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Abstract: The accurate estimation of a lithium-ion battery’s state of charge (SOC) plays an important
role in the operational safety and driving mileage improvement of electrical vehicles (EVs). The
Adaptive Extended Kalman filter (AEKF) estimator is commonly used to estimate SOC; however, this
method relies on the precise estimation of the battery’s model parameters and capacity. Furthermore,
the actual capacity and battery parameters change in real time with the aging of the batteries.
Therefore, to eliminate the influence of above-mentioned factors on SOC estimation, the main
contributions of this paper are as follows: (1) the equivalent circuit model (ECM) is presented, and the
parameter identification of ECM is performed by using the forgetting-factor recursive-least-squares
(FFRLS) method; (2) the sensitivity of battery SOC estimation to capacity degradation is analyzed to
prove the importance of considering capacity degradation in SOC estimation; and (3) the capacity
degradation model is proposed to perform the battery capacity prediction online. Furthermore, an
online adaptive SOC estimator based on capacity degradation is proposed to improve the robustness
of the AEKF algorithm. Experimental results show that the maximum error of SOC estimation is less
than 1.3%.

Keywords: state of charge (SOC); equivalent circuit model (ECM); capacity degradation model;
forgetting factor recursive least squares (FFRLS)

1. Introduction

Lithium-ion batteries (LIBs), with their high energy density, low pollution and low self-
discharge rate, have become one of the main energy sources of electric vehicles (EVs) [1,2].
The accuracy and reliability of battery management system (BMS) can ensure the safety of
EVs during driving. The accurate estimation of state of charge (SOC) and state of health
(SOH) can improve battery life and utilization, which is very important to ensure system
performance and reliable operation [3,4]. Therefore, many algorithms for the accurate
estimation of SOC have been actively promoted.

A variety of SOC estimation methods have been applied, including the ampere–time
integral method [5], open-circuit voltage method [6], data-driven methods [7] and model-
based methods [8]. These algorithms have greatly improved the estimation of SOC. The
ampere–hour integration method and the open circuit voltage (OCV) method are widely
used in SOC estimation. The ampere–hour integral method is easily applicable to online
SOC estimation; however, there are some errors in the current value due to the measurement
errors during battery charging and discharging. As time progresses, the accumulated error
will cause the SOC estimation accuracy to decrease continuously. OCV estimation is used to
estimate SOC according to the mapping relationship between SOC and OCV. However, to
obtain a stable OCV, it is necessary to withstand long-term static to eliminate the influence
of the polarization effect, so it is not suitable for online SOC estimation. The data-driven
methods do not reflect the reaction mechanism inside the battery. A black box model is
used to describe the nonlinear relationship between SOC and its influencing factors. The
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neural network (NN) method is one of the most widely applied data-driven algorithms
at present. The author used NN to estimate SOC in [9,10] and obtained good estimation
results. J. N et al. [11] established an SOC estimation model by using the support vector
machine (SVM). Through simulation comparison, it was proved that the SVM has better
robustness than NN, but NN and SVM need a great deal of experimental data to train the
model, which increases the calculation burden. To reduce the estimation error of SOC,
many model-based methods have been studied, including equivalent circuit models (ECMs)
and electrochemical models. Kandler et al. [12] established a simplified electrochemical
model of a power battery and completed the estimation of the SOC, but the parameter
acquisition was complex. At present, the ECM has been extensively used for the BMS of
EVs. Ye et al. [13] proposed particle swarm optimization to optimize the Extended Kalman
filter (EKF) to estimate SOC; Xiong et al. [14] used the multi-scale EKF to realize the joint
estimation of the parameters and states of LIBs. Although EKF can effectively obtain
good estimation results, it ignores the higher-order term of the Taylor series expansion
of the nonlinear function, which significantly reduces the estimation accuracy of SOC.
Therefore, the Unscented Kalman filter (UKF) is proposed, which is based on unscented
transformation. He et al. [15] used UKF to estimate SOC and showed that UKF has better
estimation accuracy than EKF. Nejad S. et al. [16] proposed the Adaptive Extended Kalman
filter (AEKF) to obtain a better estimation result, and the SOC estimation error was less
than 2%. Although the above methods can achieve better estimation results, capacity
degradation is not considered.

