i?‘lg electronics

Article

Path-Sensitive Oracle Data Selection via Static Analysis

Mingzhe Zhang *', Yunzhan Gong, Yawen Wang * and Dahai Jin

check for

updates
Citation: Zhang, M.; Gong, Y.;
Wang, Y.; Jin, D. Path-Sensitive Oracle
Data Selection via Static Analysis.
Electronics 2021, 10, 110.
https:/ /doi.org/10.3390/ electronics
10020110

Received: 1 December 2020
Accepted: 3 January 2021
Published: 7 January 2021

Publisher’s Note: MDPI stays neu-
tral with regard to jurisdictional clai-
ms in published maps and institutio-

nal affiliations.

Copyright: ©2021 by the authors. Li-
censee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and con-
ditions of the Creative Commons At-
tribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing 100876, China; gongyz@bupt.edu.cn (Y.G.); jindh@bupt.edu.cn (D.].)
* Correspondence: zmz420@bupt.edu.cn (M.Z.); wangyawen@bupt.edu.cn (Y.W.)

Abstract: A test oracle is a procedure that is used during testing to determine whether software
behaves correctly or not. One of most important tasks for a test oracle is to choose oracle data (the
set of variables monitored during testing) to observe. However, most literature on test oracles has
focused either on formal specification generation or on automated test oracle construction, whereas
little work exists for supporting oracle data selection. In this paper, we present a path-sensitive
approach, PSODS (path-sensitive oracle data selection), to automatically select oracle data for use
by expected value oracles. PSODS ranks paths according to the possibility that potential faults may
exist in them, and the ranked paths help testers determine which oracle data should be considered
first. To select oracle data for each path, we introduce quantity and quality analysis of oracle data,
which use static analysis to estimate oracle data for their substitution capability and fault-detection
capability. Quantity analysis can reduce the number of oracle data. Quality analysis can rank oracle
data based on their fault-detection capability. By using quantity and quality analysis, PSODS reduces
the cost of oracle construction and improves fault-detection efficiency and effectiveness. We have
implemented our approach and applied it to a real-world project. The experimental results show that
PSODS is efficient in helping testers construct test oracles. Moreover, the oracle datasets produced by
our approach are more effective and efficient than output-only oracles at detecting faults.

Keywords: software testing; static analysis; oracle data; test oracle

1. Introduction

Testing is one of the most important processes in software development. There are two
activities to be performed when testing software: executing a program under test using test
data and determining if the program executes correctly. Test data determine what behavior
the program will exhibit when it is executed, and a considerable amount of research focuses
on automatic test data generation to exhibit more behaviors [1,2]. Nevertheless, it is not
enough for a testing process to obtain only the program behaviors; more effort is required
to determine whether the behaviors are correct. However, compared to many aspects of test
automation, the test oracle problem is still recognized as one of the most difficult problems
and remains comparatively less well-solved [3,4].

Oracle data (for details, see Section 2.2) comprise a set of variables monitored during
testing. The output-only oracle that specifies output variables as oracle data is the most
common type of test oracle [5]. Nevertheless, in some cases, faults leading to incorrect
states do not always propagate and manifest themselves as failures and may vanish before
they reach output variables [6]. Except for the propagation problems of output-only oracles,
it is difficult to determine the expected values of the output of programs under test because
of the complexity of programs [7]. Thus, in practice the output-only oracle is not always a
good solution, since it is necessary to observe both output variables and internal variables
during test oracle process. When we construct a test oracle, the more oracle data a test
oracle contains, the more powerful the test oracle is in detecting faults [8-10]. However,
it is not feasible to monitor all variables (including all the output variables and internal
variables) during testing because of the high cost of constructing test oracles. Furthermore,

Electronics 2021, 10, 110. https://doi.org/10.3390/ electronics10020110

https:/ /www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5455-3087
https://doi.org/10.3390/electronics10020110
https://doi.org/10.3390/electronics10020110
https://doi.org/10.3390/electronics10020110
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10020110
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/2/110?type=check_update&version=1

Electronics 2021, 10, 110

20f19

in some cases, because of the lack of formal specifications, testers have to construct test
oracles manually, and manually determining oracle data is a very time-consuming and
expensive process.

Based on the above analysis, it is very necessary to select oracle data before construct-
ing a test oracle [10-12]. A test oracle uses inputs and corresponding expected values to
construct an oracle. Each input corresponds to an execution, and an execution corresponds
to a program path. In a sense, a test oracle can be treated as a path-sensitive mechanism.
Path-oriented oracle data selection is more conducive to the subsequent oracle construction.

In this paper, we present PSODS (path-sensitive oracle data selection), a path-sensitive
oracle data selection approach to support testers for the test oracle construction. Since
the ultimate goal of a test oracle is to detect faults in the program [13], PSODS aims
at estimating the capability of each path and each oracle data on detecting faults and
providing testers with recommendations regarding what oracle data should consist of.
We propose critical path analysis (for details, see Section 2.1) to analyze paths. Critical
path analysis ranks paths based on their possibility that potential faults may exist in
them. For the ranked path, PSODS analyses oracle data in each path to determine the
substitution relationships between oracle data and their fault-detection capability. Finally,
PSODS selects the minimum set of oracle data for each path and ranks the oracle data in
each set. The number of oracle data in each set is reduced according to the substitution
relationships between oracle data, and the oracle data in each set are ranked based on
their fault-detection capability. By providing testers the ranked oracle data, the tester can
maximize the fault finding potential of testing with minimal efforts.

We present an empirical study in which we evaluated the capabilities of PSODS and
compared our approach with the output-only oracle. We evaluated PSODS on a real-world
project single. The evaluations show promising results in terms of fault finding efficiency.
In addition, the results show that PSODS is more effective than the output-only oracle in
fault detection. PSODS can find faults that the output-only oracle has difficulty in finding.
According to our experimental results, PSODS is clearly more effective and efficient at
detecting faults.

The contributions of this paper are as follows.

(1) We propose a critical path analysis approach to rank program paths before selecting
oracle data. Paths are ranked based on the possibility that potential faults may exist in
them. The ranked path can provide useful insights to testers during oracle construction.
Furthermore, path-sensitive oracle data selection is more conducive to the subsequent
oracle construction.

(2) We propose a quantity and quality analysis approach to select oracle data. The
quantity analysis reduces the number of oracle data for each path based on their substitution
relationships. The quality analysis ranks oracle data in accordance with the fault-detection
capability.

(3) We evaluate the proposed PSODS using a real-world project. From our experimen-
tal results, we observe that PSODS is able to select oracle data and is more effective and
efficient than an output-only oracle at detecting faults.

The rest of this paper is organized as follows. Section 2 explains the proposed approach.
Section 3 presents the experimental results. Section 4 discusses related work. Section 5
presents our conclusions from this effort.

2. Our Approach

To make oracle construction easier and maximize the potential return on testers’ efforts,
we propose a path-sensitive oracle data selection approach, PSODS. PSODS uses critical
path analysis to rank paths in accordance with their relevance to potential faults. The
ranked paths not only provide information on oracle construction order for testers but also
partition oracle data to facilitate the oracle construction. PSODS uses quantity and quality
analysis to select oracle data; the quantity and quality analysis determines a minimal set of
oracle data that is likely to detect faults during testing.

