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Abstract: Human activity recognition (HAR) has vital applications in human–computer interaction,
somatosensory games, and motion monitoring, etc. On the basis of the human motion accelerate
sensor data, through a nonlinear analysis of the human motion time series, a novel method for HAR
that is based on non-linear chaotic features is proposed in this paper. First, the C-C method and
G-P algorithm are used to, respectively, compute the optimal delay time and embedding dimension.
Additionally, a Reconstructed Phase Space (RPS) is formed while using time-delay embedding for the
human accelerometer motion sensor data. Subsequently, a two-dimensional chaotic feature matrix is
constructed, where the chaotic feature is composed of the correlation dimension and largest Lyapunov
exponent (LLE) of attractor trajectory in the RPS. Next, the classification algorithms are used in order
to classify and recognize the two different activity classes, i.e., basic and transitional activities. The
experimental results show that the chaotic feature has a higher accuracy than traditional time and
frequency domain features.

Keywords: non-linear chaotic features; delay time; embedding dimension; RPS; LLE

1. Introduction

Human activity recognition is the detection, understanding and recognition of human
habitual or temporary behavior types, activity ways, and patterns. The recognition of
human activities provides intelligent services for various application platforms, such as
smart home [1], healthcare [2], patient care, exercise health, identity authentication, etc.,
and it has a wide application prospect.

Substantial research has been conducted in order to recognize human activities [3]. In
the aspect of motion data acquisition and recognition, there are mainly two ways that based
on computer vision and various types of sensors [4]. When compared to computer vision
approaches, the various sensors have the advantage of small size, high sensitively, abundant
information, and not being limited by the scene or time. Especially, for smartphone’s built-
in sensor [5], it does not require additional infrastructure, is universal, and it has better
computational power. In addition, the accelerometer and gyroscope data can be collected
from a smartphone.

Most of the existing sensor-based human activity recognition approaches often re-
quire steps, such as window division, feature extraction, model training, and activities
recognition. Especially for feature extraction module, the existing researches are roughly
divided into two categories: time and frequency domain features [6] and automatically
extracted features based on deep learning [7,8]. Chen et al. [6] proposed a framework and
performance analysis of human activity recognition system that is based on smartphone
sensors, which accurately describe different human motion patterns by extracting seven
features in the time-frequency domain and wavelet domain. Quaid et al. [9] proposed a
genetic algorithm using sensor data to solve complex feature selection and classification
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problems, by combining time and frequency domain features and acoustic signal character-
istics (e.g., energy, zero crossing rate, etc.). Besides, from the perspective of medical services,
the signal amplitude, average, standard deviation, maximum, and minimum values are
extracted from the motion date after de-noising as eigenvalues, and then these statistical
features are learnt and trained by linear support vector machine to realize human behav-
ior recognition [10]. Zhu et al. [11] proposed a semi-supervised deep learning method,
through the deep Long Short Term Memory (LSTM) to extract the features of local lazy
items in the cyclic framework, and realized the six activities recognition. Zhang et al. [12]
combined attention mechanism with Convolutional Neural Networks (CNNs) to extract
features. Meanwhile, there are some related literatures that combine the two methods for
activity recognition. For example, literature [5] has combined LSTM model-based with
time and frequency domain features, and proposed a feature fusion framework to im-
prove the performance of Human activity recognition (HAR) based on smartphone sensors.
Also, Nguyen et al. [13] used similar pose transform and discrete wavelet transform to
extract time-frequency domain features, and then further utilize the bidirectional LSTM
model to classify and recognize activities, thus improving the problem of different motions
posture conversion.

There has been a widespread use of machine learning techniques in smartphone-
based activity recognition [3]. One of the most common approaches is to extract time
and frequency domain features (i.e., mean, maximum, principal component analysis, etc.).
However, the traditional statistical features usually have higher dimensions; thus, it in-
creases the computational complexity. Additionally, this method often ignores the periodic
and nonlinear characteristics of the activity, and it does not fully consider the potential
dynamic features of the human activity. In addition, the idea of human activity recognition
that is based on deep learning is to extract features from the raw sensor data through
various neural network models. Comparing with the global information of time and
frequency domain features, the motion feature information extracted by deep learning
is difficult to understand and it has high computational complexity. Besides, although
the machine learning techniques and deep learning methods have both achieved a higher
recognition rate in the field of HAR, these approaches do not fully consider the underlying
chaotic dynamics in activity time series (sensor data), and they also ignore the non-linear
characteristics of human motion series [14].