Although ECMs have achieved some progress in battery modeling and SOC esti-
mation, to promote the accuracy of SOC estimation, the core contributions of this work
are as follows: (1) the ECM is established as the battery model in this paper, and the
parameters are identified by the forgetting-factor recursive-least-squares (FFRLS) method;
(2) the battery capacity degradation model is proposed; (3) a new battery model based on
AEKF combined with capacity degradation is proposed to promote the accuracy of SOC
estimation; and (4) the accuracy of the model is verified under driving conditions.

The outline of the paper is as follows. The introduction is presented in Section 1.
Section 2 describes the fundamental battery model and parameter identification method.
In Section 3, the AEKF method based on the online parameter identification method
is presented, and the sensitivity analysis of SOC estimation to capacity degradation is
presented in Section 4. The effectiveness of the proposed model is verified in Section 5, and
the conclusions are shown in Section 6.

2. Battery Model and Parameter Identification

The dynamic voltage characteristics of lithium-ion batteries show mutagenicity and
gradualness. The ECM selected in this paper is a second-order equivalent circuit model, as
shown in Figure 1. 

•
Ud = − Ud

CdRd
+ IL

Cd

•
Uc = − Uc

CcRc
+ IL

Cc

Ut = Uoc −Ud −Uc − R0 IL

(1)

where Ud, Uc is the Rd, Rc two-terminal voltage, respectively, IL is the charge and discharge
current of the battery module, Ut is the battery’s terminal voltage and Uoc is the open
circuit voltage (OCV).
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In order to realize the online estimation of system parameters, we use the recursive
least squares (RLS) method. However, the parameters of the battery system change slowly,
so the algorithm finds it difficult to obtain accurate parameters.

Therefore, adding the forgetting factor to the recursive least squares method can
effectively solve this problem and realize the online estimation of battery parameters. The
flowchart of the FFRLS algorithm is shown in Figure 2, and the algorithm is as follows:

yk = ΦT
k θk + ek (2)

where ek is the zero-mean white noise, θk is the parameter matrix and Φk is the data matrix.
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Figure 2. Battery parameter identification based on the forgetting-factor recursive-least-squares (FFRLS) method. OCV:
open circuit voltage; SOC: state of charge.

In order to obtain the parameters of the ECM, the state of the model is transformed
into a mathematical form which can be identified by the RLS method:

Ut(s)−Uoc(s)
IL(s)

=
Urc(s)
IL(s)

= −
(

R0 +
Rc

1 + RcCcs
+

Rd
1 + RdCds

)
(3)

We use the Euler algorithm to discretize this, which is defined in Equation (4):

s =
2
ω

z− 1
z + 1

(4)

where ω is the sampling time interval, and Equation (3) can be transformed as follows:

Urc(z)
IL(z)

=
a3z2 + a4z + a5

z2 − a1z− a2
(5)
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where 

a1 = − 2ω2−8RcCcRdCd
ω2+2ω(RcCc+RdCd)+4RcCcRdCd

a2 = −ω2−2ω(RcCc+RdCd)+4RcCcRdCd
ω2+2ω(RcCc+RdCd)+4RcCcRdCd

a3 = −ω2(R0+Rc+Rd)+2ω(R0RcCc+R0RdCd+RcRdCd+RdRcCc)+4R0RcCcRdCd
ω2+2ω(RcCc+RdCd)+4RcCcRdCd

a4 = − 2ω2(R0+Rc+Rd)−8R0RcCcRdCd
ω2+2ω(RcCc+RdCd)+4RcCcRdCd

a5 = −ω2(R0+Rc+Rd)−2ω(R0RcCc+R0RdCd+RcRdCd+RdRcCc)+4R0RcCcRdCd
ω2+2ω(RcCc+RdCd)+4RcCcRdCd

(6)

We perform a z inverse transform on Equation (5) to obtain Equation (7):

Uk = (1− a1 − a2)Uk + a1Uk−1 + a2Uk−2 + a3 IL,k + a4 IL,k−1 + a5 IL,k−2 (7)

Since the sampling time T is very small, Uoc is almost unchanged; that is,

Uoc,k −Uoc,k−1 ≈ 0

Therefore, Equation (7) can be simplified as

Uk = (1− a1 − a2)Uk + a1Uk−1 + a2Uk−2 + a3 IL,k + a4 IL,k−1 + a5 IL,k−2 (8)

