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Abstract: In recent years, the scaling down that Moore’s Law relies on has been gradually slowing
down, and the traditional von Neumann architecture has been limiting the improvement of comput-
ing power. Thus, neuromorphic in-memory computing hardware has been proposed and is becoming
a promising alternative. However, there is still a long way to make it possible, and one of the prob-
lems is to provide an efficient, reliable, and achievable neural network for hardware implementation.
In this paper, we proposed a two-layer fully connected spiking neural network based on binary
MRAM (Magneto-resistive Random Access Memory) synapses with low hardware cost. First, the
network used an array of multiple binary MRAM cells to store multi-bit fixed-point weight values.
This helps to simplify the read/write circuit. Second, we used different kinds of spike encoders that
ensure the sparsity of input spikes, to reduce the complexity of peripheral circuits, such as sense
amplifiers. Third, we designed a single-step learning rule, which fit well with the fixed-point binary
weights. Fourth, we replaced the traditional exponential Leak-Integrate-Fire (LIF) neuron model
to avoid the massive cost of exponential circuits. The simulation results showed that, compared to
other similar works, our SNN with 1184 neurons and 313,600 synapses achieved an accuracy of up to
90.6% in the MNIST recognition task with full-resolution (28 × 28) and full-bit-depth (8-bit) images.
In the case of low-resolution (16 × 16) and black-white (1-bit) images, the smaller version of our
network with 384 neurons and 32,768 synapses still maintained an accuracy of about 77%, extending
its application to ultra-low-cost situations. Both versions need less than 30,000 samples to reach
convergence, which is a >50% reduction compared to other similar networks. As for robustness, it is
immune to the fluctuation of MRAM cell resistance.

Keywords: spiking neural network (SNN); binary MRAM synapses; spike-rate neural coding;
unsupervised learning; discretized spike-timing-dependent plasticity (STDP); leak-integrate-fire
(LIF) model; in-memory computing; hardware acceleration

1. Introduction

With the development of artificial intelligence in recent years, the third-generation
artificial neural network (Spiking Neural Networks, SNNs) driven by spike events is grad-
ually becoming a research hotspot. Compared with traditional artificial neural networks,
the SNN has the advantages of higher computational efficiency and stronger biological
rationality. Attempts to implement hardware-accelerated spiking neural networks have
been made by academia and industry, such as IBM TrueNorth [1] and Intel Loihi [2]. The
TrueNorth chip includes 1 million neurons and 256 million synapses within 430 mm2 under
a 28 nm process. It features event-driven, hybrid clock, near-memory computing, and other
technologies, consuming 65 mW of power typically. Loihi uses an on-chip network for
communication, whose neural cores are time-division-multiplexed to simulate each part of
the neuron. The whole chip implements 128 neuromorphic cores on a single chip of 60 mm2.
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These two chips, as a representative of the traditional CMOS implementation of a spiking
neural network, have common problems: they simulate the mechanism of the brain only at
the algorithm level, instead of using more efficient and biologically reasonable methods,
which has caused a high complexity and high cost of hardware design, and has limited the
processing power because of the inherent bottleneck of Von Neumann architecture [3].

Due to the shortcomings of the digital CMOS logic implementation described above,
the memristor-based SNN has been proposed as an alternative. Methods to implement
basic logic gates using memristive devices have been proposed [4,5]; however, due to
the extra operation circuits and lower integration density, it is impossible to replace the
traditional large-scale CMOS logic circuits in neural network applications that require
extremely high computing power. Subsequently, memristors were applied as synapses to
accelerate the SNN more efficiently. This is closer to how the brain actually works, leading
to improved performance, enhanced energy efficiency, and smaller area [6,7].

Although the memristor-based synapse is believed to simulate the brain more effi-
ciently and reasonably, the SNN based on it still needs appropriate algorithms to outper-
form the traditional ANN. There is an inevitable question with the SNN training algorithm,
that the spike train cannot be differentiated as with the floating-point number in artificial
neural networks. Therefore, it was not possible for mainstream learning methods, such
as back-propagation [8], to be directly ported to SNNs. As a result, a variety of artificial
alternative methods that imitate back-propagation in the form of spikes were proposed
in [9–11]. These methods have worked adequately to a certain degree but have resulted
in a lot of additional statistical calculations. Moreover, in [12–16], the ways of convert-
ing ANN to SNN were studied, but the biological plausibility of such methods has not
been confirmed.