Nonlinear dynamical system studies the qualitative and quantitative changes of differ-
ent motion states. Phase space reconstruction technology is a vital step in nonlinear dynam-
ics analysis, which reconstructs a time series with chaotic features into a nonlinear dynamic
system. Furthermore, there has been some works using dynamical system and chaos
theory, along with machine learning techniques for human activity recognition [3,15,16].
Saad et al. [15] constructs a recognition framework for modeling and analyzing the non-
linear dynamics of human activities that are based on the chaos theory. Additionally, a
four-dimensional eigenvector are built by parameters, such as Lyapunov exponent, embed-
ding dimension, correlation integral and variance, the five activity classes are recognized
and the recognition rate is 89.7%. Kawsar et al. [17] develops an activity detection system
where they use pressure sensor data from shoes along with accelerometers and gyroscope
data from smart phone. Additionally, they exploit the time-delay embedding for detecting
four activities (e.g., running, walking, sitting, and standing), and the classification accuracy
achieves 100%. Whereas, they do not mention the number of participants in this study and
also do not perform some widely tested activities (i.e., laying down, walking upstairs, and
walking downstairs). The acceleration sensor data are used in order to build phase space
reconstruction, and the principal component analysis is used to extract the nine maximum
values as the eigenvalues form the phase space, and then the five activities are recognized
by the support vector machine, and the recognition rate is 85% [16]. Meantime, in the
literature [18], the acceleration signals are embedded into a six-dimensional pseudo phase
space using the time-delay embedding. Subsequently, these activity observation series
are classified into different motions by the geometric template matching algorithm, and



Electronics 2021, 10, 111 3 of 17

the six basic activities from the UCI datasets are recognized. However, this paper does
not analyze the activity time series from the chaotic features perspective. Additionally, an
Electrocardiogram (ECG) signal (that is, a sensor signal) is reconstructed into phase space
using the time-delay technique. The 21 geometric features through the trajectory from the
phase space are extracted, and the four daily activities (i.e., rest, exercise, listening to music,
and watching a video) are recognized by the support vector machine learning, and the
accuracy rate is 97.7% [19]. Based on the dynamic system and chaos theory, Md et al. [3]
proposed a human activity recognition system that is based on lightweight smartphone.
They use acceleration sensor data from a smartphone to reconstruct the phase space, and
Gaussian Mixture Models (GMM) is learnt from the dynamics system to classily human
activities by the Maximum Likelihood Classifier (MLC). That is, the accuracy is 100% in
the self-collected dataset, but, in the public dataset, it is 90%. However, this work provides
another idea for human activity recognition, but does not perform experiments with other
test activities, such as transition activity.

In the meantime, although there have been extensive works towards the HAR problem,
most of them adopt the time and frequency domain feature, without exploiting the chaotic
feature via Reconstructed Phase Space (RPS). Thus, in this work, we analyze the nonlinear
dynamic features of the human activity from the dynamic system perspectives. In particular,
we only leverage one-axis acceleration sensor data to capture the inherent dynamics of the
human activity, and these sensor data are reconstructed in the phase space by time-delay
embedding. Following that, a two-dimensional chaotic feature matrix is constructed, where
the chaotic feature includes both the correlation dimension and largest Lyapunov exponent
(LLE) of attractor trajectory in the RPS. Additionally, then, five classification algorithms are
leveraged in order to classify and recognize the two different activity classes (e.g., basic
and transitional activities).

In this work, we study the non-linear chaotic features-based human activity recogni-
tion. The distinctive features of this work are as follows:

• We present a novel method for human activity recognition that is based on non-linear
chaotic features. Because the time series with the chaotic feature can be reconstructed
into a nonlinear dynamical system, this system studies the qualitative and quantitative
changes of various human motion states.

• The human activity acceleration sensor data can be described as a chaotic time series.
As such, we attempt to reconstruct the activity time series in a phase space by time-
delay embedding technology. In the meantime, in the process of reconstructing
motions phase space, we leverage the C-C method and G-P algorithm in order to
estimate the optimal delay time and embedding dimension, respectively.

• We construct a two-dimensional chaotic feature matrix, where the chaotic feature is
composed of the correlation dimension and LLE of attractor trajectory in the reconstruction
phase space. Additionally, the chaotic feature is different from the time-frequency domain
features and it can fully describe the human activity potential dynamic information.

