cooling law (Newton’s law of cooling:
https://en.wikipedia.org/wiki/Newton%27s_law_of_cooling) in the field of natural sci-

https://en.wikipedia.org/wiki/Newton%27s_law_of_cooling

Electronics 2021, 10, 126 6 of 16

ence, we designed and implemented the tablet temperature formula. Newton’s cooling
law as shown in Formula (3).

dT(t)
dt

= −k(T(t)− E). (3)

On the left side of the equation, the temperature of the object decreases with time. On
the right side, T(t) is the current temperature of the object. E is the ambient temperature,
and k is the proportional coefficient between the temperature change rate of the object and
the ambient temperature difference. By solving the differential equation, Formula (4) of
Newton’s cooling law can be derived, as shown in Formula (4).

T(t) = (T0 − E)e−kt + E. (4)

We give the theorem of hot and cold tablets temperatures accordingly.

Theorem 1. Assuming that the average temperature of all tablets in the distributed database system
is the ambient temperature, and each tablet is independent of each other, there is no mutual influence
of temperature and geographic location. The temperature of a tablet is only related to its creation
time and access frequency. The temperature and access frequency of a tablet in the last period is
T(tn−1) and F(tn−1); Theat is the increment temperature, and α is cooling coefficient. Hence, the
tablet’s current temperature is as follows:

T(tn) = T(tn−1)e−α(tn−tn−1) + Theat × F(tn−1). (5)

In CBase, when a new tablet is created, it will default to hot tablet with an initial value
of the median of the temperature of all hot tablet.

3.2. Conversion Strategy of Hot and Cold Tablets

There are four types of conversion, namely continuous hot, continuous cold, cold2hot
and hot2cold. If the tablet is continuous hot, and only needs to complete the daily merges
and metadata update. If the tablet is continuous cold and needs to determine whether
there is a stripe failure (failure is another tablet in the same stripe convert cold to hot). If
there is no stripe failure, update the current tablet and parity tablets. Otherwise, add this
tablet to the hot2cold-Tbid set.

After completing the collection of the cold2hot-Tbid set and the hot2cold-Tbid set, RS
traverses the new RootTable to accomplish conversion of the tablet in cold2hot-Tbid set. As
shown in Figure 3, RS notifies the CS nodes about these cold tablets’ locations and informs
them to adopt a three-replicas backup mechanism. After all cold tablet replicas have been
generated, the relevant CS nodes send backup meta-information to RS and update column
RI and change column r = 0.

For the tablet of hot2cold-Tbid set, we use locally repairable codes (LRCs) [10] to
encode tablets in fine granularity. LRC based on Reed-Solomon [11] with the Vandermonde
matrix can effectively reduce the network I/O, the amount of data and computation, and
the data recovery time. LRC groups all coding blocks. The local parity blocks are generated
within each group, and the global parity blocks are generated within the whole strip.

Although LRC is an EC strategy that trades off storage space and repair bandwidth
overhead, its storage overhead is much less than the three-replicas strategy. LRC represents
by triplets (k, m, n), where k is the number of original data blocks; m is the number of
local parity blocks which is equal to the number of the group, and n is the number of
global parity blocks. Since each tablet divides into many data blocks according to the
size of its physical structure, we use LRC encoding k blocks with the same block id in
multiple cold tablets. The encoding process is shown in the red dashed box in Figure 3, and
the fine-grained coding scheme in Figure 4. Block stripe 0 is each cold tablets’ metadata
information. This fine-grained coding scheme has two advantages. First, when a tablet in
a tablet stripe is lost and needs to be recovered, all block stripes can parallel encode and

Electronics 2021, 10, 126 7 of 16

decode. Second, it can prevent the whole tablet stripe from being recalculated when only a
small number of data blocks are updated.

The detailed process of the dynamic conversion of hot and cold tablets can be seen
in Algorithm 2. After compiling and storing all cold tablets, all CS nodes rebuild the
local HashTable in local memory. Tbid is hash key and the access frequency of the tablet
is the hash value. Then those CS nodes that participate in LRC encoding send relevant
redundancy metadata to RS, and RS updates column RI, and changes column r = 1.