Electronics 2021, 10, 110

30f19

An overview of PSODS is shown in Figure 1. PSODS consists of two major components:
(1) critical path analysis. (2) quantity and quality analysis. In the following, we describe
the two major components separately.

2.1. Critical Path Analysis

To perform path-sensitive oracle data selection, PSODS begins with critical path
analysis. Critical paths are paths that are more likely to have potential faults. The paths
that PSODS deals with are generated by CTS [14,15], which is a code testing system for C
programs. CTS selects paths by traversing a control flow graph (CFG). The path selected
by CTS is an ordered sequence of nodes of CFG (CTS adopts some strategies to alleviate
the path explosion problem, such as using bounded iteration to deal with loops).

To estimate the possibility that potential faults exist in each path, we introduce the
critical path analysis (CPA). CPA sets a weight for each path. The weight is calculated
according to two factors, which are the number of operations in paths and path length. Op-
erations include normal operations and high-risk operations (more details can be found in
Section 2.1.1). Normal operations here refer to operations that contain arithmetic operators,
relational and logical operators and so on. CPA assumes that more normal operations mean
a higher possibility that potential faults exist. High-risk operations are operations that may
cause vulnerability, such as buffer overflow caused by library calls. A vulnerability can
be exploited by an attacker to alter the normal behavior of the program. Improper use of
high-risk operations can trigger errors or even crashes. Therefore, CPA assumes that the
more high-risk operations in the path there are, the more likely it is to contain faults [16].
Since long paths usually have a higher possibility that potential faults exist, CPA takes
path length as a complement to the factor of the number of operations.

The number of operations is calculated by simply using a pattern matching strategy.
The length of a path can be derived from calculating the number of CFG nodes in the path.
As a result, CPA could be finished in a short time. After CPA determines the weight for
each path, CPA ranks paths based on their weight. PSODS first analyzes the path with the
highest weight to select oracle data. Testers construct the oracle in the order of the ranked
paths, which may help to find faults faster.

’’ N,
Oracle Construction / Oracle Data Selection via Static Analysis
i) ’ z Numbers of Operations]
CTS Critical Path
_+ Test Oracle] Path Generator Paths Analysis]<:> L Path Length J
\ J \ 8
| o
Test Data

Generator

/ TestData/
;2
ata
Tester < Selectionf y,: {od,,
. an
< -

Source Code

s —
; . Substitution
1 Q“a“‘“;]—-[Capability

[Analysi: .
J Quantity and Analysis
oern uantity an ﬁ
Processing CPG Quality Analysis
J

x f Quality Fault-Detection
(pi: lod, Analysis Capabll}ty
)i Analysis
D:

7

s s e e e e e =

Figure 1. Overview of Our Approach.

2.1.1. Numbers of Operations

To calculate the number of operations in the program, we should first determine
which operations to analyze. In this paper, we divide operations into normal operations
and high-risk operations.

Normal operations. Normal operation refers to operations that contain arithmetic
operators, relational and logical operators, increment and decrement operators or bitwise

Electronics 2021, 10, 110

40f19

operators. For a given path, CPA sums the number of these operators to obtain the number
of normal operations.

High-risk operation. High-risk operations include function operations and pointer op-
erations. Function operations refer to security-critical library functions, whose parameters
have to satisfy a condition to ensure the security of a program. Take strcpy(buf,str) as an
example. According to the standard of C programming language (ISO/IEC 9899:1999 (E)),
if the length of the str copied to the buf using strcpy exceeds the capacity of the buf, then
an overflow error occurs. Paths with functions such as strcpy may have vulnerability
problems. Therefore, the number of function operations is used to estimate the probability
that potential faults exist and helps to decide which path should be observed first.

Pointer operations refer to operations containing a dereferencing operator. The pointer
needs to satisfy the nonnull requirement when dereferencing. If the dereferencing operator
acts on a null pointer, an error occurs. More pointer operations mean a higher possibility
that potential faults exist.

Table 1 lists library functions that are well known to be “high-risk” (here we only present
three popular functions according to our investigation [17]) and the pointer operation.

Table 1. List of High-risk Operations.

High-Risk Operations Function/Operator

char *strcpy(char * s1, const char * s2)

Function Operations char *strncpy(char * s1, const char * s2, size_t n)

char *strcat(char * s1, const char * s2)

Pointer Operation Dereferencing Operator *

2.1.2. Path Length

Long paths usually contain more variables and operations and are therefore more
prone to faults, therefore, constructing a test oracle for the long path first helps testers find
faults faster.

After CPA completes the analysis of the current path, we can obtain the number of
operations and the length of the current path. Then, we use Equation (1) to calculate the
weight of the current path.

Py=noxa+plxp @)

Py, represents the weight of the current analysis path. no represents the number of
operations in the current analysis path. pl represents the length of the current analysis path.
« and f are parameters on adjusting the impact of no and pl, respectively, and &« + = 1.
To obtain a good performance, we empirically investigate the impact of « and B in the
evaluation section. CPA ranks paths based on the P, of each path.

CPA can provide a ranked paths set. These paths are used in subsequent quantity
and quality analysis. The quantity and quality analysis starts from the path with a high
weight. After the quantity and quality analysis completes the analysis for all the paths,
each path can obtain an oracle dataset. Oracle datasets are ranked in accordance with the
corresponding path weights, and the oracle dataset that corresponds to the path with a
high weight is given priority to testers.

2.2. Quantity and Quality Analysis

PSODS introduces a path-sensitive analysis—quantity and quality analysis of oracle
data, which can select oracle data from a program and provide ranked oracle data for
testers. In this section, we describe the details of the quantity and quality analysis.

As described in the previous section, it is not feasible to monitor all variables during
testing because of the high cost of constructing a test oracle. Therefore, we need to select
some variables as oracle data. The quantity analysis can reduce the cost of oracle con-
struction by reducing the number of oracle data, to help testers find faults faster, it is very

Electronics 2021, 10, 110

50f19

necessary to know which oracle data should be dealt with first. To solve this problem, we
use the quality analysis to estimate the fault-detection capability of oracle data, and oracle
data are ranked based on their fault-detection capability. Dependence relationships [18]
exist between oracle data; therefore, data can flow from one oracle data to another oracle
data. If oracle data have erroneous values, then these erroneous values may propagate
to further uses. We can observe values of oracle data to detect faults resulting from other
oracle data. The basis for oracle data selection is that erroneous values can propagate from
one oracle data to another oracle data.

Furthermore, the fault-detection capability of oracle data is different. There are two
main reasons for the difference of fault-detection capability. First, some oracle data depend
on more oracle data than other oracle data, that is, their values are influenced by many
other oracle data. As a result, oracle data such as these are more likely to contain erroneous
values and have a strong fault-detection capability. Second, the number of computations
between oracle data that have dependence relationships influences the propagation of
faults. The reason is that the erroneous values may vanish before they reach observed oracle
data. The likelihood that an erroneous value will propagate to the oracle data decreases
as the number of computations between oracle data that have dependence relationships
increases. Therefore, the fault-detection capability of oracle data may vary with the number
of computations. Since the fault-detection capability of oracle data is different, we use the
quality analysis to estimate the fault-detection capability and rank oracle data based on
their fault-detection capability.