The remainder of this paper is organized, as follows. In Section 2, we overview the
idea of HAR based on dynamic system and chaos theory. Additionally, we leverage the
C-C method and G-P algorithm to solve the activity phase space reconstruction problem,
respectively. Section 3 discusses the details of the experiment result. We conclude this article
in Section 4.

2. Non-Linear Chaotic Features-Based Human Activity Recognition
2.1. Chaotic Analysis of Motion Time Series

In dynamical systems, the power-spectrum analysis of the chaotic time series is the
first stage in RPS. The motion signal power-spectrum has autocorrelation structure, and it
is an irregular signal in the time dimension. Furthermore, the time series power-spectrum
with chaotic features might appear “noise background” or “wide peaks”, which reflect the
randomness of the chaotic motion sequence.
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Given a motion time series xn(i), where i = {1, 2, . . . , r} is the activity class and n is
the length of the motion time series. The multi-types motion time series X,

X =


x1(1), x2(1), · · · , xn(1)
x1(2), x2(2), · · · , xn(2)

...,
..., · · · ,

...
x1(i), x2(i), · · · , xn(i)

. (1)

For the motion signal time series, the autocorrelation function A is first calculated,
and then the corresponding power-spectrum Sk is obtained by Discrete Fourier Trans-
form (DFT).

Ai =
1
n

n

∑
j=1

xjxj+1, (2)

Sk = |x̂k|2 =
r

∑
i=1

Ai cos(
2πik

n
). (3)

Taking the activity class “walking” as an example, Figure 1 shows its power-spectrum
distribution. It can be observed from the Figure 1 that the power-spectrum of the activity
“walking” has the features of aperiodic, continuous spectrum, no obvious spectral peak, and
not flat spectrum, and it also has the characteristics of “wide peak” and “noise background”.
Thus, the human activity acceleration sensor data match the characteristic of chaotic
time series.
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Figure 1. Power-spectrum distribution of activity “walking”.

2.2. System Model

In nonlinear dynamical systems, the qualitative and quantitative changes of various
motion states are studied, and the phase space reconstruction is the key technology of non-
linear dynamics analysis. More specially, the quality of reconstruction directly affects the
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establishment and prediction of the model. In particular, the motion state space reconstruction
of non-linear dynamical systems is the first stage in chaotic time series analysis and prediction.

From the nonlinear dynamical features in human activity [3,15], we construct a dynam-
ical chaotic features model-based for human activity recognition, as revealed in Figure 2.
The single-axis accelerometer sensor data are first filtered by the Butterworth low-pass filter,
and a sliding window with a window size 3s and an overlap rate of 50% for segmenting the
sensor data. Subsequently, we leverage the C-C method and G-P algorithm for estimating
the appropriate delay time and embedding dimension, respectively. Additionally, each
activity phase space is reconstructed by the two chaotic parameters, such as delay time and
embedding dimension. Next, the correlation dimension and LLE of attractor trajectory in
the RPS are extracted as chaotic features. In particular, the two chaotic features are utilized
to build a two-dimensional chaotic feature matrix. Finally, the different human activities
are classified and recognized by machine learning method.
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Figure 2. A dynamical chaotic features model-based for Human activity recognition (HAR) framework.

2.3. Reconstructed Phase Space

The dynamical system is a model that describes the evolution of a system over time [3],
and a temporal evolution of system is defined in a phase space. In addition, in chaotic time
series analysis, the reconstruction of nonlinear dynamical systems from time series is the
vital stage [20]. Phase space reconstruction can implement the modeling and forecasting
of chaotic time series. Therefore, in this work, the RPS is introduced in order to capture
the underlying dynamics of the accelerometer sensor data, where the data are chaotic time
series observations.