Figure 3. Merge and convert operations based on CBase-EC strategy on CBase. The blue line represents the process of daily
merges. The red line indicates the dynamic conversion process of hot and cold tablets storage after completed merging. The
RootTable shows the added column information in red color. The bitmatrix representation of locally repairable code (6,2,2)
in the lower right corner of this figure.

Electronics 2021, 10, 126 8 of 16

Figure 4. Cold tablet fine-grained coding scheme based on locally repairable code (LRC) code. Stripe 0 consists of the
metadata of each tablet. Stripes 1–n consist of the block blocks in the tablet. Other data in the cold tablet are not encoded
and can be quickly generated if needed.

Algorithm 2: Hot and cold tablets conversion algorithm
Input: cold2hot-Tbid set, hot2cold-Tbid set;

1 Initialize Tbidc2h is the tablet id in cold2hot-Tbid set;
2 Initialize Tbidh2c is the tablet id in hot2cold-Tbid set;
3 while Tbidc2h ∈ cold2hot-Tbid do
4 Use three-replicas backup Tbidc2h;
5 cold2hot-Tbid.erase(Tbidc2h);
6 CS notify RS to update column RI and r = 0 of the RootTable;

7 /* IF hot2cold-Tbid.size%6 != 0,use Reed-Solomen encode redundant tablets;*/
8 while each 6 tablets Tbidh2c ∈ hot2cold-Tbid do
9 lrc_init_n(lrc,2,(uint8_t[]){3,3},4); // use LRC(6,2,2) encode cold tablets

hot2cold-Tbid.erase(Tbidh2c);
10 CS notify RS to update column RI and r = 1 of the RootTable;

3.3. Load Balancing Scheme

After CBase has completed the tablets’ storage according to the CBase-EC, RS starts to
calculate the performance load and storage load of each CS node. In the original CBase that
the system uses, the number of tablets on each CS node represents the load of this node,
and the load is proportional to the sum of tablets. Nevertheless, CBase-EC changes the
system’s load balancing. Therefore, we use a new algorithm to calculate the load status of
the CBase and CS nodes. The formula is as follows (6). T̄ is the average temperature of all
tablets, which represents the performance load degree of a CS node. Rhot is the proportion
of hot tablets to total tablets. Thomas E. Nisonger proposed the “80/20 Rule”, also termed
a Pareto distribution or Pareto principle which means 80% of the data access of the system
is concentrated in 20% of the data. The weight (1− Rhot) is assigned to the sum of hot
tablets and Rhot is assigned to the sum of cold tablets. Taverage is the average temperature
of the CBase, which can be calculated from the average of T̄.

T̄ =
(1− Rhot)×∑m

i=1 Thot + Rhot ×∑n
i=m+1 Tcold

n
. (6)

When RS finds |T̄− Taverage| ≥ ε (ε indicates the floating range of Taverage), then RS uses
a greedy algorithm to reduce the T̄ of this CS node by subtracting the highest temperature

Electronics 2021, 10, 126 9 of 16

tablet until the temperature of this CS node falls to the normal temperature range. Next,
RS will inform this CS node to send the hottest tablet to the lower temperature of CS node.
CBase-EC iteratively calculates the T̄ of each node in turn until all CS nodes are balanced.
For the storage load of each CS, RS balances the storage load by counting the number of
total tablets of each CS node in the RootTable.

4. Optimization Schemes of CBase-EC in Encoding, Decoding and Updating Processes

In this section, we adopt some optimization methods to improve CBase-EC perfor-
mances when dealing with the cold tablets. Because CBase is a database system, it has
frequent update operations. In Section 4.1, we introduce the incremental encoding algo-
rithm to update local and global parity blocks encoded by LRC. In Section 4.2, we transform
the multiplication operation in the finite field into exclusive OR (XOR) operation to reduce
encoding or decoding calculation complexity.