Before describing the details of the quantity and quality analysis, we first introduce
some definitions.

Oracle data comprise a set of variables monitored during testing. Oracle data can be
represented as a two-tuple: od = {p,v}. od represents an oracle data, which is composed
of a variable and its observation position. p represents the observation position of the
variable. v represents the variable in the program under test. In this paper, od refers to
the variable defined at a statement (here defining a variable refers to the definition in the
definition-use concept [18], that is, a variable is assigned a value). In other words, the
observation position p is only at the assignment statement in the program, the variable
v is the assigned variable in the assignment statement, and p and v form od. In addition,
although variables may be defined more than once, the definition position is different; thus,
these variables are different oracle data according to the definition of od. All the od in the
current path constitute the candidate oracle dataset.

A program dependence graph (PDG) is a directed graph whose nodes represent
program statements and whose edges represent data and control dependencies [19]. PDG
can be expressed as PDG = (V,E). V represents the vertex which is statements and
predicate expressions. E refers to the edge which represents data dependence and control
dependence between vertexes. The edges in E may be partitioned into two graphs. Edges
that represent data values on which a vertex depends form the data dependence graph
(DDG). Edges that represent control conditions on which a vertex depends form the control
dependence graph (CFG) [20].

A property graph a directed, edge-labeled, attributed multigraph, where sets of
properties are attached to nodes and edges. A property graph can be represented as a
four-tuple PG =< V,E, A, u >, where V is a set of nodes, E C V x V is a multiset of
directed edges, A : E — }_ is a label function, and), is a set of edge labels. Properties can
be assigned to edges and nodes by the function i : (VUE) x K — S where K is a set of
property keys and S the set of property values [21].

A code property graph (CPG) [22] is a joint data structure, which is a property graph
CPG = (V,E, A,) constructed from the AST (abstract syntax tree), CFG and PDG of
source code with

V = Vasr,

E = East U Ecrc UEppa,

A = AastUAcre UAppg and

Electronics 2021, 10, 110

6 of 19

U= past YUHpDG-

2.2.1. Performing Static Analysis to Generate CPG

PSODS is a path-sensitive approach; the static analysis for oracle data selection is
performed path by path. The path is an ordered sequence of nodes of the control flow graph,
and it can provide control relationships between statements. However, only obtaining
control relationships is not enough, since we need the data dependence information
between variables to estimate their fault-detection capability and quantify their substitution
relationships. CPG can provide not only control dependence information but also data
dependence information. Therefore, PSODS can perform quantity and quality analysis by
traversing along the sequence of nodes in the path.

CPG is generated in accordance with the result of program analysis. In this paper, we
use an off-the-shelf tool-joern-to generate CPG. Joern is a tool for robust analysis of C/C++
code [22]. Joern allows analyzing C/C++ code bases and stores information about the
code in the code property graph. In our approach, the joern implementation is extended
as a component of PSODS, such that PSODS can obtain the control relationships and
dependence information by querying the code property graph.

2.2.2. Quantity Analysis

Constructing a test oracle is an important step during testing. Since it is not feasible to
monitor all variables (candidate oracle data) when constructing the test oracle, we need
to select some variables as oracle data. Erroneous values in program variables propagate
to further uses during program execution; therefore, observing the variable in candidate
oracle data can detect faults resulting from oracle data that have a dependence relationship
with the observed candidate oracle data. This substitutability between oracle data makes
quantity analysis possible. PSODS uses the quantity analysis to reduce the number of oracle
data. By reducing the number of oracle data, the cost of constructing oracles is reduced.

The basis of quantity analysis is that there are dependencies between statements.
A statement s_j is data-dependent on a statement s_i if s_i contains a definition of a variable
vand s_j uses v and there is a path in the program from s_i to s_j on which v is not redefined.
s_i and s_j can also be called a definition-use pair. Since s_j is data-dependent on s_i, the
value can propagate from s_i to s_j. According to our definition of oracle data, if both
s_i and s_j contain definitions of variables, then two candidate oracle data exist in these
two statements. As a result, od_j is also data-dependent on od_i. If v assigns an erroneous
value, then the erroneous value can propagate from od_i to od_j. Observing od_j can detect
faults resulting from od_i; we call this relationship a substitution relationship, denoted
as od_i < od_j. In addition, the substitution relationship is transitive. If od_i < od_j and
od_j = od_k, faults that are introduced by od_i can be detected by observing od_k.

Figure 2 shows the simplified CPG of Figure 3, which is generated based on CPG.
The node of Figure 2 is statements. If the statement is an assignment statement and
contains a definition of a variable, then this statement contains candidate oracle data. We
use circles to represent such statements that contain oracle data in Figure 2. The blue
edges between statements that contain oracle data represent a data dependency relation.
The substitution relationship of the variables in oracle data can be derived from the data
dependency relation. The quantity analysis obtains the substitution relationship between
od by traversing the data dependence graph. The substitution relationships are used to
determine which variables should be retained to construct the oracle.

Electronics 2021, 10, 110 7 of 19

func_entr
& Branch node

(O Entry/Exit node
D Node without od
O Node with od
—> CFG edge

= PDG edge

func_exit

Figure 2. Simplified code property graph (CPG) of Example Function f.

0 int f(int argc, char *argv[I{ 11 m=x;

1 intx, y, z, m, sum; 12 }

2 x = atoi(argv[1]); 13 Jelse{

3 y = atoi(argv[2]); 14 if(x >y

4 z = atoi(argv[3]); 15 m=y;

5 m=z 16 telse if(x > z){
6 if(y <z){ 17 m=x;

7 if(x < y){ 18 }

8 m=y; 19 }

9 sum=Xx+y+z; 20 printf("%d%d\n", m, sum);
10 Jelse if(x < z){ 21 }

Figure 3. Example Function.

A candidate oracle data is composed of a variable and its observation position. Ac-
cording to the definition of oracle data, the observation position p is only at the assignment

Electronics 2021, 10, 110

8 of 19

statement in the program, and the variable v is the assigned variable in the assignment
statement. Because there may be data dependencies between assignment statements, the
corresponding oracle data also have data dependency relations. Variables v in od can not
only be defined but also used. When v is used, the value of v propagates to a dependent
variable. As a result, the od corresponding to v can be substituted by dependent od to detect
faults. According to our investigation, the substitution capability of od varies due to their
different dependence relations. Take variables in the example function f in Figure 3 as an
example. Line 2 is an assignment statement and contains candidate oracle data. Variable x
is assigned by a function call. If x is assigned an erroneous value in line 2, this erroneous
value will be propagated to other variables, for example, propagating to variable m in
line 11. As a result, we can use odq; to detect faults resulting from ody; od, is substitutable.
The substitution capability of candidate oracle data is determined by data dependence
relations. If other oracle data that are dependent on od and od is not dependent on any
oracle data, then od has a strong capability to be substituted. We can use other oracle
data to detect faults resulting from od, and od can be removed from the candidate oracle
dataset. If od is dependent on other oracle data, the substitution capability of od will be
weakened. This is because the value of the variable in od is influenced by many other
variables and is more likely to contain erroneous values; therefore, od may be useful for
detecting faults resulting from its dependence on oracle data. For example, in Figure 2, odg
is data dependent on od», od3 and od4, and removing odg may miss the errors caused by
Odz, Odg or 0d4.