Packard and Takens proposed the RPS theory [21]. From the Taken’s embedding theo-
rem, an attractor of the original system is reconstructed from the time series. The attractor
preserves the topological properties of the original dynamic system, which is, the RPS is
topologically equivalent to the original system. The RPS describes a process that these obser-
vations (accelerometer sensor data) are converted into state vectors. For an activity class time
series, in line with the Taken’s delay embedding theorem, the phase space vector Y can be
represented as,

Y =
[

xn, xn−τ , · · · , xn−(m+1)τ

]
, (4)

where m is the embedding dimension and τ is the delay time. Additionally, this time delayed
the embedding of the time series is called the RPS [22]. Furthermore, to model and predict the
chaotic time series, one must choose appropriate delay time and embedding dimension in the
reconstruction of the attractor. For infinite long and without noise time series, the selection of
embedding dimension and delay time is not limited in principle. However, for the motion
time series with both noise and finite long, selecting the appropriate embedding dimension
and delay time is the premise of RPS [23].
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2.3.1. Delay Time

The C-C method has no firm theoretical basis, but it works well for the choice of
delay time and shows strong robustness. Additionally, it can be practicable for the exact
selection of delay time [24], when compared to other methods. Thereby, in this work, the
C-C method is used in order to obtain the optimal delay time. The correlation integral of
the time series is defined as,

C(m, n, r, t) =
2

M(M− 1) ∑
1≤i≤j≤M

θ(r− dij), (5)

where m is embedding dimension, n is the number of the time series, r is search radius,
and M = n− (m− 1)t is the number of embedded points in m-dimensional phase space,
besides, dij = ||xi − xj||, and θ are Heaviside function.

The correlation integral C is a cumulative distribution function, which represents the
statistical probability that the distance between any two points in the phase space is less
than r. The activity time series x is divided into t disjoint sub-series. For the general t,
the statistic S of each time series is defined as,

S(m, n, r, t) =
1
t

t

∑
s=1

[Cs(m, n/t, r, t)− Cm
s (1, n/t, r, t)], (6)

as n→ ∞, we can obtain,

S(m, r, t) =
1
t

t

∑
s=1

[Cs(m, r, t)− Cm
s (1, r, t)]. (7)

The optimal delay time τ may be the times that correpond to the first zero crossings of
S(m, r, t). The ∆S(m, t) is defined via the maximum and minimum of radius.

∆S(m, t) = max{S(m, rk, t)} −min{S(m, rk, t)}. (8)

The appropriate selection range of the quantities is determined, relying on the BDS
statistics. The average of the quantities that are given by Equations (7) and (8) are defined,

Scor =
∣∣S̄(t)∣∣+ ∆S̄(t). (9)

Therefore, the optimal delay time τ corresponds to the first zero crossing of S̄(t) or
the first local minimum of ∆S̄(t).

2.3.2. Embedding Dimension

Grassberger and Procaccia propose a G-P algorithm [25]; this method is widely used to
calculate the embedding dimension and correlation dimension form the chaotic time series.
Because of the self-similar characteristic of the chaotic system, the correlation dimension of
fractal geometry is adopted for the description of the chaotic attractor, as it can describe
the complexity of the system in a quantitative way.

The principle is that a set of motion time series is {x1, x2, · · · , xn}, and the erratic attrac-
tor of the chaotic dynamical system is constructed by the RPS Y =

[
xn, xn−τ , · · · , xn−(m+1)τ

]
,

where τ is the delay time and m is the embedding dimension of the state space rebuild.
In Y, the absolute value of the difference between any two vectors is recorded as

rij =
∣∣Yi −Yj

∣∣. Additionally, the association function C indicates the probability that the
distance between two points is less than r. Additionally, the expression is,

C(r) =
1
n2

N

∑
j=1

N

∑
i=1

δ(r−
∣∣Yi −Yj

∣∣), i 6= j, (10)
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where, δ(r−
∣∣Yi −Yj

∣∣) is Heaviside function, then the correlation dimension is,

D = lim
r→∞

lnC(r)/lnr. (11)

From Taken’s embedding theorem, the relationship between embedding dimension m
and the correlation dimension d meets the condition, i.e., m ≥ 2d + 1.

2.3.3. Lyapunov Exponent

In a dynamic system, the Lyapunov exponent (LE) is a typical indicator and it can be
used to inspect whether the nonlinear time series is in a chaotic state. The largest Lyapunov
exponent (LLE) reveals the chaotic degree of a time series, and a greater value shows a
more obvious chaotic characteristic and a higher degree of chaos. Thus, the positive LLE
value means that the time series is in chaotic state, and, if the LLE value is negative, which
explains the time series is a stable motion state [26]. In our paper, we calculate the LLE
value of time series Wolf-based [27]. The detailed process is described, as follows:

• For a set of motion time series {x1, x2, · · · , xn}, the optimal delay time τ and embed-
ding dimension m are determined, and then the corresponding reconstructed phase
space Y can be obtained based on the Equation (4).

