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Abstract: The localization of electromagnetic interference (EMI) sources is of high importance
in electromagnetic compatibility applications. Recently, a novel localization technique based on
the time-reversal cavity (TRC) concept was proposed using only one sensor, and its application
to localize EMI sources was validated numerically. In this paper, we present a validation of the
proposed time-reversal process in which the forward step of the time-reversal process is performed
experimentally and the backward step is carried out via numerical simulations, a realistic scenario
which is applicable to practical source localization problems. To the best of the authors’ knowledge,
this is the first implementation of a three-dimensional electromagnetic time-reversal process in
which the forward signal is provided experimentally while the backward propagation step is carried
out numerically. The considered experimental setup is formed by a partially open cavity and two
monopole antennas to emulate the EMI source and the sensor (receiving antenna), respectively.
Assuming that the location of the source is the feed point of the monopole antenna, the resulting
three-dimensional location error in the experimental validation was only 1.49 cm, which is about
one-third the length of the monopole antenna, corresponding to about λmin/2 (diffraction limit).

Keywords: electromagnetic time reversal; time-reversal cavity; electromagnetic interference source;
source localization; electromagnetic compatibility

1. Introduction

The localization of electromagnetic interference (EMI) sources from electronic de-
vices, printed circuit boards, cables, and natural electromagnetic sources is important in
electromagnetic compatibility [1–4].

Recently, the application of the electromagnetic time-reversal (EMTR) technique [5–10]
to locate electromagnetic sources has received much attention [11–23]. In the EMTR tech-
nique, the electromagnetic signals emitted by the source are recorded by at least one sensor.
This procedure is referred to as the forward propagation phase. In the next step, called the
backward propagation phase, the recorded signals are time reversed and back injected into
the medium. It has been demonstrated that the back-injected waves will refocus both in
time and space at the primary source location. A suitable criterion is used to localize the
focal point, which corresponds to the source.

The first experimental validation of the EMTR concept was performed by Lerosey
et al. [8]. In [8], to avoid the use of high-speed (GHz) digitizers, only the baseband signal
(the envelope of the whole used signal) was time reversed. Furthermore, both the forward
and the backward propagation phases were carried out experimentally. To provide proof
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of the EMTR concept, Lerosey et al. [8] considered only two locations in the backward
propagation step: the real location, and a second one several wavelengths away. Their
experimental data showed that the back-injected waves converge to the transmitting
antenna both in time and space [8].

Based on Lerosey et al.’s investigations [8], a novel approach was proposed to localize
EMI sources based on the concept of the time-reversal cavity [14]. In the new approach,
the device under test (DUT) was placed inside a metallic cavity and a single monopole
antenna was used to record the EMI signals emitted by the DUT. The entropy criterion [23]
was applied to obtain the focusing time slice in which the maximum electric field power
determines the location of the EMI source. In [14], it was shown that the reflections from
the surfaces of a cavity can emulate an infinite number of sensors in the time-reversal
method. The idea presented in [14] was later successfully applied to the localization of
partial discharges (PDs) in power transformers [24–26]. The method was also found to
be robust against variations in the polarization and length of the PDs and also against
environmental noise. In [27], the maximum power (or field) criterion is proposed to identify
the location of the EMI or partial discharge sources.

To the best of the authors’ knowledge, all the previous experimental studies aiming at
validating the EMTR technique have been carried out experimentally in both the forward
and the backward propagation steps. In this paper, we present, for the first time, an
experimental validation of the time-reversal procedure to locate EMI sources in which the
forward step signals are measured in an experimental setup and the backward phase is
implemented through software simulation. Such an implementation of the time-reversal
process corresponds to practical scenarios in which the back-propagation process should
be performed numerically.

The paper is organized as follows. Section 2 presents the methodology of the proposed
single sensor EMTR method to localize the EMI source. A description of the experimental
setup and computational model used in this paper is given in Section 3. Finally, discussion
and conclusions are given in Section 4.

2. Methodology

Determining the EMI source location using the EMTR method includes four steps:
Recording the emitted electromagnetic signal from one or several EMI sources with

one or several sensors (forward step);
Processing the recorded signal at each sensor to time reverse it;
Back injecting the time-reversed signal into the medium (back-propagation step);
Applying a criterion to obtain the proper source location. In a real-life application of

EMTR, the forward step is carried out experimentally using an antenna (sensor) and the
backward step is carried out numerically.