We propose implementing quantity analysis to obtain the substitution capability of
candidate oracle data and then using the result to determine which oracle data can be
removed. For a given path, the quantity analysis first obtains the corresponding subgraph
of the data dependence graph (there may be several graphs; we analyze them one by one).
Figure 4 shows the subgraph of DDG of the given path (the path is the path corresponding
to the red node in Figure 2. For the convenience of analysis, we only keep the nodes that
contain od). Since the edges in the data dependence graph can represent a data dependency
relation, the quantity analysis calculates the dependence relations of each candidate oracle
data according to the out-degree and in-degree of the od nodes in the subgraph of DDG.

Figure 4. Subgraph of Data Dependence Graph.

Algorithm 1 shows how to perform quantity analysis of oracle data. For a given path
path, the quantity analysis first obtains the subDDG corresponding to path from CPG by
traversing CPG along the sequence of nodes in the path. Then, the quantity analysis finds
all candidate oracle data from subDDG. After we obtain all candidate oracle data, we
calculate the in-degree and out-degree for each candidate oracle data. The quantity analysis
analyses the in-degree and out-degree of each candidate oracle data. If the in-degree of
od is equal to 0 and the out-degree of od is greater than 0, then od is substitutable and can
be removed from the candidate oracle dataset. The purpose of the quantity analysis is
to collect oracle data such as od and add them to a set. As we mentioned before, if the
in-degree of od is not equal to 0, it is difficult to determine whether od can be substituted
by other oracle data. Therefore, we do not add the od to the set.

Electronics 2021, 10, 110

90f19

After PSODS executes quantity analysis, we can obtain a set of oracle data rm_od that
can be removed. However, instead of removing these oracle data from the candidate oracle
dataset immediately, we wait until quality analysis is complete. This is because quality
analysis is also performed based on the subgraph of DDG, and removing rm_od destroys
the integrity of the subgraph of DDG, making the quality analysis impossible to perform.
When quality analysis is complete and the candidate oracle data are ranked based on their
fault-detection capability, PSODS removes rm_od from the candidate oracle dataset.

Algorithm 1: Quantity Analysis of Oracle Data

Input: List paths; CPG;
Output: Set rm_od;

1 rm_od =[];
2 foreach i-th path in paths do

3 subDDG_i = getSubDDG (path, CPG);
4 odlist_i = getodList (subDDG_i);
5 foreach j-th od in odlist_i do
6 od_j_indegree = getInDegree (od_j);
7 od_j_outdegree = getOutDegree (0d_j);
8 if od_j_indegree == 0 && od_j_outdegree > 0 then
9 | rm_od.add(od_j);
10 else
1 | continue;
12 end
13 end
14 end

15 return rm_od;

2.2.3. Quality Analysis

PSODS performs the quantity analysis to reduce the number of oracle data. By re-
ducing the number of oracle data, the cost of constructing an oracle is reduced. However,
solely reducing the number of oracle data is not enough. Testers need to know which oracle
data should be dealt with first. Therefore, PSODS introduces a quality analysis to estimate
the capability of each oracle data to detect faults and then ranks oracle data based on their
fault-detection capability.

The erroneous values can propagate from one oracle data to another oracle data. In the
process of propagation, the data dependence relations between oracle data are different
and the numbers of intermediate computations in which erroneous values are involved are
different. As a result, different candidate oracle data have different capabilities to detect
the erroneous values. The data dependence relations and the number of intermediate
computations can be derived from subgraph of DDG. For example, the edges of the
subgraph of DDG represent dependence relations between oracle data. In Figure 2, odg
depends on ody, od3 and ody; therefore, there are three edges that point to odg. The number
of intermediate computations can be calculated by the in-degree of the od.

To estimate the fault-detection capability of oracle data, we adopt the approach of [11]
which uses graph centrality analysis to evaluate oracle data. Graph centrality metrics
are used to estimate the relative importance of a node in a graph. In [11], it is used to
estimate the fault-detection capability of oracle data. Considering the size of programs
to be analyzed and the cost of the algorithm, we use the degree centrality algorithm to
estimate the fault-detection capability of oracle data. Degree centrality obtains the degree
of oracle data by traversing the subgraph of DDG, and the degree is used to estimate
the fault-detection capability. In this paper, we only consider intraprocedural analysis.
As a result, the oracle size we obtained is not large. According to the evaluation results
of [11], the degree centrality algorithm can achieve a good fault-detection rate with a small
oracle size.

Electronics 2021, 10, 110

10 of 19

2.3. Selecting Oracle Data

PSODS provides testers a group of oracle datasets. Oracle datasets are ranked accord-
ing to CPA results. The oracle data in each set are ranked based on their fault-detection
capability. Testers can construct the oracle in the given order, which may help to find more
faults in a shorter time. Although we use quantity analysis to reduce the number of oracle
data, the tester may still be dissatisfied with the given oracle size. PSODS also provides an
option for the user to decide on the oracle size. If users do not set the oracle size, PSODS
will provide them with the default oracle size which is processed by the quantity analysis.

3. Evaluation

To evaluate the fault-detection capabilities of PSODS, faulty program versions are
needed. However, real programs of appropriate size with real faults are hard to find
and difficult to prepare appropriately (for instance, by preparing correct and faulty ver-
sions) [23]. As a result, we introduced mutation testing in our experiments to generate
faulty program versions. According to the empirical studies in the previous works, the
results with mutation faults are comparable to real faults for testing experiments [24,25].
We use CTS to generate test data and perform mutation testing for the C program (mutants
generated by CTS are available at [26]). In this paper, we only consider intraprocedural
analysis. Therefore, our analysis is performed at the function level.

All experiments in the evaluation were run on a laptop with a 2.20 GHz CPU and
8 GB RAM—the laptop runs on an Ubuntu-14.04 operating system.

In this evaluation, we conducted several experiments to investigate the following
research questions.

RQ1: Dose critical path analysis improve the efficiency of fault-detection?

RQ2: Can quantity analysis reduce the number of oracle data?

RQ3: Is PSODS more effective than output-only oracles in fault detection?

3.1. Objects of Study

Experiments are conducted on the real-world project single to evaluate the effectiveness
of our approach. Specifically, single is a single-precision mathematical function library,
available at [27]. Since we need to evaluate the effectiveness of CPA, the function unit
to be analyzed should have more than one path. In this paper, we use mutation testing
to generate faulty program versions and simulate test oracle. Mutation testing is time-
consuming and expensive since there are many mutant programs that need to be generated
and tested. single has 156 functions with multipaths, because of limited resources and space,
we select 15 functions with a simple random sampling method to perform experiments.
We set the maximum number of mutants generated for each function to 30. However, due
to the limitation of function size, it is impossible to generate so many mutants for each
function. The number of generated mutants for selected functions and other information
of functions can be found in Table 2.