The output matrix yk, parameter matrix θ and data matrix Φ can be achieved:
yk = Uk = ΦT

k θk

θk =
[

a1 a2 a3 a4 a5
]T

Φk =
[

Uk−1 −Uoc,k−1 Uk−2 −Uoc,k−2 iL,k iL,k−1 iL,k−2
]T

(9)

Using the FFRL method to calculate θ, the parameters of the model can be obtained
with Equation (6):

R0 = −a3+a4−a5
1+a1−a2

R0 + Rc + Rd = −a3−a4−a5
1−a1−a2

RcCcRdCd = ω2(1+a1−a2)
2(1−a1−a2)

RcCc + RdCd = ω(1+a2)
1−a1−a2

R0RcCc + R0RdCd + RcRdCd + RdRcCc =
ω(a5−a3)
1−a1−a2

(10)

3. AEKF-Based SOC Estimation

In order to estimate SOC accurately, the AEKF algorithm with time-varying statistical
characteristics is adopted in this chapter. Compared with the traditional Kalman filter,
the AEKF algorithm takes innovation adaptive estimation as the core method, which can
adaptively correct the system noise covariance and the measurement noise covariance. A
discrete state space equation, which reflects the change of state variables such as SOC and
voltage, is established.

 SOC(k)
URcCc(k)
URdCd(k)

 =

 1 0 0
0 exp(−ω

τc
) 0

0 0 exp(−ω
τd

)

×
 SOC(k− 1)

URcCc(k− 1)
URdCd(k− 1)

+


−ηω

C
Rc(1− exp(−ω

τc
))

Rd(1− exp(−ω
τd

))

× i(k− 1) + w(k− 1) (11)

where C is the current battery capacity, ω is the sampling period, τc and τd are the time
constants of two RC loops, τc = RcCc, τd = RdCd and i(k− 1) is current of a sample point
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at time k− 1. The discharge is positive and the charge is negative; w(k− 1) is the system
process noise.

For any nonlinear discrete system, f (xk, uk) is the system state equation and h(xk, uk)
is the observation equation of the system:{

xk+1 = f (xk, uk) + ωk
yk = h(xk, uk) + υk

(12)

where x is the n-dimensional state vector, u is the r-dimensional input vector, y is the m-
dimensional observed vector, υk is the observed noise and ωk is the system noise, assuming
that the noise mean is 0, the covariance is Rk and Qk, respectively, and ωk and υk are
mutually independent.

The equation of the linearized model is as follows:{
xk+1 ≈ Akxk + [ f (

∧
xk, uk)− Ak

∧
xk] + ωk = Akxk + Bkuk + ωk

yk ≈ Ckxk + [h(
∧
xk, uk)− Ck

∧
xk] + υk = Ckxk + Dkuk + υk

(13)

where

Ak =
∂ f (xk ,uk)

∂xk

∣∣∣
xk=

∧
xk

=

 1 0 0
0 exp(−ω/τd,k) 0
0 0 exp(−ω/τc,k)


Bk =

[
− ηω

Ca
Rd,k(1− exp(−ω/τd,k)) Rc,k(1− exp(−ω/τc,k))

]T

Ck =
∂g(xk ,uk)

∂xk

∣∣∣
xk=

∧
xk

=

[
∂Uoc

∂z

∣∣∣
z=zk

−1 −1
]

Dk = −R0,k

(14)

The flow chart of the SOC estimation algorithm based on FFRLS and AEKF is shown
in Figure 3.
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Sensitivity Analysis of SOC Estimation to Capacity Degradation

The battery capacity will decrease along with the time of using the battery, which is
an important variable for SOC estimation. To analyze the effects of the degradation of
capacity in SOC estimation theoretically, we established a capacity error model to illustrate
the sensitivity of SOC estimation to capacity degradation:

soc = soc0 −
1

C0

∫ t

0
η × Idt (15)

where C0 is the battery rated capacity, I is the battery current, η is the charge discharge
efficient and soc0 is assumed to be 1.

soc∗ = soc0 −
1

C∗

∫ t

0
η × Idt (16)

where C∗ is the capacity under the specified condition and SOC∗ is the remaining capacity
under the specified condition.

rsoc = SOC∗ − SOC =
(C∗ − C0)

∫ t
0 η Idt

C0C∗
(17)

where rsoc is the absolute error in calculating SOC by the ampere–hour integral method.
From the above error analysis, we can see that the variation of capacity will have a

great influence on SOC estimation. Therefore, establishing the capacity degradation model
is essential for SOC estimation. Meanwhile, the capacity, which was obtained from the
accelerated life test, cannot meet the requirement because of the complex and varying
situation. Therefore, whether the battery capacity can be accurately estimated in real time
is related to the accuracy of SOC estimation.