• The initial point Y(t0) is obtained from the Y. The distance between Y(t0) and its
nearest neighbor point Y0(t0) is estimated L0, which is the evolution of the two points
with time.

• At the time t1, the distance L′0 = |Y(t1)−Y0(t0)| > ε, which is, the ε(ε > 0) is a
threshold value, then retained at the Y(t1) .

• The Y(t1) is the adjacent point of the another point Y1(t1), the distance L1 = |Y(t1)−
Y1(t1)| < ε is the and the angle between Y(t1) and Y1(t1) as small as possible.

• Repeat the above steps, until Y(t) reaches the end of the entire time series n.
• In the process of tracking the evolution, the total number of iterations is set as M. The

LLE can be achieved from Equation (12).

λ =
1

tM − t0

k=M

∑
k=1

log
L
′
tk

2

log
Ltk
2

. (12)

Figure 3 shows the LE value of the activity class “walking”. In Figure 3, the LE value
is all positive, which indicates that the activity is in chaotic state.
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Figure 3. The Lyapunov exponent (LE) value of the activity class “walking”.
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2.4. Non-Linear Chaotic Features-Based Human Activity Recognition

Accounting for the shortcomings of the traditional time and frequency domain features
for human activity recognition (i.e., high dimension), we propose a method of human activ-
ity recognition chaotic features-based, from the perspective of nonlinear chaotic dynamical.
This method can ensure the accuracy, while reducing the computational complexity, with
the specific implementation is as follows:

• Data preprocessing. The Butterworth low-pass filter is used to separate gravity from
the single-axis acceleration sensor data {xi}. In addition, we further use a sliding
window with a window size 3s and an overlap rate of 50% in order to segment the
sensor data.

• Reconstructed phase space. We respectively leverage the C-C method and G-P algo-
rithm in order to estimate the appropriate delay time τ and embedding dimension m.
Additionally, the each activity phase space is reconstructed using Equation (4).

• The feature matrix [T] construction. A two-dimensional chaotic feature matrix is
constructed, where the chaotic feature is correlation dimension d and LLE of attractor
trajectory in the Y.

• Classification and recognition. The two different human activity classes, such as basic
and transition activities, are classified and recognized by the machine learning algorithm.

Algorithm 1 shows the pseudo-code of specific implementation.

Algorithm 1 Pseudo-code of non-linear chaotic features-based human activity recognition

Input: A single-axis acceleration sensor data: {xi}. The length of series: n.

Output: the recognition rate.

1: Data Pre-processing. The data filtering and silding window division

2: Reconstructed phase space (Y)

3: while a time series do

4: calculate the delay tine τ by Equation (9)

5: calculate the correlation dimension d by Equation (11)

6: if m ≥ 2d + 1 then

7: get embedding dimension m

8: endif

9: Y = reconstitution(xi, m, τ, n)

10: endwhile

11: Feature space [T]

12: for each phase space point Y(t) do

13: calculate the largest Lyapunov exponent (LLE)

14: endfor

15: T = [d, LLE]

16: the recogntion result

3. Experimental Results and Analysis
3.1. Experimental Materials and Methods

In this paper, we leverage a Human Activity Recognition datasets smartphone-based,
from the HAPT Machine Learning Repository [28]. The dataset is collected using the built-
in accelerometer and gyroscope sensor, and the sampling frequency is 50 Hz, from a group
of 30 participants aged 19–48 years. Each participant wears a smartphone on the waist, and
a total of 815,614 valid samples sensor data are collected. In order to improve the compu-
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tational, we randomly choose 26,000 data as the experimental sample dataset. Following
that, these accelerometer sensor signals are pre-processed by applying the Butterworth
low-pass filter, and we further use a sliding window with a window size 3s and overlap
rate of 50% in order to segment the sensor data. In particular, we analyze the nonlinear
of these activity sensor data, and then chaotic features are extracted in the RPS, in order
to realize the recognition of human activity. Specifically, these sensor data cover twelve
activities in total, which is, these activities are divided into both the basic and transition ac-
tivities. Besides, the basic activities contain walking, walking upstairs, walking downstairs,
sitting, standing, and laying down, and the transition activities include standing-sitting,
sitting-standing, sitting-laying down, laying down-sitting, standing-laying down, and
laying down-standing, and these twelve activities are labelled A1–A12, respectively.