3.2. RQ1: Effectiveness of Critical Path Analysis
3.2.1. Experimental Setup

Before performing experiments to evaluate the effectiveness of CPA, we should first
determine the values of « and B in Equation (1). We conducted five experiments (using
different parameter values to perform CPA for selected functions) to investigate the im-
pact of « and B, including { &« = 02,8 = 0.8}, {a = 04,8 = 0.6}, { a = 05, = 0.5},
{a =006, =04} and { « = 0.8, = 0.2}. We finally found that { « = 0.6, 5 = 0.4} can
achieve a good performance (the weights of different paths can be distinguished well and
the weights can reflect the actual situation of the path).

Electronics 2021, 10, 110 11 of 19

Table 2. Information of Selected Functions.

Function Name LOC Number of Paths ! Statement Coverage Number of Mutants

sinhf 40 4 100% 10
yOf 38 4 100% 13
jof 39 5 100% 12
tanhf 47 6 100% 16
cbrtf 79 7 100% 23
log2f 62 7 88% 16
ivf 51 19 73% 11
atanf 52 5 100% 14
ellief 50 4 100% 24
dawsnf 43 6 100% 17
acoshf 35 10 100% 14
redupif 22 2 100% 9
sicif 91 10 94% 20
log10f 54 5 88% 19
atanhf 46 5 93% 20

1 Paths refers to feasible paths.

3.2.2. Experimental Process

After we set the values of « and 8, we evaluated the effectiveness of critical path
analysis to determine whether it can improve fault-detection efficiency. We performed the
following process for each function.

(1) Rank paths of each function by performing critical path analysis.

(2) Run the mutation testing in the order of ranked paths (the test data are ranked in
the order of the corresponding path and then the ranked test data are run) and record the
time of each execution.

(3) Run the mutation testing without critical path analysis and record the time of each
execution.

(4) Calculate the time of execution.

In the following, we will give some equations to calculate the time of execution. For a
given set of test data and mutant, we can determine the number of times the mutant was
killed by this set of test data. As a result, the time required for the two methods (with and
without critical path analysis, denoted as CPA and NCPA, respectively) to kill the mutant
can be calculated. For example, suppose the function f has a mutant mt; and a set of test
data tcset. PSODS ranks tcset = {tcy,...,tc;;} based on the order of ranked path and obtains
ranked test dataset fcset gkeq = {tcj,...,tcj}. Suppose there are only two test data fc, and tcq
that can kill mt;; p and g satisfy p > 1,p < g,q < n, and in tcset, k.4, tcq comes before tcp.
CTS runs mt; with tcset and tcset, k04 separately. The execution time of tcy is denoted as
tr. We use Equations (2) and (3) to calculate the time required for the CPA approach and
NCPA approach to kill the mutant for the first time.

p
ftnepai= Ytk e {1, .., p} 2)
k=1

q
fterai =Y tuked{i,...q} (3)
k=i

We use Equations (4) and (5) to calculate the total time required for the two approaches
to run tcp and tc, respectively.

q
ttncpai = Y ok €{1,..,p,...q} 4)
k=1

Electronics 2021, 10, 110

12 of 19

p
ttcpa i = ka,k e{i,..q,...p} (5)
k=i

For mt;, if ftNCPA_i > ftCPA_i and ttNCPA_i > ttCPA_i/ we say that CPA can save time
for mt; to find faults, that is, improving the fault detection efficiency of mt;.

Since f has more than one mutant, we need to average the obtained time to reflect
their central tendency. Suppose the number of mutants of f is M, the number of equivalent
of mutants is E and the set of mutants that can be killed is K = {mty, ..., mty}. The average
time can be calculated using the following equations.

y
B L ftncpa i
ftnepa = 7Z_XM = (6)
y
o L ftcpa
ftepa = 71_;\4 —)
y
B Y ttncpa_
ttncpa = % 8)
y
B L ttcpa i
ttcpa = 1—;47_15 9

]TtNCP A/]?tCP 4 LENCpa and tcpy are used to evaluate the effectiveness of critical path
analysis. If ft-p, is shorter than ffyp,, it means that CPA can help us find faults faster.
If ttcpy is shorter than tycpg, it indicates that the path with a higher weight is more likely
to have faults. Furthermore, it also means that the ranked paths are more conducive to
finding faults.

3.2.3. Results and Analysis

Figure 5 shows the overview of the effect of CPA on fault detection efficiency. As can be
seen from Figure 5, CPA can save time for most of the selected functions to find faults. Some
functions still have some mutants that cannot save time by CPA, such as sicif. We conducted
further analysis on these functions and found that ftncpa i < ftcpa i or tincpa i < ttcpa i
exists in mutants that cannot save time. This is because CTS randomly injects faults into
functions, and the position of faults in these mutants is more conducive to being detected
by NCPA. Therefore, ftncpa i < ftcpa i Or tincpa i < ttcpa i occurs in these mutants,
which results in the inability of CPA to save time for these mutants. CPA ranks paths based
on their weight, which is calculated according to number of operations in the path and
path length. As a result, high-weight paths are more likely to contain faults.

From the result in Figure 5, we can see that none of the mutants in function dawsnf
can save time. We conducted further analysis on dawsnf and found that 5 out of 6 paths
have the same weight, and the paths have a similar length and number of operations. The
weights of different paths cannot be distinguished well, and at the same time, the position
of faults in mutants of dawsnf is more conducive to being detected by NCPA. These two
reasons lead to the finding that CPA cannot quickly find faults in the mutants. We would
like to investigate this problem more in the future.

Electronics 2021, 10, 110

13 of 19

30

25

20

15

10

Number of Mutants

ellief cbrtf atanhf sicif log2f yof log10f jof acoshf tanhf ivf redupif atanf sinhf dawsnf
Name of Function

Number of mutants that can save time Number of mutants that cannot save time
Figure 5. Overview of the Effect of CPA on Fault Detection Efficiency.

Table 3 shows ft and #f of selected functions (the time that critical path analysis
cost has been added to the calculation). From the results, we can see that most of the
functions with CPA can achieve better results than NCPA. The results of functions sinhf
and dawsnf are not good enough. For function sinhf, although ttncpa = tfcpa, we have
ftncpa > ftepa- His equal because the first and last path of ranked paths contains a fault,
and this fault can be killed by test data. Therefore, the CPA approach needs to run all
test data to obtain ttcps. The situation of the NCPA approach is the same as CPA. As a
result, ttNcpa = ttcpa. dawsnf is discussed above; therefore, we do not provide further
discussion.

The experimental results show that CPA can improve fault detection efficiency. CPA
can help testers find faults faster during the oracle process, so that more faults can be found
in a limited time.

3.3. RQ2: Effectiveness of Quantity Analysis
3.3.1. Experimental Process and Setup

In this experiment, we perform quantity analysis for selected functions to determine
which oracle data can be removed. We first generated CPG and paths for each function
and then analyzed each function one by one. For a given function, we obtained a subgraph
of DDG for each path by traversing CPG along paths. Finally, quantity analysis was
performed to calculate the dependence relations of each candidate oracle data according to
the out-degree and in-degree of the od nodes in the subgraph of DDG.

Space limitations make it difficult to show the results of quantity analysis for each
path. Therefore, we calculated the number of paths in each function that can reduce the
number of od using quantity analysis.