In order to achieve better training, unsupervised SNN training based on spike-timing-
dependent plasticity (STDP) has been proposed. Diehl et al. [17] proposed a spiking
neural network that used STDP learning rules with lateral inhibition and a LIF dynamic
model. It consisted of 6400 neurons and achieved a 95% accuracy after being trained
with 200,000 training samples. The SNNs in [18,19] were also based on STDP, but their
learning rules were temporally adjusted to enhance robustness. The disadvantage of these
STDP-based networks is that they require the memristor synapses to have continuous
tunability and high reliability, which is difficult for current technology to produce on a
large scale.

Considering the manufacturability of the memristor synaptic array, research of the
spiking neural network based on the binary memristor has been performed. Zhao et al.
proposed a method for two-bit multi-state MRAM cells for weight storage [20,21]. However,
this method calls for complicated peripheral circuits: more sense amplifiers, which take
a lot more area; and special operating modes, which take two steps to write new weight
values. In addition, these devices are still not as reliable as single-level MRAM cells.
Zhou et al. tried to dispose of several neural behaviors, such as leakage currents, refractory
periods, lateral inhibition, and adaptive threshold voltages, to simplify the SNN hardware
architecture [22], but failed to reduce the number of synapses of the array, because a large
number of neurons are still required to reach decent accuracy.

This paper proposed a low-cost hardware-friendly SNN based on binary MRAM
synapses. The synaptic array consisted of binary MRAM cells capable of in-memory com-
puting. The input spike trains of the array were designed to be sparse enough so that
the design of peripheral circuits such as the sense amplifier (SA) can be simplified. We
also proposed a new learning rule where adds and subtracts to the 8-bit discrete weights
are performed by a single step. Finally, to further reduce the hardware complexity, we
created a constant-leaking LIF dynamic neuron model, which does not need the digi-
tal circuits to carry out difficult exponential operations. The simulation results on the
MNIST dataset showed that our network could achieve an accuracy of up to 90.6% with
1184 neurons and 313,600 synapses in total. On the other hand, if the source images are
16 × 16 low-resolution, our smaller network with 384 neurons and 32,768 synapses still
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maintains an accuracy of 77.0%. As for convergence, the network requires only about
30,000 samples of the MNIST dataset to reach a stable accuracy, which is less than most
other works. In addition, this network is resistance-fluctuation-proof, so it works well with
nonideal MRAM cells, as shown in the latter results.

The main contributions and innovations of this paper are:

1. We proposed a low-cost hardware-friendly spiking neuron network architecture with
a small number of neurons and synapses. It is based on binary MRAM devices
and can be accelerated using in-memory computing to implement high-efficiency
neuromorphic computation.

2. We introduced a discretized learning rule to train the network. It is specially optimized
for fixed-point weights, which lowers the hardware complexity, but is still able to
reach convergence within much fewer samples than other works can.

3. We tested our network and learning rule on the MNIST dataset, and the result showed
that the recognizing accuracy is decent enough compared to other similar works, and
it has great robustness against MRAM’s technology problems. It even works well in
ultra-low-cost situations.

2. High Accuracy, Low Sample Size, Hardware-Friendly SNN Based on MTJ Synapses
2.1. SNN Architecture

The spiking neural network in this article is two-layer fully-connected. It features
an input layer of encoders, converting the pixels into spike trains, and a feature layer of
which the neurons are trained to respond to different digit patterns. These responses are
defined by the weights of synapses, which are stored in the binary MRAM synaptic array.
Each MRAM cell in this array contains an MTJ (magnetic tunnel junction), and each MTJ’s
resistance is used to store one bit of a synaptic weight. The spikes generated by encoders are
sent to the crossbar array, which acts as the connections between two layers, and accelerates
the computing process of the post-synaptic neurons. Results after the analog multiply-
add are sensed and then processed by the post-processing circuit, including simulating
the dynamic behavior and identifying the spikes generated by post-neurons. Finally, for
training, synaptic weights are updated according to our single-step STDP learning rule; for
testing, winner-take-all was performed to decide which digit the input is.