We will consider a partially open cavity as the medium and two monopole antennas to
emulate, the EMI source and the sensor (receiving antenna), respectively. In the backward
propagation step, the wave converges back to the source location through an infinite
number of paths as a result of reflections from the cavity surfaces [14]. This leads to an
important difference between the location by EMTR in a cavity and in free space. In the
free space case, the 1/R attenuation of the field needs to be removed artificially in the
back-propagation step to ensure that signals exhibit the highest amplitude at the source
location [13,23]. In contrast, in the case of the cavity, the attenuation function can be
retained since it does not alter the refocusing of the wave back to the source due to the
contribution of all the waves from multiple propagation paths. In this case, however, it is
still necessary to remove the local field maxima at the location of the sensor(s) (see [14] for
more details).

2.1. The Geometry of the Problem

Herein, the method presented in [14] is applied to an open cavity structure. The
geometry of the problem is a 3D open rectangular cavity (w = 0.25 m, l = 0.174 m, and
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h = 0.13 m) made of copper with a thickness of 1.5 mm, as illustrated in Figure 1. Two
identical 3.5 cm long monopole antennas made of copper represent the source (right
monopole antenna) and the transducer (left monopole antenna).
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mm. (b) An expanded view of the two monopoles. The left and right monopoles are considered as 
the sensor and the source, respectively, in the EMTR method. The two monopole antennas are iden-
tical, with a length of 5.3 cm. 
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carried out experimentally. We used a vector network analyzer (VNA) in the range of 10 
MHz–10 GHz to record the scattering parameter between the two monopole antennas in 
the frequency domain. The recorded scattering parameter is multiplied by the Fourier 
transform of the excitation signal (the Gaussian pulse shown in Figure 2 and the result is 
transformed into the time domain using the inverse Fourier transform.  

Pictures of the open cavity used in the experimental setup are presented in Figure 3. 
To emulate the open boundary condition in the test environment, we placed an absorber 
in front of the open side of the cavity, as shown in Figure 3a. The working frequency of 
the absorbers is from 1 to 40 GHz. In this range, the maximum reflectivity of the absorbers 
is −24 dB. The two monopole antennas shown in the expanded view in Figure 3d are con-
nected to the VNA from the back side of the open cavity as shown in Figure 3b. It should 

Figure 1. Open cavity. (a) Geometry of the 3D problem, including an open metallic cavity and two
monopole antennas. The dimensions of the cavity are w = 25 cm, h = 13 cm, l = 17.4 cm, and t = 1.5 mm.
(b) An expanded view of the two monopoles. The left and right monopoles are considered as the
sensor and the source, respectively, in the EMTR method. The two monopole antennas are identical,
with a length of 5.3 cm.

An expanded view of the two-monopole antennas is depicted in Figure 1b. The
transducer and the source center positions are (8.96 cm, 6.66 cm) and (14.78 cm, 6.66 cm),
respectively, in the x–y plane. The location of the EMI source antenna is in the Fresnel
region (1.94λ at the maximum frequency (10 GHz) of the excitation bandwidth) of the
sensor. The N-type connectors attached to the antennas are assumed to be lossless and
with a relative dielectric permittivity of 2.25. The length of both antennas is 5.3 cm and
they are made of copper (σ = 5.8 × 107 S/m). The material is modeled as copper (annealed)
using the predefined material library in CST MWS.

2.2. Description of the Experimental Setup

As mentioned in Section 1, in this study, the forward step in the EMTR technique
is carried out experimentally. We used a vector network analyzer (VNA) in the range of
10 MHz–10 GHz to record the scattering parameter between the two monopole antennas
in the frequency domain. The recorded scattering parameter is multiplied by the Fourier
transform of the excitation signal (the Gaussian pulse shown in Figure 2 and the result is
transformed into the time domain using the inverse Fourier transform.
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tennas. (a) The open cavity placed in front of the absorbers to reduce the effects of reflections from 
the environment on the experimental results. (b) The cables and connectors used to connect the two 
monopole antennas to the VNA. (c) A front view of the open cavity, including the two monopole 
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2.3. Numerical Simulation 
The back-propagation step in the EMTR technique was simulated using the commer-

cial time domain electromagnetic solver CST Microwave Studio (CST MWS). To conduct 
this, the time-reversed version of the signal that was obtained in the forward step was 
back injected by simulation through the transducer in the CST MWS model of the open 
cavity. As we do not know the location of the EMI source in a practical problem, we re-
moved the transmitter antenna in the back-propagation model as shown in Figure 4. The 
maximum electric field power criterion was used to localize the EMI source [27].  