4. Adaptive SOC Estimator Based on Degradation Model
4.1. SOC Estimator Based on Degradation Model

This section focuses on the prediction method of the maximum available capacity and
the process of establishing the capacity degradation model. After comparative analysis, the
capacity degradation model under dynamic conditions is selected to realize the updating
of the available capacity. If accumulative error can be reduced, the prediction accuracy can
be improved. Furthermore, the real-time capacity prediction can be added to the AEKF
algorithm to improve the robustness of the SOC estimation effectively. The flow chart of
the SOC estimation algorithm based on updating the battery capacity is shown in Figure 4.
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4.2. Lithium-Ion Battery Degradation Model

When the battery is charged/discharged, an LIB will lose its capacity ∆C. Because of
the complexity of the environment and the internal state of the LIB during each cycle, ∆C
is independent and identically distributed, which is a random variable. Therefore, after t
cycles, the accumulative capacity of the battery is degraded. x(s, t) is the sum of ∆C per
cycle. According to the central limit theorem, the capacity degradation of the battery under
stress obeys the normal distribution:

x(s, t) ∼ N
(

u(s, t), σ2(n)
)

(18)

where x(s, t) is the cumulative capacity recession of the battery after t cycles under s stress
level, u(s, t) is the mean value of the capacity recession after t times cycle under s stress
level and σ2(t) is the capacity degradation variance after t cycles under s stress level.

Thus, the capacity degradation equation of battery power is as follows:

u(s, t) = fi(s)× thi(s) (19)

where s is the stress type, hi(s) is constant, s can be the temperature T and discharge rate
Rd and i = 1, 2.

4.2.1. Lithium-Ion Battery Degradation Model under Static Conditions

As we assume that the charging mode of the vehicle is fixed and the charge rate is
constant at a small rate, the effect of the charge rate on the capacity degradation of the
lithium-ion battery pack is not considered in this paper. The following models of cell
capacity degradation under the conditions of temperature and discharge rate are analyzed
and studied based on the above theory.

(1) Capacity degradation model under constant temperature
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The coefficient of the decay function is as follows:

f1(T) = K exp(
F
T
) (20)

where K is the fitting coefficient, F is the pressure and T is the temperature.
Assuming Equation (20) can be transformed to

f1(T) = exp
[

G +
F
T

]
, (21)

The capacity recession model under the condition of temperature stress is obtained by
Equation (21):

u(T, t) = f1(T)× th1(T) = exp
[

G +
F
T

]
× th1(T) (22)

The parameters G, F, h1(T) are obtained by fitting the capacity degradation data under
the temperature parameter.

The capacity degradation of the battery at different temperatures and different charg-
ing and discharging rates is shown in Table 1. The fitting results of the capacity degradation
during 300 cycles under different temperature stresses are shown in Figure 5.

Table 1. Capacity degradation under different conditions.

Number of Cycles 1 50 100 150 200 250 300

Temperature
20 ◦C 35.37

Ah
35.06
Ah

34.84
Ah

34.64
Ah

34.45
Ah

34.27
Ah

34.10
Ah

40 ◦C 35.23
Ah

34.44
Ah

33.86
Ah

33.35
Ah

32.87
Ah

32.41
Ah

31.97
Ah

Discharge rate

1C 35.37
Ah

35.06
Ah

34.84
Ah

34.64
Ah

34.45
Ah

34.27
Ah

34.10
Ah

2C 35.87
Ah

35.38
Ah

35.02
Ah

34.71
Ah

34.41
Ah

34.13
Ah

33.86
Ah

3C 35.59
Ah

34.79
Ah

34.21
Ah

33.69
Ah

33.21
Ah

32.75
Ah

32.31
Ah
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Based on the battery capacity degradation equation under temperature stress and the
results from Figure 6, the following equation can be obtained:

exp
(

G + F
293

)
= 13.99

exp
(

G + F
313

)
= 35.97

(23)
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Therefore, F = −4330.2, G = 17.4 and the degradation equation of the battery under
temperature stress is

u(T, t) = exp
[

17.4− 4330.2
T

]
× t0.79 (24)