3.3.2. Results and Analysis

Figure 6 shows an overview of the effectiveness of quantity analysis. From the data
in Figure 6, it is apparent that most of the paths can reduce the number of oracle data.
However, there are still two functions that have paths that cannot reduce the number of
oracle data by quantity analysis. We performed further analysis on cbrtf and sicif. The
in-degree of some od in paths that cannot reduce the number of oracle data is equal to 0,
and the out-degree is also equal to 0. This is because the variables in these od are used in
branch statements rather than assignment statements (other od). As a result, the erroneous
values in these od cannot propagate to other od. To avoid false negatives in subsequent
analysis, we cannot put these od into rm_od. Therefore, we have paths that cannot reduce
the number of oracle data.

The results show that PSODS can reduce the number of oracle data using the quan-
tity analysis. By reducing the number of oracle data, the cost of constructing an oracle
is reduced.

Electronics 2021, 10, 110

14 of 19

Table 3. ft and #f of Selected Functions.

Function Name FCPA FNCPA ttcpa ttncpa

sinhf 4.02 6.99 2411 2411
yOf 0.74 1.49 2.23 2.98
jof 4.09 7.09 17.5 20.48
tanhf 6.14 10.57 17.97 38.87
cbrtf 0.36 0.37 4.00 4.36
log2f 2.69 5.27 10.79 13.49
ivf 2.45 8.86 12.55 14.77
atanf 4.27 4.30 941 10.41
ellief 2.06 4.04 6.11 8.24
dawsnf 2.51 1.88 11.20 10.55
acoshf 1.66 3.14 5.20 6.67
redupif 1.73 3.18 4.02 5.47
sicif 1.41 5.04 4.83 8.52
log10f 2.63 2.68 8.32 18.59
atanhf 1.19 7.25 9.80 18.39

The time unit is minutes in this experiment.

20
18
16
14
12
10

Number of Paths

o N B O

redupif sinhf yof ellief atanf atanhf jOf loglOf tanhf cbrtf dawsnf acoshf log2f sicif ivf
Function Name

Paths that can reduce the number of od Paths that cannot reduce the number of od
Figure 6. Overview of the Effectiveness of Quantity Analysis.

3.4. RQ3: Effectiveness of PSODS
3.4.1. Experimental Process and Setup

To evaluate the effectiveness and efficiency of PSODS, we compared PSODS with an
output-only oracle (using mutation testing simulation). The goal of PSODS is to make oracle
construction easier and maximize the potential return on the tester’s efforts; consequently,
PSODS supports testers by providing the oracle data and oracle construction order. PSODS
is mainly for human oracles, and using a manual oracle approach to perform the experiment
is the best way. However, a manual oracle is costly and hard to prepare. In this paper,
since all the selected functions have a return or output, the mutation testing is similar
to the output-only oracle, and we used mutation testing to simulate the output-only
oracle. For mutation testing with PSODS (PSODS-Mutation Testing), we instrumented
selected functions to collect output information of each od, which is used to estimate the
fault-detection capability of od. We compared the fault-detection rates and run time of
PSODS-mutation testing and mutation testing. The fault-detection rates can be calculated
by Equation (10).

FaultDetectionRate = x 100% (10)

K
M—-E

Electronics 2021, 10, 110

15 0of 19

3.4.2. Results and Analysis

Table 4 presents the results of fault-detection rates. From the results in Table 4, it is
apparent that both approaches can achieve good fault-detection rates. For some functions,
such as sinhf, y0f and so on, PSODS-mutation testing can achieve better fault-detection
rates. This is because erroneous values may not be propagated to output; they may vanish
before they reach output variables. PSODS can selected oracle data from the program
instead of just using the default output variable. In addition, PSODS ranks the selected
oracle data according to their fault-detection capability. By observing the selected oracle
data, PSODS may have more opportunities to find faults in the programs and achieve better
fault-detection rates. Take the code fragment in y0f in Figure 7 as an example. A fault is
injected in line 1. After the program executes line 1, variable z is assigned an erroneous
value. The erroneous value can propagate to variable w. However, w is assigned a new
value in line 4. Therefore, the erroneous value cannot propagate to line 5. The output-only
approach cannot find this fault. In this example, z is one of the oracle data that is selected by
PSODS. PSODS generates an instrumentation statement after line 1; as a result, erroneous
value is collected and the fault can be found.

z=x+x; [/Original codeisz=x%*x
instrumentation(z); //Instrumentation point
w = (z-YZ1) * polevlf(z, YP, 4);

w += TWOOPT * logf(x) * jOf(x);

return(w);

O = W N =

}
Figure 7. Code Fragment of y0f.

The output-only fault-detection rate of sicif is 0%, but PSODS is 100%. This occurs
because regardless of what the test input is, the return value of the output-only approach is
always 0. This may be a bug or sicif is only used to process data, and the return value is just
a flag. The return problem makes the output-only approach obtain a 0 fault-detection rate.
Because PSODS observes oracle data in the program, it can achieve a good fault-detection
rate. For functions atanf and redupif, we preformed further analysis and found that they
have faults in the branch statement that are hard to detect. Therefore, both PSODS and
output-only approaches cannot achieve a good fault-detection rate in this scenario.

Figure 8 shows the run time of mutation testing and PSODS - mutation testing. As can
be seen from the figure, for most functions, the run time of PSODS is shorter than that of
the output-only approach. dawsnf is an exception. The reason has been discussed in RQ1;
consequently, we do not repeat the discussion.

180
160

60
. I I I
20 I I
, | -
of jof

sinhf v

Time of Mutation Testing (minutes)
o
8

tanhf cbrtf log2f ivf atanf ellief dawsnf acoshf redupif sicif log10f atanhf
Function Name

B Mutation Testing PSODS-Mutation Testing

Figure 8. Run Time of Mutation Testing and PSODS-Mutation Testing.

Through the above analysis, we find that it is necessary to select oracle data for oracle
construction. By observing oracle data in programs, we can find faults that the output-only
approach cannot find. Although PSODS needs more analysis of programs, with CPA and
quantity analysis, PSODS can achieve a good fault-detection efficiency.

Electronics 2021, 10, 110

16 of 19

Table 4. Fault-detection Rates of Selected Functions.

Function Name Output-Only Fault-DetecTion Rates PSODS Fault-Detection Rates

sinhf 90% 100%
yOf 92% 100%
jof 100% 100%
tanhf 93% 100%
cbrtf 100% 100%
log2f 100% 100%
ivf 100% 100%
atanf 71% 71%
ellief 100% 100%
dawsnf 94% 100%
acoshf 100% 100%
redupif 88% 88%
sicif 0% 100%
log10f 100% 100%
atanhf 100% 100%

3.5. Threats to Validity

Threats to internal validity are concerned with possible bugs in the implementation
of our approach. To reduce this threat, we performed some manual checks to confirm the
correctness of the results we obtained. Furthermore, we also reviewed all the code we
produced for correctness.

Threats to external validity regard the potential bias in the selection of the projects
used in the evaluation. These threats relate to the question: was the project we selected rep-
resentative? To reduce this threat, we attempted to remove any bias related to the selection
of the sample by adopting a third-party benchmark. However, since the basis for verifying
the effectiveness of our approach is high coverage of selected programs, our selection is
still biased. In addition, although the results with mutation faults are comparable to real
faults for testing experiments, mutation faults may still not be representative of real faults
in practice. To reduce these threats, we will conduct experiments on practical programs
with real faults in the future.