Figure 2. Gaussian pulse with a bandwidth of 0 to 10 GHz that was used.

Pictures of the open cavity used in the experimental setup are presented in Figure 3.
To emulate the open boundary condition in the test environment, we placed an absorber
in front of the open side of the cavity, as shown in Figure 3a. The working frequency of
the absorbers is from 1 to 40 GHz. In this range, the maximum reflectivity of the absorbers
is −24 dB. The two monopole antennas shown in the expanded view in Figure 3d are
connected to the VNA from the back side of the open cavity as shown in Figure 3b. It
should be noted that the calibration of the VNA was performed from the end of these
connectors. Figure 3c shows a front view of the open cavity to illustrate the location of the
two monopole antennas. The origin and the axes of the selected coordinate system can be
seen in Figure 1.
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Figure 3. Test setup including the open cavity, absorber, connectors, cables, and two monopole
antennas. (a) The open cavity placed in front of the absorbers to reduce the effects of reflections from
the environment on the experimental results. (b) The cables and connectors used to connect the two
monopole antennas to the VNA. (c) A front view of the open cavity, including the two monopole
antennas inside it, and (d) an expanded view of the two monopole antennas.

2.3. Numerical Simulation

The back-propagation step in the EMTR technique was simulated using the commer-
cial time domain electromagnetic solver CST Microwave Studio (CST MWS). To conduct
this, the time-reversed version of the signal that was obtained in the forward step was back
injected by simulation through the transducer in the CST MWS model of the open cavity.
As we do not know the location of the EMI source in a practical problem, we removed the
transmitter antenna in the back-propagation model as shown in Figure 4. The maximum
electric field power criterion was used to localize the EMI source [27].
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Figure 4. Open cavity without transmitter antenna used in the back-propagation phase. Geometry of
the 3D problem.

The transient solver of the CST MWS software was used to simulate the electromag-
netic wave propagation inside the open cavity. This solver uses the finite integration
technique (FIT) to solve Maxwell’s equations in their integral form.

A frequency range of 0 to 10 GHz was considered. The number of mesh cells was
2,572,980, the time step was 1.18 ps, and the total solver times for the forward and backward
steps in CST MWS were 995 s and 1233 s, respectively. Note that the simulation time for the
backward step is longer than in the forward step because the electric fields throughout the
working volume need to be recorded in the backward step. All simulations were conducted
on a laptop (Intel core i9 and 32 GB RAM).

3. Numerical and Experimental Results

In this section, the time-reversal process, including both the forward and backward
time steps, was performed using the time domain numerical simulation. Second, to validate
the numerical results, the scattering parameter S21 (see e.g., [28]), obtained by the CST
MWS software was compared with the experimental data. Finally, a practical implementa-
tion of the time-reversal process was performed, in which the forward step was carried
out experimentally and the backward step numerically. The simulation model and the
experimental setup were described in Section 2. In what follows, we will first consider
a case in which we perform all the steps in the EMTR process numerically (Section 3.1).
Then, we present the validation of the model for the back-propagation step in Section 3.2.
Finally, the experimental validation is presented in Section 3.3.

3.1. Numerical Simulations

In accordance with the procedure described in Section 2, the source monopole antenna
shown in Figure 1 was excited using a Gaussian pulse. The propagation of the signal in the
open cavity was modelled using the full-wave CST MWS simulator. The signal received by
the monopole antenna was recorded and time reversed. In the back-propagation phase,
the geometry of the problem in CST MWS was updated by removing the source as shown
in Figure 4. Then, the time-reversed signal was back injected into the medium using the
same monopole antenna. The location of the source was determined using the maximum
electric field power as criterion [27]. For more information on different criteria to locate
the source, please refer to [14]. It should be noted that all the procedures in the numerical
simulations are carried out in the time domain.