(2) Battery capacity model under constant discharge rate

L =

(
l

fi(s)

)1/hi(s)
(25)

From Equation (19), the capacity degradation model under the Rd is

u(Rd, t) =
(

D× Rc′
d + E

)
× th2(Rd) (26)

where D, c′, E, h2(Rd) are the constants; these can be fitted by the data of battery capacity
degradation under discharge rate parameters. According to the data in Table 1, the fitting
curve and the degradation equation under different discharge rates and battery capacity
degradation can be obtained and are shown in Figure 7, and the parameters of capacity
degradation equation can be obtained and are shown in Table 2. After fitting the decay
parameters of different discharge rates, the coefficient curve of the degradation equation
can be obtained and is shown in Figure 6, the equation of which is shown in Equation (27):

f2(Rd) = 2.66R2.035
d + 11.33 (27)
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Table 2. Identification parameters under the degenerating equation.

C-Rate f 2 (Rd) h2 (Rd)

1C 13.99 0.7935
2C 22.24 0.7921
3C 36.24 0.7927



Electronics 2021, 10, 122 10 of 17

From Equation (26), the degradation equation of battery modules at different discharge
rates is obtained, as shown in Equation (28).

u(Rd, t) = f2(Rd)th2(Rd) =
(

2.66R2.035
d + 11.33

)
× t0.79 (28)

(3) Capacity degradation under compound stress

Because a normally working battery will be affected by high-temperature stress and a
high discharge rate at the same time, when the temperature rises, the capacity degradation
will be accelerated. The capacity degradation model under discharge rate stress alone will
not accurately predict this degradation. In this paper, the accelerated degradation factor of
temperature stress is used to reflect the accelerated effect of temperature. Based on this, the
capacity degradation model under combined stress is created.

The accelerated degradation factor of temperature stress is as follows:

ξT2,T1(t) =
f1(T1)

f1(T2)
=

exp
[

G + F
T1

]
exp

[
G + F

T2

] = exp
[

F
(

1
T1
− 1

T2

)]
(29)

From Equation (29) and setting T1 = T0, T2 = T, the battery capacity degradation
under (T, Rd) stress is as follows:

u(T, Rd) = ξT2,T1(t)u(Rd, t) = exp
[

F
(

1
T0
− 1

T

)]
×
(

D× Rc′
d + E

)
× th2(Rd) (30)

where exp
[

F
(

1
T0
− 1

T

)]
×
(

D× Rc′
d + E

)
described the speed of capacity degradation

under (T, Rd); if the state is fixed, it is a constant. The coefficient of degradation is as
follows:

K(T, Rd) =
(

D× Rc′
d + E

)
× exp

[
F
(

1
T0
− 1

T

)]
(31)

The capacity degradation model can be obtained from Equation (30):

u(T, Rd) = K(T, Rd)× th2(Rd) (32)

The capacity’s accelerated fading factor under temperature stress can be determined
with Equations (28) and (30).

ξT2,T1(t) = exp
[

4330.2×
(

1
293
− 1

T

)]
(33)

The capacity degradation model can be obtained from Equations (30) and (33).

u(T, Rd) = exp
[

4330.2×
(

1
293
− 1

T

)]
×
(

2.66R2.035
d + 11.33

)
× t0.79 (34)

4.2.2. Lithium-Ion Battery Degradation Model under Dynamic Conditions

The capacity fading process under constant stress deviates greatly from the actual
capacity fading process of battery power in actual use. Because there are two disadvan-
tages of the degradation model under static conditions, the most important point is that
battery power is not in a constant working situation, and so it is necessary to increase the
discharge current to meet the power demand of electric vehicles under the situation of
capacity degradation and the internal resistance increasing. In addition, according to the
parameters of the battery power, the discharge rate tends to increase, which greatly affects
the degradation rate of the power battery. Therefore, the capacity degradation model of
battery power under dynamic stress parameters should be established to adapt the complex
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working situations, and this model should describe the actual capacity degradation process
more accurately.