3.2. Experimental Results and Analysis
3.2.1. Reconstructed Phase Space

A dynamical system describes the temporal evolution process of a system, and the
phase space can represent all possible states of a system that evolve over time. Therefore,
we analyze the nonlinear dynamic features of the human activity from the dynamic sys-
tem perspectives, and then reconstruct the activity time series into a phase space. More
specially, the embedding dimension and delay time are both the premise of reconstructed
phase space.

(1) delay time
Figure 4 reveals the optimal delay time for the twelve activities, i.e., A1–A12, the ab-

scissa represents the time delay. The C-C method looks for the first local minimum of ∆S
or the first zero crossing of S as the first optimal delay time for activity. Furthermore, in
order to avoid ∆S, various activities are covered in the same figure, and four experimental
subfigures are used.

In Figure 4, for the basic activity A1, the first local minimum value ∆S is 4, which is,
the optimal delay time is τ = 4, which the same as the activity type A5. Meanwhile, the
appropriate delay time of three activities, e.g., A2, A3, and A4, is τ = 3, and the optimal
delay time of activity A6 is τ = 6. In addition, for transition activity the A7 and A8, the
statistics ∆S′ first local minimum value is 5, namely, the optimal delay time τ = 5; for
activity A9, the appropriate delay time τ = 8, which is the same as the activity type A11.
Besides, the optimal delay time of activity A10 and A12 is τ = 5 and τ = 9, respectively.
Based on the C-C method, the optimal delay time of twelve activities is obtained.

(2) embedding dimension
The optimal delay time is determined, as in Section 3.2.1 (1). Based on this, the ap-

propriate embedding dimension of all activities is estimated by G-P algorithm. Taking the
activity of both A1 and A10 as examples, which is, Figure 5 illustrates the corresponding
double logarithmic coefficient relationship curve lnC(r)-ln(r). It can be seen from Figure 5
that no matter what kind of activity, when the embedding dimension m is smaller, the slope
of the straight line part of the curve is smaller, and the interval distance between the two
curves is larger. However, with the increase of m, the slope of the straight part gradually
increases, but the interval between the two curves decrease. When the straight line part
of the curve tends to be parallel, the corresponding value is the correlation dimension of
the motion time series, which is, the lnC(r)-ln(r) relationship curve is in a saturated state.
Specifically, the optimal embedding dimension of the all activity is estimated, according to
Taken’s embedding theorem (i.e., m ≥ 2d + 1).

Table 1 describes the estimates of the correlation dimension d and optimal embedding
dimension m by the G-P algorithm of twelve human activities. In practice, fractal dimension
is the attractor correlation dimension d of different activity types.
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Figure 4. The ∆S distribution by C-C method. (a) A1–A3; (b) A4–A6; (c) A7–A9; and, (d) A10–A12.

Table 1. The correlation dimension and embedding dimension of all activities.

Activity Type d m

A1 1.7756 5
A2 1.9543 5
A3 2.1152 6
A4 0.6508 3
A5 0.5624 3
A6 0.2754 2
A7 1.1577 4
A8 1.4746 4
A9 1.9683 5

A10 1.3771 4
A11 1.7147 5
A12 1.5681 5

(3) Reconstructed phase space
We use the filtered sensor data along the x-axis to build RPS with the optimal delay

time and embedding dimension, namely, the two parameters are used in order to build
RPS for each activity. By reconstructing the phase space, the evolution discipline of chaotic
attractors can be found, and it can also provide a new method and idea for the study
of action time series. Figures 6 and 7 reveal the three-dimensional attractor trajectories
reconstructed of twelve activities, respectively.
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Figure 5. Double logarithmic coefficient relationship curve lnC(r)-ln(r). (a) A1; (b) A10.
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Figure 6. Reconstructed Phase Space (RPS) with basic activities. (a) A1; (b) A2; (c) A3; (d) A4; (e) A5;
and, (f) A6.
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It can be observed from Figure 6 that the chaotic attractor trajectory of the each activity
sequence is twisted together around the origin of space, and the overall shape is roughly
spherical or ellipsoidal. When comparing with the chaotic attractor trajectory of various
activities, each activity has obvious differences between the size of the geometric structure
and the spatial position. The chaotic attractors’ divergence degree of the activity, i.e., A1,
A2, and A3, is significantly greater than the chaotic attractors of A4, A5, and A6. Moreover,
the chaotic attractor of activity A1, A2, and A3 “attempt to escape” from the locus center are
also more than those of activity A4, A5, and A6, which is consistent with the phenomenon
that the activity amplitude is stronger and more complex.
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Figure 7. RPS with transitional activities. (a) A7; (b) A8; (c) A9; (d) A10; (e) A11; (f) A12.