4.1. Update Optimization

There are two updated schemes for ECs [12]. One is recoding by recalculating all
data blocks in the stripe. This process will consume a lot of bandwidth and I/O disk
overhead, which is only applicable to the scenario where a large number of data updates
occur in all blocks. The other method is incremental coding, which calculates the increment
data between the update data block and the original data block. Because update the new
parity blocks only encodes the incremental data, which can effectively reduce the repair
bandwidth overhead. However, this method only applies to the scenario where part of the
data block is updated. The detailed analysis is shown in the Algorithm 3. When a cold
tablet needs updating, only the local parity tablet in the group and the global parity tablet
need to be re-calculated.

Algorithm 3: LRC increment update algorithm

Input: t
′
i is update by tablet ti, i ∈ {1, 2, ...k};

1 Initialize px,y is the y local parity tablet of x group;
2 Initialize gj is the global parity tablet, j ∈ {1, 2, ...(n− k)};
3 while i ∈ {1, 2, ...k} do
4 CSi receives t

′
i ;

5 CSi read ti from local disk ;
6 /* Assume there are r local parity tablets in a group. */ CS notify RS to update

column RI and r = 0 of the RootTable;
7 while y ∈ {1, 2, ...r} do
8 Generate ∆p

′
x,y with t

′
i − ti;

9 while j ∈ {1, ...(n− k)} do
10 Generate ∆g′ j with t

′
i − ti;

11 CS update t
′
i to local disk;

12 while y ∈ {1, 2, ...r} do
13 CSi dispatch ∆p

′
x,y to CSpxy directly;

14 CSpxy read px,y from local disk, and let p
′
x,y = px,y + ∆p

′
x,y;

15 CSpxy update p
′
x,y to local disk;

16 while j ∈ {1, ...(n− k)} do
17 CSi dispatch ∆g′ j to CSgj directly;
18 CSpxy read gj from local disk, and let g

′
j = gj + ∆g

′
j;

19 CSpxy update g
′
j to local disk;

Electronics 2021, 10, 126 10 of 16

4.2. Bitmatrix Normalization

All EC calculations are in a finite field GF(2w), when w = 8, each element e ∈ GF(2w)
is a byte. In [13], they described a 1× w row vector V or a w× w matrix M which can be
represented as an element over GF(2w). For any e ∈ GF(2w), use M(e) as the matrix whose
ith (0 ≤ i) column is V(e× zi−1); M(1) is the identity matrix and M(0) is the all-zero matrix.
When w = 3, these symbols can be converted into the representation of 3× 3 bitmatrix as
shown in Figure 5. The bitmatrix of e = 4 in which the 1th column is 100, the 2th column is
4× z = 4× 2 = 011 and the 3th column is 4× z2 = 4× 4 = 110. The number of 1’s (ones)
in the bitmatrix means the number of XOR operations in encoding and o is the average
number of ones per row in the matrix.

In LRC, they adopted a classical Vandermonde construct generate matrix, but the
complexity of an n× n Vandermonde inversion is O(n3) while Cauchy matrix inversion
is O(n2). If we choose a different X and Y will get different o. Hence, we use a Cauchy
matrix as generator matrix and find the local optimal bitmatrix which has a lower number
of XORs [14]. The detailed Algorithm 4 is as follows. While this does not guarantee an
optimal number of ones, it typically generates a good matrix.

e=0
V(0) M(0)

e=1
V(1) M(1)

e=2
V(2) M(2)

e=3
V(3) M(3)

e=4
V(4) M(4)

e=5
V(5) M(5)

e=6
V(6) M(6)

e=7
V(7) M(7)

Figure 5. The bitmatrix representation of all elements over the finite field GF(23). Gray represents
binary 1, white represents binary 0.