For the dynamic stress, because the temperature is a slowly changing parameter,
battery temperature is collected every 10 min, the average of which is defined as Ti;
because the discharge rate Rd,I is a real-time variable parameter, the value of the battery
discharge current is collected in real time, and the ratio of the average discharge current
collected in this cycle to the battery’s rated capacity is finally calculated as the Rd,I value.
Based on this, the capacity degradation model is created in this paper. ut(T, Rd) is the
t times capacity degradation model and ut+1(T, Rd) is the t + 1 times capacity degradation
model, which is defined as Equation (35). ut(T, Rd) = K(T, Rd)× th2(Rd)

ut+1(T, Rd) = K(T, Rd)× (t + 1)h2(Rd)

⇒ ut+1(T, Rd) =
[
ut(T, Rd)

1/h2(Rd) + K(T, Rd)
1/h2(Rd)

]h2(Rd)

(35)

where ut+1(T, Rd) is the total amount of recession after a recession at the (T, Rd), which
is based on the last recession. Thus, ut(T, Rd) is the degradation of the battery that has
occurred, and it is related to the stress level of the previous cycle, but the previous recession
is not related to the (T, Rd) of this cycle.

The deformation formula from Equation (35) is as follows:

ut+1(Tt+1, Rd,t+1)
1/h2(Rd) = ut(Tt, Rd,t)

1/h2(Rd) + Kt+1(Tt+1, Rd,t+1)
1/h2(Rd)

⇒ ut+m(Tt+m, Rd,t+m)
1/h2(Rd) = ut(Tt, Rd,t)

1/h2(Rd) +
m
∑

i=1
Kt+i(Tt+i, Rd,t+i)

1/h2(Rd) (36)

where ut(Tt, Rd,t) is the initial capacity degradation and ut+m(Tt+m, Rd,t+m) is the capacity
degradation after m cycles.

According to the fitting coefficient of the accelerated life test, the degradation coeffi-
cient equation is as follows:

Kt+i(Tt+i, Rd,t+i) = exp
[

4330.2×
(

1
293
− 1

Tt+i

)]
×
(

2.66Rd,t+i
2.035 + 11.33

)
(37)

5. Experiments and Results
5.1. Dataset of Battery

In this paper, a lithium battery module was selected as the test object, which con-
tained 12 series power battery monomers. Before grouping, these power batteries were
strictly screened to ensure the consistency of the available capacity and internal resistance.
The battery test platform consisted of a Digatron EVT 500-500 battery test system, a host
computer, a temperature box and a Fluke data recorder for battery data acquisition. The
battery charging and discharging equipment was the EVT 500-500, developed by a Ger-
man company to test the battery power of electric vehicles, and the accuracy of voltage
measurement and current measurement can reach 0.005. Furthermore, the maximum
charging and discharging current can reach 500 A and the maximum voltage is 500 V. The
battery test system is programmed by the upper computer, and the thermostat is used
to adjust the current temperature. In order to analyze the hybrid power characteristics
more intuitively, a Fluke data recorder was used, which can collect multiple sets of data
according to requirements, and it can convert complex data into intuitive graphics and
tables. The parameters of the used LIBs are presented in Table 3.
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Table 3. Lithium manganese oxide battery parameters.

Parameter Value

Rated capacity 35 Ah
Charging cut-off voltage 4.2 V

Discharging cut-off voltage 3.0 V
Rated voltage 3.7 V

Cathode material LiMn2O4
Internal resistance ≤1.0 mΩ

Based on the test platform built above, the static capacity test, battery accelerated
life test and open circuit voltage (OCV) test were developed and edited by the upper
computer of the Digatron test system. The batteries were charged and discharged 300 times
at different temperatures and discharging rates. The static capacity test result is shown
in Table 4. Taking the average value of the three times capacity value as the maximum
available capacity, Tables 1 and 2 present the accelerated life test data. The fitting results
are presented in Figures 5–7. The capacity degradation was recorded and the degradation
equation parameter was derived from the capacity degradation data at different discharging
rates. The actual project recession was similar to the experimental recession. We could
observe the non-linear characteristics of the battery recession in different conditions, and
these experimental data could be used to establish a capacity degradation model and
predict the actual application of the battery performance. The battery pack was placed in
a constant temperature environment of 20 ◦C to obtain the UDDS (Urban Dynamometer
Driving Schedule) loading profiles, as shown in Figure 8.

Table 4. Static capacity test results.