In Figure 7, because the activities A7–A12 describe the transition process between
different motions, for each activity, the variation of amplitude is small. Thus, the divergence
of the chaotic attractor trajectory of transition activities A7–A12 is less than the basic
activities type A1–A6. In addition, the chaotic attractor of activities A9, A10, A11, and A12
“attempt to escape” the center of trajectory more than the activities A7 and A8, which is
related to the magnitude of motion amplitude in the process of action transition.
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Specifically, because the attractor is the product of the global stability and local insta-
bility of the system, regardless of the basic activities or transition activities, for each activity
class, although all of the motion outside the attractor converges to the central attractor,
the motion within the attractor is mutually exclusive. After reconstructing the phase space
of all activities, the LLE of each activity is estimated by the Wolf method, as revealed in
Table 2. In practice, the LLE is greater than zero, and it quantitatively describes the chaotic
motion state of singular attractor.

Table 2. The largest Lyapunov exponent (LLE) of all activities.

Activity Type A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

LLE 2.180 2.080 2.125 1.991 2.014 1.980 1.955 2.025 2.013 2.012 2.023 2.014

3.2.2. Experimental Results and Analysis

In the RPS model, we obtain the appropriate delay time τ, embedding dimension m,
correlation dimension d, and the LLE of all human activity classes. Subsequently, both
of the parameters, the correlation dimension and LLE, are used to construct the chaotic
feature matrix [T]. In fact, each activity class has three groups one-dimensional motion
time series (e.g., x, y, z); thus, there are three groups of two-dimensional chaotic feature
matrices for each activity. Furthermore, in this work, the five classification algorithms, i.e.,
NB (Naive Bayesian), DT (Decision Tree), KNN (K-Nearest Neighbor), RF (Random Forest),
and SVM (Support Vector Machines) are introduced in order to recognize the human
activity. Additionally, for each input sample of various classification algorithms, the 10-fold
cross validation is performed in order to test the accuracy of our method. Additionally, the
recognition result is the three-axis average recognition rate.

After pre-processing and window division, the 26,000 experimental sample datasets
are divided into 6847 test samples and the 16,794 training samples. Table 3 shows the recog-
nition rate of the activities A1–A12 on five different classification algorithms. For the basic
activities A1–A6, the average recognition rate is 96.80% on five classification algorithm,
whereas the average recognition rate is 90.08% of the transitional activities A7–A12. More-
over, the two activity classes’ accuracy is the highest for SVM algorithm, in particular, the
activity A2 (basic activity) achieved an accuracy of 100%. Besides, the accuracy of activity
A11 (transition activity) is only 87.1% in the KNN algorithm. Generally, for five classifica-
tion algorithms, the average accuracy of twelve activities is 96.28%, 97.27%, 97.23%, 97.02%,
96.49%, 96.50%, 89.4%, 89.62%, 89.8%, 90.08%, 90.28%, and 91.38%, in turn. Therefore,
when comparing with the basic activities, for each classification algorithm, the accuracy
of transition activities is lower. This is related to the short duration of transition activities,
and the fact that all of the motion information may not be saved in a window period.

Table 3. The accuracy of different activities.

Activity Type
Five Classification Algorithms

Average Accuracy
SVM NB DT KNN RF

A1 98.34% 97.26% 93.84% 94.48% 97.48% 96.28%
A2 100% 97.77% 95.65% 96.57% 96.37% 97.27%
A3 98.42% 98% 97.48% 95.79% 96.47% 97.23%
A4 98.46% 98.35% 95.36% 97.46% 95.47% 97.02%
A5 99.63% 96.65% 96.64% 94.64% 94.90% 96.49%
A6 98.95% 95.29% 98.10% 95.28% 94.89% 96.50%
A7 92.30% 89.00% 87.60% 89.00% 89.10% 89.40%
A8 91.90% 88.90% 89.00% 88.30% 90.00% 89.62%
A9 90.50% 90.40% 87.70% 90.00% 90.40% 89.80%

A10 92.20% 88.80% 89.60% 88.20% 91.60% 90.08%
A11 92.70% 89.90% 90.70% 87.10% 91.00% 90.28%
A12 93.00% 87.60% 92.60% 90.80% 92.90% 91.38%
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The recognition result of SVM is upper than other classification algorithms, as men-
tioned before. Thus, in order to further illustrate the effectiveness of chaotic features for
human activity recognition, Table 4 reveals the confusion matrix result of all activities
that are SVM algorithm-based. For basic activities, the average precision is 98.9% and the
average recall is 99.1%, whereas the average precision and recall of transition activities are
92.1% and 90.26%, respectively. Thereby, no matter what kind of performance evaluation
index, the result of basic activities is superior than the transition activities.