Algorithm 4: Find the local optimal bitmatrix of LRC

Input: Use Cauchy matrix construct LRC generate matrix G;
1 Initialize oi is the number of ones in this row. i is row, j is column;
2 for j = 0 to k− 1 do
3 for i = k to n− 1 do
4 G[i, j] = G[i, j]/G[0, j];

5 for i = k + 1 to n− 1 do
6 for j = 0 to k− 1 do
7 for jj = 0 to k− 1 do
8 G[i, jj] = G[i, jj]/G[i, j];

9 Count oi of this new row;

10 Choose the row with min oi as new i row;

5. Experiments

In this section, we adopted our redundancy strategy CBase-EC in the CBase cluster
and compared it with the original three-replicas strategy. The experimental database cluster
ran with 10 PC servers. Each server was running on Linux Release 7.5.18 and was equipped
with 8-core Intel (R) Xeon (R) CPU e5-2620 V3@2.40 GHz, 64 GB RAM, 2 TB disk capacity,
and the network transmission speed was 10 Gbps. The CBase was configured with one
UPS node, one RS node, and one MS node. All servers were CS nodes. We measured the
system transaction processing performances by sysBench, which is a standard open-source
database benchmark that supports a user-defined workload. In the schema of sysBench,
each record has a primary key id and three columns, k is the column of integer, and the

Electronics 2021, 10, 126 11 of 16

remaining two columns are c with a random string of 120 bytes and pad with a random
string of 60 bytes.

5.1. Online Transaction Processing (OLTP) Performances

In this experiment, two tables containing three million records were used in the data
set. Each transaction contained five single-point primary key query operations, one range
query operation that continuously scanned 100 records according to the primary key, and
the data update, insert and delete operation was set to 1. All experiments were run six
times, and the experimental results were averaged.

Firstly, we fixed the data access requests that were evenly distributed across all the
tablets and then tested the transactions per second (TPS) performance of CBase between
three-replicas and CBase-EC when Rhot = 100% and Rhot = 20%. Secondly, we designed
data requests to conform to the 80/20 distribution, where 80% of the data access was
concentrated on 20% hot tablets. Finally, we introduced the average response time of
transactions when the data access met the 80/20 distribution. All experiments results are
shown in Figure 6.

(a) Uniform Distribution (Rhot =100%) (b) Uniform Distribution (Rhot =20%)

(c) 80/20 Distribution (Rhot =20%) (d) 80/20 Distribution (Rhot =20%)

Figure 6. Comparison of Online Transaction Processing (OLTP) performance of CBase based on three-replicas and CBase-EC
strategies. Uniform Distribution mean that data access requests are uniform across all tablets.The 80/20 distribution means
that 80% of the data access are concentrated on 20% of the hot tablets. Rhot refers to the percentage of hot data ratio.

It can be seen from Figure 6a when the number of concurrent threads was less than
30, the TPS was exactly the same, because the CBase adopted three-replicas based on both
strategies, but when the number of threads was more than 30, the TPS performance of

Electronics 2021, 10, 126 12 of 16

CBase-EC was reduced because CS nodes needed to constantly update the local HashTable
and consumed a small amount of I/O and CPU resources. It can also be clearly seen from
Figure 6b that when the cold tablets accounted for 80% of all tablets, with an increase
in the number of threads, the performance of the CBase based on CBase-EC strategy
quickly reached the bottleneck. Comparing the two kinds of strategies, it can be concluded
that when the data access was uniform, the CBase was not suitable for deploying ECs,
because the sum of transactions processed on cold-tablets was much larger than the sum
of transactions on the hot tablets. From Figure 6c, we observed that when data access
conformed to 80/20 distribution, the OLTP performance of CBase based on two strategies
was basically the same, and the CBase performance loss based on CBase-EC strategy was
about 5.3%. As can be seen from Figure 6d, with an increase in the number of threads, the
average transaction response time of CBase based on three-replicas was about 6% lower
than that of CBase based on CBase-EC. According to the above experiments, the adoption
of the CBase-EC strategy will reduce OLTP performance within a limited range.