Threats to construct validity are concerned with whether our the measurements
reflect real-world situations. In our study, we used common criteria to measure the
performance of our approach, including the fault-detection rate and run time. However,
we use mutation testing to simulate the test oracle, and these two criteria do not take into
account this simulation.

4. Related Work

There have been other attempts to help select oracle data to make the construction of
test oracles easier. Our research has been conducted based on this previous knowledge in
related work. Oracle data selection approaches can be divided into dynamic approaches
and static approaches.

Park [28] proposed a static approach that uses error propagation analysis to predict
the capability of variables to reveal errors when examined. The error propagation analysis
computes the error propagation probability for each variable, the analysis techniques are
based on the masking and propagation probability when an error is propagated through
other nodes. The timed data flow graph was also introduced to provide the infrastructure
for error propagation analysis. Chen et al. [10] presented SODS, which is a static approach
to oracle data selection. SODS identifies the substitution relationships between candidate
oracle data by constructing a probabilistic substitution graph. The substitution relationships
are used to estimate the fault-detection capability of each candidate oracle data. SODS
selects a subset of oracle data with strong fault-detection capability.

Electronics 2021, 10, 110

17 of 19

To deal with various programs, static approaches usually need to reduce accuracy to
obtain conservative information from large-scale programs. In this paper, we present a path-
sensitive approach, which breaks down whole-program analysis into path-oriented analysis.
Our approaches can overcome intrinsic limitations of whole-program static analysis.

Staats et al. [5] proposed a dynamic approach which is based on the use of mutation
analysis to rank variables in terms of fault-finding effectiveness, thus automating the
selection of the oracle data. In their approach, the test data is executed against the mutants
using the original system as the oracle. Then, ranking variable effectiveness in terms of fault
finding which is estimated based on how often each variable in the program reveals a fault
in a mutant. Oracle data is selected based on this ranking. Gay et al. [12] also proposed an
approach to select oracle data using mutation analysis to rank variables. Loyola et al. [11]
presented DODONA, a tool that supports the generation of test oracles. DODONA obtains
variable relationship network by monitoring the relationships that occur between variables
during execution and ranks the relevance of each program variable using techniques from
network centrality analysis.

Dynamic approaches need to execute programs under test, and executing programs
increases the total processing time and cost. In addition, these approaches may incur extra
costs when collecting information during program execution. The information is used to
estimate the fault-detection capability of variables.

In addition, we use critical path analysis to analyze program paths. Therefore, our
work is also related to critical path analysis. Prior work on critical path analysis can
be broadly classified into two categories [29,30]: (1) Using random testing to analyze
critical paths [31-34]. For example, this category of techniques relies on sampling of run
time program states to find a critical path. (2) Using formal methods to analyze critical
paths [30,35-37]. Formal methods include symbolic execution, dynamic tainting analysis,
etc. These methods rely on program models, semantics and logical structures to construct
a knowledge base.

5. Conclusions

In this paper, we have presented the PSODS framework to automatically select the
oracle data to support the construction of a test oracle. PSODS uses critical path analysis
to improve fault-detection efficiency. CPA ranks paths according to their possibility that
they contain potential faults. The ranked paths not only provide information on the
oracle construction order for testers but also partition oracle data to facilitate the oracle
construction. To select a suitable set of oracle data, PSODS introduces quantity and quality
analysis to improve fault-detection efficiency and effectiveness of oracle data. We evaluated
PSODS on a real-world project, and the results indicate that compared with the output-only
approach, PSODS can find more faults in a shorter time.

In our future work, we plan to perform further research regarding how to more
accurately estimate the fault-detection capability of candidate oracle data. Additionally,
we aim to extend our work for interprocedural analysis. Finally, while PSODS achieved
good results on single, it is unclear whether the results are generalizable. We will apply
the PSODS to other real-world projects (especially larger-scale programs) to evaluate the
applicability and practicality of the tool in more detail.

Author Contributions: Conceptualization, M.Z. and Y.W.; methodology, M.Z.; validation, M.Z;
writing—original draft preparation, M.Z.; writing—review and editing, Y.W.; supervision, Y.G.;
project administration, D.J. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
Grant Nos. U1736110.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Electronics 2021, 10, 110 18 of 19

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jaffari, A.; Yoo, CJ.; Lee, J. Automatic Test Data Generation Using the Activity Diagram and Search-Based Technique. Appl. Sci.
2020, 10, 3397. [CrossRef]

2. Koo, B,; Bae, J.; Kim, S.; Park, K.; Kim, H. Test Case Generation Method for Increasing Software Reliability in Safety-Critical
Embedded Systems. Electronics 2020, 9, 797. [CrossRef]

3. Harman, M.; McMinn, P; Shahbaz, M.; Yoo, S. A Comprehensive Survey of Trends in Oracles for Software Testing; Tech. Rep. CS-13-01;
University of Sheffield: Sheffield, UK, 2013.

4. Jahangirova, G. Oracle Problem in Software Testing. In Proceedings of the 26th ACM SIGSOFT International Symposium
on Software Testing and Analysis; Association for Computing Machinery (ISSTA 2017), New York, NY, USA, 10-14 July 2017;
pp. 444-447.

5. Staats, M.; Gay, G.; Heimdahl, M.P. Automated oracle creation support, or: how I learned to stop worrying about fault propagation
and love mutation testing. In Proceedings of the 34th International Conference on Software Engineering, Zurich, Switzerland,
2-9 June 2012; pp. 870-880.

6. Meng, Y,; Gay, G.; Whalen, M. Ensuring the observability of structural test obligations. IEEE Trans. Softw. Eng. 2018. [CrossRef]

7. Fraser, G,; Staats, M.; McMinn, P,; Arcuri, A.; Padberg, F. Does automated white-box test generation really help software testers?
In Proceedings of the 2013 International Symposium on Software Testing and Analysis, Lugano, Switzerland, 15-20 July 2013;
pp- 291-301.

8. Briand, L.C.; Di Penta, M.; Labiche, Y. Assessing and improving state-based class testing: A series of experiments. IEEE Trans.
Softw. Eng. 2004, 30, 770-783. [CrossRef]

9. Xie, Q.; Memon, A.M. Designing and comparing automated test oracles for GUI-based software applications. ACM Trans. Softw.
Eng. Methodol. (TOSEM) 2007, 16, 4. [CrossRef]

10. Chen,], Bai, Y;; Hao, D.; Zhang, L.; Zhang, L.; Xie, B.; Mei, H. Supporting oracle construction via static analysis. In Proceedings
of the 2016 31st IEEE/ACM International Conference on Automated Software Engineering (ASE), Singapore, 3-7 September 2016;
pp. 178-189.

11. Loyola, P; Staats, M.; Ko, L.Y.; Rothermel, G. Dodona: Automated oracle dataset selection. In Proceedings of the 2014 International
Symposium on Software Testing and Analysis, San Jose, CA, USA, 21-26 July 2014; pp. 193-203.