The distribution of the normalized maximum electric field power over the compu-
tational domain and over the whole time window was obtained. Figure 5 shows the
distribution at the z = 1 cm cut plane, where the overall maximum field occurs as discussed
below. As can be seen, the maximum power criterion can be used to estimate the location
of the EMI source. It should be noted that we removed the location ambiguity due to the
presence of the sensor (at whose position the power is maximum) by introducing a square
mask to ignore the values of the power around the source [27]. More details about using
the mask to localize the appropriate EMI source can be found in [27]. In the considered
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simulations, the size of the mask was 3.4 × 3.4 cm2. In Figure 5, the black cross shows the
global maximum power, which occurs at the z = 1 cm cut plane. The red circle, which is
considered to be the location of the source, is the intersection between the z = 1 cm cut
plane and the monopole antenna, 1 cm away from the feeding point. The localization
error, defined as the distance between the center of the red circle and the black cross in the
z = 1 cm cut plane, is 0.18 cm. If the feeding point is used as the location of the source, the
error (the distance between the feeding point and the point of global maximum power) is
1.02 cm.
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Figure 5. Distribution of the normalized maximum power at the z = 1 cm cut plane in absence of
the transmitter monopole antenna in the backward propagation step. The black cross shows the
global maximum power, which occurs on the z = 1 cm cut plane. The red circle is the intersection
between the z = 1 cm cut plane and the monopole antenna. The estimated location error, defined
as the two-dimensional distance between the red circle and the black cross, is 0.18 cm. If the error
is measured as the three-dimensional distance from the black cross to the antenna feeding point, it
equals 1.02 cm. The blue square with side length of 16 cells (3.4 cm) at the location of the sensor
shows the mask filter that was used in this simulation.

3.2. Model Validation

In the experimental case, the forward step is performed experimentally using a VNA.
To conduct this, the scattering parameter between the two monopole antennas (repre-
senting the source and the sensor) is recorded in the frequency domain. Figure 6 shows
the measured scattering parameter S21 associated with the experimental setup shown in
Figure 3. The calibration routine for the VNA was performed from the end of the cables
shown in Figure 3b, so that the connectors used to build the two monopole antennas do
not affect the calibration. The scattering parameter S21, obtained by way of the CST MWS
software, is also shown in Figure 6. In Figure 6, the frequency range of the measurement is
divided into two parts, from 0 to 6 GHz (Figure 6a) and from 6 to 10 GHz (Figure 6b).
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As seen in Figure 6a, there is an excellent agreement in the 0–6 GHz frequency range
between the CST MWS simulations and the experimental data. For frequencies beyond
6 GHz, the agreement between the measured and simulated results deteriorates, essentially
because of the effect of the antenna connectors and mismatches between the numerical
model and the experimental setup.

The time domain signal captured by the sensor can be obtained by multiplying the
spectrum of the Gaussian pulse shown in Figure 2 by the scattering parameter S21 and
applying the inverse fast Fourier transform. The result is depicted in Figure 7. The results
obtained using CST MWS are also shown in that figure. It can be seen that the numerical
simulations are in very good agreement with the experimental data (measured by the
VNA), especially in the early times.
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3.3. Experimental Validation

According to the EMTR technique, the sensor signal is time reversed and back injected
into the model of the structure, which we modeled in the CST MWS environment. In this
step, we consider two case studies. In the first case study, the numerical model used for
the medium in the backward step is identical to the one in the forward model (matched
media). It should be noted that in practical EMC problems, the location of the source(s) is
unknown.

Figure 8 shows the distribution of the maximum normalized power for cut plane
x = 14.78 cm in the matched-media case study. It can be seen that the maximum power
occurs around the connector flange (that is, the feed point of the monopole antenna). A
local maximum also occurs at the tip of the monopole antenna. The inset figure shows a
zoomed view around the connector flange, where the global maximum power occurred.
As can be seen from Figure 8, the EMTR method can localize the feed point of the antenna
with high accuracy.
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Figure 8. Distribution of the normalized maximum power over the calculation domain in presence
of the source monopole antenna (matched media) at cut plane x = 14.78 cm. The solid white line
represents the location of the source monopole antenna.