5.2. Storage Efficiency

An important index of redundancy strategy is storage efficiency, which is the ratio
of original data size to redundant storage space. In Figure 7a, it can be observed that
with an increasing number of table records, storage overhead based on CBase-EC was
much lower than that based on three-replicas. Besides, as shown in Figure 7b we have
experimented with the storage efficiency based on the change of (1− Rhot). It can be
concluded that if the CBase adopted three-replicas stores 1 PB data needed 3 PB actual
storage capacity. Nevertheless, the maximum storage efficiency of CBase could reach 60%
based on CBase-EC, which means that only 1.67 PB actual storage space was needed to
store 1 PB data. Consequently, CBase-EC could effectively reduce the storage overhead
of CBase.

(a) Storage Cost (b) Storage Efficiency

Figure 7. Comparison of storage efficiency of CBase based on three-replicas and CBase-EC strategies.

5.3. Encoding Performance Optimization

The number of XORs of the Vandermonde-LRC, the Original Cauchy-LRC, and the
Optimized Bitmatrix-LRC, was tested by encoding performance optimization experiments.
Then we calculated the improvement of the new optimization method over the baseline
which was Vandermonde-LRC and the results are reported in Table 2. For rows 1–3, 4–6,
and 7–9 in the table, we measured the performance improvement by fixing the number
of local and global parity blocks, fixing the number of the local parity blocks only, and
changing the number of local and global parity blocks at the same time. In the last row
of the table, the average encoding performance increase was 16.18%, as measured by the

Electronics 2021, 10, 126 13 of 16

number of XORs reductions in all test parameters. Since each combination of X and Y
was different, an entirely different generation matrix was constructed, and the degree of
performance improvement was not stable as you can see from the last column.

Table 2. Total Number of XOR’s.

(k, m, n) Vandermonde-LRC Original Cauchy-LRC Optimized Bitmatrix-LRC Reduction of XORs

(6,2,2) 317 474 219 30.9%
(8,2,2) 364 602 303 16.7%
(10,2,2) 555 768 389 29.9%
(6,2,4) 642 854 595 7.3%
(8,2,4) 816 1116 809 0.8%
(10,2,4) 1210 1448 1048 13.4%
(8,4,4) 956 1464 907 5.12%
(10,4,4) 1502 1952 1164 22.5%
(10,4,6) 2110 2632 1709 19%

Average - - - 16.18%

5.4. Update Performance

In this experiment, the data block of each tablet was 4 KB and the transaction thread
wrote 50,000 update transactions with different granularity. We tested average update
time of recoding and LRC-incremental update coding under different update scenarios. As
shown in Figure 8, taking LRC (6,2,2) as an example, when cold tablets with no more than
k
2 in the same strip were updated, the performance of LRC-incremental update coding was
higher than that of recoding.

1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

A
ve

ra
ge

 U
pd

at
e

Ti
m

e
(M

s)

Number of Update Blocks

 Recoding
 LRC-Incremental Update

Figure 8. Cold tablets update performances based on locally repairable code (LRC) (6,2,2).

5.5. Parallel Recovery Performance

In this experiment, five tables (7 GB each table) were employed for the data recovery
test, and the average amount of data stored on each CS node was 3.5 GB. Recovery time
refers to the total time to recover the lost data of the failure CS node after down without
affecting the CBase performances. Hence, we designed a timer to kill one or two CS
processes at intervals to simulate the node failure scenario. Figure 9 shows the total
recovery time of the three strategies while the number of failed nodes was 1 or 2. The
three strategies were three-replicas, coarse-grained CBase-EC which minimum granularity
is a tablet, and fine-grained CBase-EC which minimum granularity is a block. It can be
clearly seen from Figure 9 that the data recovery time of the CBase based on CBase-EC was

Electronics 2021, 10, 126 14 of 16

significantly higher than that of the original Cbase, not only because the recovery strategy
needed to distinguish the hot and cold tablets, but also because the CPU was required to
participate in the calculation during the repair process. Nevertheless, the recovery rate
of CBase-EC with a fine-grained coding scheme was better than that of CBase-EC with
coarse-grained coding, because the parallel pipeline technology could effectively decrease
the idle waiting time of disk I/O, CPU, and network transmission.