12. Gay, G.; Staats, M.; Whalen, M.; Heimdahl, M.P. Automated oracle data selection support. IEEE Trans. Softw. Eng. 2015,
41,1119-1137. [CrossRef]

13. Staats, M.; Whalen, M.W.; Heimdahl, M.P. Better testing through oracle selection (nier track). In Proceedings of the 33rd
International Conference on Software Engineering, Honolulu, HI, USA, 21-28 May 2011; pp. 892-895.

14. Zhang, M.Z.; Gong, Y.Z.; Wang, YW.; Jin, D.H. Unit Test Data Generation for C Using Rule-Directed Symbolic Execution.
J. Comput. Sci. Technol. 2019, 34, 670-689. [CrossRef]

15. Xing, Y,; Gong, Y.; Wang, Y.; Zhang, X. Branch and bound framework for automatic test case generation. Sci. Sin. Inf. 2014,
44, 1345-1360.

16. Wang, W.; Zeng, Q. Evaluating initial inputs for concolic testing. In Proceedings of the 2015 International Symposium on
Theoretical Aspects of Software Engineering, Nanjing, China, 12-14 September 2015; pp. 47-54.

17. Zhang, X.Z.; Gong, Y.Z.; Wang, YW.; Xing, Y.; Zhang, M.Z. Automated string constraints solving for programs containing string
manipulation functions. J. Comput. Sci. Technol. 2017, 32, 1125-1135. [CrossRef]

18. Herman, P. A data flow analysis approach to program testing. Aust. Comput. J. 1976, 8, 92-96.

19. Baah, G.K,; Podgurski, A.; Harrold, M.]. The probabilistic program dependence graph and its application to fault diagnosis.
IEEE Trans. Softw. Eng. 2010, 36, 528-545. [CrossRef]

20. Baxter, W.; Bauer, H.R,, III. The program dependence graph and vectorization. In Proceedings of the 16th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Austin, TX, USA, 11-13 January 1989; pp. 1-11.

21. Meng, Q. Feng, C.; Zhang, B.; Tang, C. Assisting in auditing of buffer overflow vulnerabilities via machine learning. Math. Prob.
Eng. 2017, 2017, 1-13. [CrossRef]

22. Yamaguchi, F.; Golde, N.; Arp, D.; Rieck, K. Modeling and discovering vulnerabilities with code property graphs. In Proceedings
of the 2014 IEEE Symposium on Security and Privacy, San Jose, CA, USA, 18-21 May 2014; pp. 590-604.

23. Andrews,].H,; Briand, L.C.; Labiche, Y. Is mutation an appropriate tool for testing experiments? In Proceedings of the 27th
International Conference on Software Engineering, St. Louis, MO, USA, 15-21 May 2005; pp. 402—411.

24. Romano, S.; Scanniello, G.; Antoniol, G.; Marchetto, A. SPIRITuS: A SimPle Information Retrieval regresslon Test Selection
approach. Inf. Softw. Technol. 2018, 99, 62-80. [CrossRef]

25. Just, R,; Jalali, D.; Inozemtseva, L.; Ernst, M.D.; Holmes, R.; Fraser, G. Are mutants a valid substitute for real faults in
software testing? In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering,
Hong Kong, China, 16-21 November 2014; pp. 654—665.

26. Mutants Used in the Evaluation. Available online: https://github.com/z420/PSODS/releases (accessed on 6 January 2021).

27. Astronomy and Numerical Software Source Codes. Available online: http://www.moshier.net/ (accessed on 6 January 2021).

http://doi.org/10.3390/app10103397
http://dx.doi.org/10.3390/electronics9050797
http://dx.doi.org/10.1109/TSE.2018.2869146
http://dx.doi.org/10.1109/TSE.2004.79
http://dx.doi.org/10.1145/1189748.1189752
http://dx.doi.org/10.1109/TSE.2015.2436920
http://dx.doi.org/10.1007/s11390-019-1935-7
http://dx.doi.org/10.1007/s11390-017-1787-y
http://dx.doi.org/10.1109/TSE.2009.87
http://dx.doi.org/10.1155/2017/5452396
http://dx.doi.org/10.1016/j.infsof.2018.03.004
https://github.com/z420/PSODS/releases
http://www.moshier.net/

Electronics 2021, 10, 110 19 of 19

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Park, M.H. An Approach For Oracle Data Selection Criterion. Ph.D. Thesis, University of Minnesota, Minneapolis, MN,
USA, 2010.

Mertoguno, J.S. Human decision making model for autonomic cyber systems. Int. |. Artif. Intell. Tools 2014, 23, 1460023.
[CrossRef]

Yao, F; Li, Y,; Chen, Y.; Xue, H.; Lan, T.; Venkataramani, G. Statsym: Vulnerable path discovery through statistics-guided symbolic
execution. In Proceedings of the 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), Denver, CO, USA, 26-29 June 2017; pp. 109-120.

Godefroid, P; Levin, M.Y.; Molnar, D.A. Automated Whitebox Fuzz Testing. NDSS Citeseer 2008, 8, 151-166.

Liang, H.; Pei, X,; Jia, X.; Shen, W.; Zhang,]. Fuzzing: State of the art. IEEE Trans. Reliab. 2018, 67, 1199-1218. [CrossRef]
Godefroid, P; Levin, M.Y.; Molnar, D. SAGE: whitebox fuzzing for security testing. Commun. ACM 2012, 55, 40—44. [CrossRef]
Xue, H.; Chen, Y;; Yao, F; Li, Y;; Lan, T.; Venkataramani, G. Simber: Eliminating redundant memory bound checks via statistical
inference. In IFIP International Conference on ICT Systems Security and Privacy Protection; Springer: New York, NY, USA, 2017;
pp- 413-426.

Wang, W.G.; Zeng, Q.K,; Sun, H. Dynamic symbolic execution method oriented to critical operation. Ruan Jian Xue Bao/]. Softw.
2016, 27, 1230-1245.

Baldoni, R.; Coppa, E.; D’elia, D.C.; Demetrescu, C.; Finocchi, I. A survey of symbolic execution techniques. ACM Comput. Surv.
(CSUR) 2018, 51, 50. [CrossRef]

Yang, S.; Zhang, X.; Gong, Y.Z. Infeasible Path Detection Based on Code Pattern and Backward Symbolic Execution. Math. Prob.
Eng. 2020. [CrossRef]

http://dx.doi.org/10.1142/S0218213014600239
http://dx.doi.org/10.1109/TR.2018.2834476
http://dx.doi.org/10.1145/2093548.2093564
http://dx.doi.org/10.1145/3182657
http://dx.doi.org/10.1155/2020/4258291

	Introduction
	Our Approach
	Critical Path Analysis
	Numbers of Operations
	Path Length

	Quantity and Quality Analysis
	Performing Static Analysis to Generate CPG
	Quantity Analysis
	Quality Analysis

	Selecting Oracle Data

	Evaluation
	Objects of Study
	RQ1: Effectiveness of Critical Path Analysis
	Experimental Setup
	Experimental Process
	Results and Analysis

	RQ2: Effectiveness of Quantity Analysis
	Experimental Process and Setup
	Results and Analysis

	RQ3: Effectiveness of PSODS
	Experimental Process and Setup
	Results and Analysis

	Threats to Validity

	Related Work
	Conclusions
	References