Compared to similar work, we have greatly reduced the number of neurons, which
leads to a reduction in the number of rows, thus meeting actual manufacturing capability.
Our encoders are designed multi-mode to provide flexibility for different situations, and
the number of encoders can be changed to adapt to images in different resolutions. The
standard exponential STDP rule used in the SNN learning process has also been modified to
fit low-precision fixed-point weights. Finally, we use a new dynamic model for feature layer
neurons to reduce the complexity of circuit implementation. The overall block diagram of
the architecture is shown in Figure 1.

2.1.1. Binary MRAM-Based Synaptic Array

The neural network simulates synaptic plasticity by updating the weights of the
synapses. Previous work has shown that 8-bit floating-point weights for ANN training are
good enough to achieve decent results [23]. This work is based on a similar idea and uses
8-bit fixed-point numbers to store the weights of the synapses.

The research of Zhang and Zhao et al. [20,24] showed that multi-level cell (MLC)
MRAMs still need to overcome reliability problems. As a solution, specially optimized cell
structure and read–write methods were designed, which increases the cost and difficulty
of application. Given this, we chose to build our network on a single-level MRAM cell, and
combine eight 1-bit MTJ to represent an 8-bit weight value. Doing so maintains compatibil-
ity with traditional memory manufacturing processes while ensuring the correctness of the
calculation results:
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Taking the case of the 256 input layer neurons as an example, the 8-bit weight value
connecting the i-th input layer neuron and the j-th feature layer neuron is:

wij =
7

∑
k=0

2k·wij[k] (1)

where wij[k] is the k-th bit of wij, so the result Y of multiplying the input X and the weight
w is:

Yj =
255

∑
i=0

Xi·wij =
255

∑
i=0

Xi·
7

∑
k=0

2k·wij[k] (2)

According to Kirchhoff’s law, the relationship between the current Ik on each bitline
and the input Xi and MTJ conductance Gk is:

Ik =
255

∑
i=0

Xi·Gk (3)
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The current on the 8 bitlines corresponding to the same feature neuron is sensed by
SA, and shift-added, which gives:

7

∑
k=0

2k· f (Ik) =
7

∑
k=0

2k·
255

∑
i=0

Xi·wij[k] (4)

Equation (4) is actually equal to Equation (2). Therefore, the sum of the input currents
of the neuron can be obtained by simply adding the column currents of 8 different columns
representing the same weight through sensing, quantization, and shifting.

2.1.2. Multi-Mode Input Encoder with Spike Sparsity

Each pixel of the input image corresponds to an input layer neuron (spike encoder).
The input layer neuron transforms the grayscale value of the pixel into a spike train. Many
schemes for encoding could be applied, mainly divided into rate coding and temporal
coding. Our network supports three different rate-coding methods: 1-bit fixed frequency
encoding, 8-bit variable frequency encoding, and Poisson encoding. In 1-bit fixed frequency
coding, the bit depth of the input picture is 1-bit, that is, black and white images. For each
pixel, if the pixel value is ‘1’, a spike train with a fixed frequency and a fixed time interval is
generated; if the pixel value is ‘0’, no pulse is generated. This method reduces the amount
of input data at the expense of a small accuracy loss, and helps to improve energy efficiency
and anti-interference ability.

In 8-bit variable frequency coding, a spike train whose frequency is proportional to the
pixel grayscale value will be generated. The pixels of the input picture are 8-bit grayscale
values. The larger the pixel grayscale value is, the more frequently the input neuron fires.

In Poisson coding, a spike train conforming to the Poisson distribution, with its
average firing frequency proportional to the pixel grayscale value, will be generated.
The maximum value of the average firing frequency of the input layer neurons is set
to 156.25 Hz (when the pixel grayscale value is 255). The pulse width is 25 ms, and
the amplitude is 1 V. These time parameters are carefully chosen to avoid the complex
multiplication operations when using digital circuits to implement. Instead, only shift
operations are needed. Our network also supports the MNIST dataset in resolutions as low
as 16 × 16, which is critical to the feasibility of the circuit, because the higher-resolution
SNN will require MRAM arrays with more rows, making it difficult for the memory to
work correctly.