1 2
15
16
17
18
19
20
21
22
23
24
25
26
27

To
ta

l R
ec

ov
er

y
Ti

m
e(

m
in

)

Number of Failed Nodes

 Three-Relicapes
 Coarse-grained CBase-EC
 Fine-grained CBase-EC

Figure 9. Parallel repair performance.

6. Conclusions and Future Work

The CBase-EC strategy is a new redundant mechanism for the CBase, which is a
distributed relational database system. CBase-EC can dynamically recognize and convert
hot-cold tablets and maintain loading balance by using ECs to trade off transactions
processing throughput-storage efficiency. To evaluate this new strategy, we ran simulations
on the CBase cluster obtained by 10 PC servers. We conclude that the CBase-EC delivers the
optimal throughput-storage efficiency tradeoff and outperforms the three-replicas strategy
in the CBase database system.

Several researchers have proposed Regeneration codes [15,16], Zigzag codes [17],
Butterfly codes [18] and Hitchhiker codes [19] to balance storage overhead and repair
bandwidth. The research on the recovery rate has mainly been considered from two
aspects. From the perspective of system performance improvement, it can increase the net-
work bandwidth transmission [20,21] or increase the parallelism of data recovery [22–24].
From the perspective of algorithm optimization, there were some repair solutions that use
heuristic algorithms to find the optimal repair path. Xiang et al. proposed their solution
of joint latency and storage cost minimization via the computation of a sequence of con-
vex approximations with provable convergence [25]. In addition, some new data block
placement strategies have also been proposed. Venkatesan et al. [26,27] show that, for
a replication factor of two, all possible placement schemes have mean times to data loss
(MTTDLs) within a factor of two for practical values of the failure rate, storage capacity,
and rebuild bandwidth of a storage node. The theoretical results are confirmed by means of
event-driven simulation. They also show that the declustered placement scheme, contrary
to intuition, offers a reliability for replication factors greater than two that does not de-
crease as the number of nodes in the system increases. Since all ECs rely on the arithmetic
calculation over finite fields, the encoding performance of erasure codes can be accelerated
by improving the utilization efficiency of the CPU.

In the future, we will deeply investigate the distributed database systems reliability
storage problem and find more effective solution to reduce the storage overhead. In
addition, we will continue to study low bandwidth recovery overhead strategies, data

Electronics 2021, 10, 126 15 of 16

block storage placement strategies and efficient coding schemes for different workloads
based on this paper.

Author Contributions: Conceptualization, X.G.; methodology, C.X.; software and validation, C.X.
and Y.X.; formal analysis, C.X.; investigation, Q.Z.; resources and data curation, L.Z.; writing—
original draft preparation, C.X.; rewriting and editing, C.X. and L.Z.; supervision, Q.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Key Research and Development Project grant
number 2019YFB2102600 and National Natural Science Foundation grant number 61572194, 61672233.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Barber, R.; Garcia-Arellano, C.; Grosman, R.; Müller, R.; Raman, V.; Sidle, R.; Spilchen, M.; Storm, A.; Tian, Y.; Tözün, P.; et al.

Evolving Databases for New-Gen Big Data Applications. In Proceedings of the 8th Biennial Conference on Innovative Data
Systems Research, Chaminade, CA, USA, 8–11 January 2017.

2. Huang, D.; Liu,Q.; Cui, Q.; Fang, Z.; Ma, X.; Xu, F.; Shen, L.; Tang, L.; Zhou, Y.; Huang, M.; et al. TbidB: A Raft-based HTAP
database. Proc. VLDB Endow. 2020, 13, 3072–3084. [CrossRef]

3. Nachiappan, R.; Javadi, B.; Calheiros, R.N.; Matawie, K.M. Cloud storage reliability for big data applications: A state of the art
survey. J. Netw. Comput. Appl. 2017, 97, 35–47. [CrossRef]

4. Borovica-Gajić, R.; Appuswamy, R.; Ailamaki, A. Cheap data analytics using cold storage devices. Proc. VLDB Endow. 2016, 9,
1029–1040. [CrossRef]

5. Balakrishnan, S.; Black, R.; Donnelly, A.; England, P.; Glass, A.; Harper, D.; Legtchenko, S.; Ogus, A.; Peterson, E.; Rowstron, A.
Pelican: A building block for exascale cold data storage. In Proceedings of the 11th USENIX Symposium on Operating Systems
Design and Implementation, Broomfield, CO, USA, 6–8 October 2014; pp. 351–365.