In the second case study, the source monopole antenna was removed from the model
shown in Figure 1 in the backward propagation step. Since the length of the antenna is
5.3 cm, which is significant compared to the dimensions of the open cavity (more than 20%
of the longest dimension), removing it introduces a mismatch between the media in the
forward and backward steps that can, in principle, affect the performance of the EMTR
technique. Note that the classical applications of time reversal require that the backward-
propagation medium be identical to the one in the forward propagation step (the so-called
matched-media condition). The choice of removing the source antenna was based on our
effort to consider a realistic scenario to a real EMC problem. In such a problem, the location
of the source is unknown and the aim of this method is to perform source localization.
Hence, in the backward propagation step, the source antenna was removed. This scenario
is known as time reversal in mismatched media (e.g., [11,29]). It has been shown (e.g., [30])
that for a moderate lumped mismatch between the forward- and backward-propagation
media, the focusing property of time reversal remains intact.

The distribution of the normalized maximum power over the computational domain
and over the whole time for cut planes perpendicular to the x and to the y axes are depicted
in Figures 9 and 10, respectively. In both figures, the white line represents the location of
the (removed) transmitter monopole antenna as shown in Figure 4. As can be seen, the
maximum power criterion can be used to estimate the location of the EMI source with a
suitable mask window.
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In Figure 9a,b, the distribution of the maximum power is shown for cut planes
x = 14.78 cm (coincident with the x–z plane where the monopole source antenna is located)
and x = 16.78 cm, 2 cm (2λ/3 at the maximum frequency of the excitation bandwidth),
respectively, away from the monopole source antenna plane. It can be seen in Figure 9a,b
that the maximum power of the back-propagated wave decreases as the distance from the
source increases.
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In Figure 10a,b, the distribution of the maximum power is shown at cut planes
y = 6.66 cm (coincident with the x–z plane where the monopole source antenna is located)
and y = 8.74 cm, 2 cm (2λ/3 at the maximum frequency of the excitation bandwidth) away
from the monopole source antenna plane, respectively. In these cut planes, a 6.5 × 8.5 cm2

mask was used to remove the effect of the enhancement of the power near the sensor.
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It should be noted that the global maximum power is located at (x = 13.3 cm, y = 6.5 cm,
and z = 0.75 cm). If we assumed the location of the source to be the feed point of the
monopole antenna at (x = 14.78 cm, y = 6.66 cm, and z = 0.0 cm), the three-dimensional
location error in the experimental validation is 1.49 cm. The location error can be further
reduced by improving the numerical model of the cavity structure.

The results of the distribution of the maximum power in Figures 9 and 10 clearly show
an intensification around the position of the antenna. The presented case studies suggest
that EMTR can also be envisaged as a means to locate sources that are not point-like and
extend over a certain volume. However, more in-depth investigations are needed before
EMTR can be applied to extended sources.

4. Conclusions

The localization of electromagnetic interference (EMI) sources is one of the main
challenges in electromagnetic compatibility applications. Recently, a novel approach based
on the concept of time-reversal cavity was proposed to localize EMI sources, and it was
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validated numerically. In realistic scenarios, the signal in the forward step is obtained exper-
imentally, while the backward step needs to be performed through numerical simulations.

In this paper, we presented, for the first time, an experimental validation of the time-
reversal procedure to locate EMI sources in which the forward step signals are measured in
an experimental setup and the backward step is implemented through a software simulation.

The considered experimental setup comprised a partially open cavity as the medium
and two monopole antennas to emulate the EMI source and the sensor (receiving antenna),
respectively. Assuming that the location of the source is the feed point of the monopole
antenna, the resulting three-dimensional location error was only 1.49 cm, which is about
one-third of the length of the monopole antenna, corresponding to about λmin/2. The
obtained results suggest that EMTR can also be envisaged to locate sources that are not
point-like and that extend over a certain volume. Further investigations are ongoing on the
effect of the size of the antenna, the choice of the EMI source waveshape, and the distance
to the source from the sensor.
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