Usually, the time-frequency domain features (i.e., mean, standard deviation, maxi-
mum, minimum, discrete cosine transform, etc.), are extracted as features of human activity
recognition. Therefore, we further compare and analyze our work with the time-domain
features for HAPT dataset. Specifically, the four time-domain features (e.g., mean, max-
imum, standard, and minimum) are extracted from the x, y and z three-axes, separately,
which is, each activity is constructed by three groups of four-dimensional feature matrices.
Similarly, the above five classification algorithms are used to recognize these activities.
Figure 8 shows the comparison of basic and transition activities, respectively. In Figure 8a,
that is, for basic activities, the recognition rate of chaotic feature is about 4.1% better than
the time-frequency domain features; in addition, the accuracy of transition activities is
about 4.8% higher, as seen in Figure 8b. Furthermore, when comparing with the time and
frequency domain features, the time of reconstructed phase space is three to four times less.
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Figure 8. Comparison of recognition result. (a) basic activity; (b) transition activity.
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We also compare our work with the literature [3]. Table 5 presents a comparative
analysis. We compare both extracted features and activity class for each work. The literature
focuses on the RPS, Gaussian Mixture Model (GMM), and Maximum Likelihood Classifier
(MLE) method, the six basic activities on UCI [29] dataset are recognized, and the accuracy
is 90%. However, in this work, the correlation dimension and LLE of the attractor structure
in RPS are constructed as features, the overall accuracy of six basic activities is 96.8%,
which is 6.8% higher than the literature [3]. In addition, the six transition activities are also
recognized and the overall accuracy is 90.08%.

Table 4. The confusion matrix Support Vector Machines (SVM) algorithm-based.

Activity Type A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 Recall

A1 1150 0 7 0 0 0 0 0 0 0 0 0 99.3%
A2 17 1108 5 0 0 0 0 0 0 0 0 0 98.0%
A3 6 0 1022 0 0 0 0 0 0 0 0 0 99.4%
A4 0 0 0 941 4 0 0 0 0 0 0 0 99.5%
A5 0 0 0 14 946 0 0 0 0 0 0 0 98.5%
A6 0 0 3 0 0 993 0 0 0 0 0 0 99.6%
A7 0 0 0 1 0 0 95 5 0 0 1 0 93.1%
A8 0 0 0 0 0 3 3 72 0 0 0 0 92.3%
A9 0 0 0 0 0 0 0 0 100 0 4 1 95.2%

A10 0 0 0 0 0 5 0 2 0 97 2 4 88.1%
A11 0 0 0 0 0 0 5 0 9 0 121 1 88.9%
A12 0 0 1 0 0 3 0 0 1 8 3 84 84.0%

Precision 98.3% 100% 98.4% 98.5% 99.6% 98.9% 92.3% 91.9% 90.5% 92.2% 92.7% 93.0%

Table 5. The LLE of all activities.

Related Method Feature Activity Class Recognition Rate

Literature [3] embedding dimension, delay time A1–A6 90%

Our work correlation dimension, Lyapunov exponent A1–A6 96.80%
A7–A12 90.08%

4. Conclusions

In this work, aiming at the problem of the traditional time and frequency domain
features for human activity recognition, when considering the nonlinear features of human
motion time series, this paper proposes a method of human activity recognition that is based
on non-linear chaotic features. It focuses on how to compute the optimal delay time and
embedding dimension of reconstructed phase space, and also establish the feature matrix
by correlation dimension and largest Lyapunov exponent. The experimental results show
that the chaotic feature has a higher accuracy when compared to existing approaches. In
the future, we will consider the combination of chaos theory and deep learning technology.
The phase space reconstruction technology is used in order to represent the action time
series as vectors, and then classify and recognize them by deep learning.
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