Constant Volume Available Capacity (Ah)

First 30.52
Second 30.12
Third 30.23
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5.2. SOC Estimation Results

To verify the accuracy of the proposed model, the LIB experiment was carried out. The
LIBs were placed in a 25 ◦C environment, loaded with UDDS cycles. From Figure 9, we can
see that the maximum absolute error (MAE) between the estimated terminal voltage and the
reference value was less than 2%, which can explain the high accuracy of voltage prediction.
Thus, the accuracy of the identification of battery model parameters was increased.
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From Figure 10, we can see that the capacity prediction results were very close to
the actual capacity, and the maximum capacity error was 1.5% during the 600 full battery
cycles. Therefore, this indicates that the capacity degradation model can describe the actual
capacity fading process more accurately and it can update the maximum available capacity
in real time and accurately.
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Figure 10. The battery capacity prediction result: (a) capacity prediction; (b) error of capacity prediction.

Figure 11 presents the result of SOC estimation in two states, and it shows that the
absolute error of SOC estimation increases to about 6% if the capacity is not updated.
After updating the capacity, the estimation error of SOC can be stabilized at about 0.5%.
Therefore, it is necessary to incorporate the cell capacity degradation model into the repair
procedure of the maximum available capacity in SOC estimation. Thus, when the capacity
of batteries deteriorates, the capacity C of batteries should be updated in time to ensure the
reliability of SOC estimation after battery aging.
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5.3. Hardware-in-the-Loop Validation

The BMS hardware-in-the-loop (HIL) simulation platform scheme designed in this
paper is shown in Figure 12. In this scheme, the battery power in the form of a Simulink
model was embedded into the SpeedGoat, a real-time simulation target. BMS communi-
cated with the real-time simulation target machine through the Controller Area Network
(CAN). The upper computer display terminal was programmed by LabVIEW, and the
parameters were adjusted online and the data collected by Real-time Explorer of MATLAB
software. The hardware in the loop simulation platform is shown in Figure 13. The BMS
was provided with a 24 V voltage regulated power supply. The battery model was loaded
into SpeedGoat by a Simulink compiler. BMS communicated with the simulator directly
through CAN bus and was connected with the display terminal of the host computer
through a USB-CAN card. The data were monitored in real time in the simulation pro-
cess. The real-time simulation machine generated the virtual voltage and current as the
virtual input of BMS. A background debug mode (BDM) background debugger was able
to accomplish two functions including controller C code burning and online simulation
debugging. When BMS was running, the registers and variables inside the BMS could be
monitored online through the background debugger and online debugging functions of
CodeWarrior software.
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Based on the HIL validation platform shown above, the UDDS operating condition
data were imported into the real-time target simulator. The simulator calculated the current
and voltage of the battery in real time, then sent the voltage and current to BMS by a CAN
bus and obtained the SOC estimation result by BMS calculation. With the initial SOC value
set as 80% and the actual SOC of the battery set as 90%, and running five UDDS cycles, the
SOC estimation results and estimation errors are presented in Figure 14.
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From Figure 14, we can see that the SOC estimation converged to the true value
quickly at the beginning of the experiment. The SOC estimation error was less than 3%
for the whole experiment. This illustrates that the SOC estimator considering capacity
degradation achieves high accuracy. The trend of the SOC estimation curve was the same
as that of the reference curve, but over time, the SOC estimation in the HIL test began to lag
behind the reference value. We found that the SOC estimation was affected by the operation
rate of the single-chip microcomputer, the acquisition rate of voltage and current and the
data transmission rate. Therefore, when estimating the SOC of the battery, the capacity of
the battery should be updated in real time when the battery capacity declines. At the same
time, online parameter identification is necessary to ensure the accuracy of estimation.

6. Conclusions

In this paper, a battery equivalent circuit model was established, the RLS with the
forgettable factor was adopted to realize parameter updating and the AEKF algorithm
is used for SOC estimation. To improve the accuracy of the AEKF SOC estimator, the
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sensitivity analysis of SOC estimation to capacity degradation was presented. Therefore,
an online adaptive SOC estimator based on the capacity degradation was presented, and
the battery capacity model under dynamic conditions was established, which could predict
the battery capacity in real time. After 600 charge/discharge cycles, the experimental
result shows that the capacity estimation error could be limited to 1.5%. Thus, the battery
capacity prediction could meet the accuracy and real-time requirements. Meanwhile,
the maximum error of the SOC estimator with capacity updates decreased from 6% to
1.23%. After verification in the real BMS controller, the calculation results indicate that
the maximum error of the algorithm was less than 3%, thus meeting the requirements
for on-board application. Therefore, the proposed method can not only improve SOC
estimation accuracy but also can predict the battery capacity online.
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