6. IDC. Technology Assessment: Cold Storage Is Hot Again Finding the Frost Point; International Data Corporation: Framingham, MA,
USA, 2013; May 2013 IDC #241005.

7. Plank, J.S. T1: Erasure codes for storage applications. In Proceedings of the 4th USENIX Conference on File and Storage
Technologies, San Francisco, CA, USA, 13–16 December 2005; pp. 1–74.

8. Rashmi, K.V.; Shah, N.B.; Gu, D.; Kuang, H.; Borthakur, D.; Ramchandran, K. A solution to the network challenges of data
recovery in erasure-coded distributed storage systems: A study on the Facebook warehouse cluster. In Proceedings of the 5th
USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage 13), San Jose, CA, USA, 27–28 June 2013.

9. O’Neil, P.; Cheng, E.; Gawlick, D.; O’Neil, E. The log-structured merge-tree (LSM-tree). Acta Inform. 1996, 33, 351–385. [CrossRef]
10. Papailiopoulos, D.S.; Dimakis, A.G. Locally repairable codes. IEEE Trans. Inf. Theory 2014, 60, 5843–5855. [CrossRef]
11. Reed, I.S.; Solomon, G. Polynomial codes over certain finite fields. J. Soc. Ind. Appl. Math. 1960, 8, 300–304. [CrossRef]
12. Li, H.; Zhang, Y.; Zhang, Z.; Liu, S.; Li, D.; Liu, X.; Peng, Y. PARIX: Speculative Partial Writes in Erasure-Coded Systems. In

Proceedings of the 17th USENIX Annual Technical Conference (USENIXATC), Santa Clara, CA, USA, 12–14 July 2017; pp. 581–587.
13. Bloemer, J.; Kalfane, M.; Karp, R.; Karpinski, M.; Luby, M.; Zuckerman, D. An XOR-Based Erasure-Resilient Coding Scheme; Technical

Report No. TR-95-048; Berkeley International Computer Science Institut: Berkeley, CA, USA, August 1995.
14. Zhou, T.; Tian, C. Fast erasure coding for data storage: A comprehensive study of the acceleration techniques. ACM Trans. Storage

(TOS) 2020,16, 1–24. [CrossRef]
15. Dimakis, A.G.; Godfrey, P.B.; Wu, Y.; Wainwright, M.J.; Ramchandran, K. Network coding for distributed storage systems. IEEE

Trans. Inf. Theory 2010 , 56, 4539–4551. [CrossRef]
16. Jiekak, S.; Kermarrec, A.M.; Le Scouarnec, N.; Straub, G.; Van Kempen, A. Regenerating codes: A system perspective. ACM

SIGOPS Oper. Syst. Rev. 2013, 47, 23–32. [CrossRef]
17. Tamo, I.; Wang, Z.; Bruck, J. Zigzag codes: MDS array codes with optimal rebuilding. IEEE Trans. Inf. Theory 2012, 59, 1597–1616.

[CrossRef]
18. Pamies-Juarez, L.; Blagojević, F.; Mateescu, R.; Gyuot, C.; Gad, E.E.; Bandic, Z. Opening the Chrysalis: On the Real Repair

Performance of MSR Codes. In Proceedings of the 14th USENIX Conference on File and Storage Technologies (FAST’16),
Santa Clara, CA, USA, 22–25 February 2016; pp. 81–94.

19. Rashmi, K.V.; Shah, N.B.; Gu, D.; Kuang, H.; Borthakur, D.; Ramchandran, K. A “hitchhiker’s” guide to fast and efficient
data reconstruction in erasure-coded data centers. In Proceedings of the ACM Conference on Special Interest Group on Data
Communication (SIGCOMM’14), Chicago, IL, USA, 17–22 August 2014; pp. 331–342.

20. Al-Fares, M.; Loukissas, A.; Vahdat, A. A scalable, commodity data center network architecture. In Proceedings of the ACM
Conference on Special Interest Group on Data Communication (SIGCOMM’08), Seattle, WA, USA, 17–22 August 2008; pp. 63–74.

http://doi.org/10.14778/3415478.3415535
http://dx.doi.org/10.1016/j.jnca.2017.08.011
http://dx.doi.org/10.14778/2994509.2994521
http://dx.doi.org/10.1007/s002360050048
http://dx.doi.org/10.1109/TIT.2014.2325570
http://dx.doi.org/10.1137/0108018
http://dx.doi.org/10.1145/3375554
http://dx.doi.org/10.1109/TIT.2010.2054295
http://dx.doi.org/10.1145/2506164.2506170
http://dx.doi.org/10.1109/TIT.2012.2227110

Electronics 2021, 10, 126 16 of 16

21. Roy, A.; Zeng, H.; Bagga, J.; Porter, G.; Snoeren, A.C. In side the Social Network’s (Datacenter) Network. In Proceedings of
the ACM Conference on Special Interest Group on Data Communication (SIGCOMM’15), London, UK, 17–21 August 2015;
pp. 123–137.

22. Ongaro, D.; Rumble, S.M.; Stutsman, R.; Ousterhout, J.; Rosenblum, M. Fast Crash Recovery in RAMCloud. In Proceedings of the
23rd ACM Symposium on Operating Systems Principles (SOSP’11), Cascais, Portugal, 23–26 October 2011; pp. 29–41.

23. Mitra, S.; Panta, R.; Ra, M.R.; Bagchi, S. Partial-parallel-repair(PPR): A distributed technique for repairing erasure coded
storage. In Proceedings of the 11st European Conference on Computer Systems (EUROSYS’16), London, UK, 18–21 April 2016;
pp. 30:1–30:16.

24. Li, R.; Li, X.; Lee, P.; Huang, Q. Repair Pipelining for Erasure-Coded Storage. In Proceedings of the USENIX Annual Technical
Conference (USENIX ATC ’17), Santa Clara, CA, USA, 12–14 July 2017; pp. 567–579.

25. Xiang, Y.; Lan, T.; Aggarwal, V.; Chen, Y.F.R. Joint latency and cost optimization for erasure coded data center storage. ACM
Sigmetrics Perform. Eval. Rev. 2014, 42, 3–14. [CrossRef]

26. Venkatesan,V.; Iliadis, I.; Hu, X.Y.; Haas, R.; Fragouli, C. Effect of Replica Placement on the Reliability of LargeScale Data Storage
Systems. In Proceedings of the 18th IEEE International Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS’10), Miami Beach, FL, USA, 17–19 August 2010; pp. 79–88.

27. Venkatesan, V.; Iliadis, I.; Fragouli, C.; Urbanke, R. Reliability of Clustered vs. Declustered Replica Placement in Data Storage
Systems. In Proceedings of the 19th IEEE International Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS’11), Singapore, 25–27 July 2011; pp. 307–317.

http://dx.doi.org/10.1145/2667522.2667524

	Introduction
	Background
	Comparison of Replication and Erasure Codes (EC)
	CBase Database System

	Dynamic Conversion of Hot and Cold Data Storage
	Hot and Cold Tablets Recognition
	Conversion Strategy of Hot and Cold Tablets
	Load Balancing Scheme

	Optimization Schemes of CBase-EC in Encoding, Decoding and Updating Processes
	Update Optimization
	Bitmatrix Normalization

	Experiments
	Online Transaction Processing (OLTP) Performances
	Storage Efficiency
	Encoding Performance Optimization
	Update Performance
	Parallel Recovery Performance

	Conclusions and Future Work
	References