We captured some of the output spike trains from input layer encoders, as shown in
Figure 2. It can be seen that, due to the sparseness of spike output, less complicated SA
arrays could work adequately for further processing, because there will almost never be
too many neurons firing at the same time. As for the other coding schemes, this conclusion
is also supported by the statistics of simulation results, which gives the probability distri-
bution of numbers of input neurons that fire at the same time under different resolutions,
as shown in Figure 3. As the timing of firing can be controlled (instead of being random in
Poisson coding), the sparseness of the spike trains can be guaranteed as well. As a result,
the area and power of the SA array can be significantly reduced, causing a much smaller
cost of the peripheral circuit.
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2.1.3. Learning Rule with Single-Step Fixed-Point Weight Update

In the ANN, calculations involved in training include multiplication, addition, and
derivation. In order to accelerate these complex operations, various application-specific
integrated circuits (ASICs) have been proposed, such as Google TPU [25] and NVIDIA
CUDA GPU [26]. These implementations have been widely used because of their high
performance, but there is a general problem of energy efficiency in these massive digital
circuits. In spiking neural networks, spike-timing-dependent plasticity (STDP) is usually
used as an efficient learning rule because it is similar to brain activities [17]. The STDP
learning rule defines that the weight update ∆w is exponentially related to the fire time of
the pre- and post-neurons. However, this exponential relation makes digital implemen-
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tation very expensive. Thus, to make the training method more hardware-friendly, we
proposed a simplified STDP learning rule for weight updating:

∆w =

{
+1 level, i f vpre = 1 V when post− neuron f ires
−1 level, i f vpre = 0 V when post− neuron f ires

(5)

where vpre is the voltage of the pre-neuron. As vpre is either 0 or 1 V (corresponding to the
pre-neuron firing or not firing), ∆w can be calculated by performing bitwise AND of the
input neuron state and the feature neuron state. This greatly simplifies the computational
complexity, and the action of updating collaborates well with our fixed-point weights.

2.1.4. Feature Layer Neuron Model with Linear Leakage

The feature layer neurons receive spikes from the input layer neurons through
synapses, and their membrane voltage u(t) changes according to certain rules. This work
uses the LIF model, and its dynamic behavior is as follows:

τm
du(t)

dt
= −[u(t)− urest] + R · I(t) (6)

where urest is the resting potential, R is the resistance, and I is the sum of the currents. When
current I(t) = 0, u(t) decays exponentially, with the time constant τm being 100 ms. The
exponential decay behavior of the membrane voltage in the LIF model can be implemented
using analog circuits, but additional high-precision ADCs will be needed for subsequent
processing; digital circuits can also be used to simulate the exponential decay, but complex-
ity and cost will be greatly increased. Therefore, we designed a neuron model with linear
leakage at a fixed leakage rate—the membrane potential always decreases by 4 V (which
equals the threshold voltage) within 350 ms (which is the time window length of a picture).

There is lateral inhibition between neurons in the feature layer. We define lateral
inhibition as, once a certain feature layer neuron fires, all feature layer neurons are reset to
the initial potential in the next time step and the refractory period is maintained.

2.2. SNN Workflow

As shown in Figure 4, The circuit-level workflow of our spiking neural network
contains three tasks: training, pre-classification, and classification. The training task
dynamically modifies all synaptic weights so that each feature layer neuron will be capable
of recognizing a specific digit pattern after training. The pre-classification task uses labeled
data to mark the label of the pattern that each feature neuron could recognize. The
classification task recognizes unlabeled input pictures.
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2.2.1. Training

In the training task, the weight value of the synapses will be updated according to
our discretized STDP rule described before. The training process is unsupervised, and the
required sample size is only 4000~30,000, which is far fewer than the number of samples
contained in the entire MNIST dataset.

The circuit-level workflow of the training task contains three stages: preparation, CIM
(compute in memory), and update.
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• In the preparation stage, the system receives image data from PC and saves it to the
buffer. After the grayscale values of all pixels of the entire picture are received, this
stage ends.

• In the CIM stage, the grayscale data in the buffer is encoded to generate spike trains
in the time domain. These output spike trains will be overdriven and sent to the
wordlines of the MRAM array. Then, the signals will be kept for a period of time while
the MAC (multiply-accumulate) operation is being performed. The calculated results
will be sensed and read from bitlines when stable. By checking the value of leakage
timer, the membrane potential with leakage can be obtained. Finally, by comparing
the membrane potential with the threshold voltage through a digital comparator, the
response of the feature layer neuron (whether it fires) can be obtained.

• In the update stage, the weight change ∆w of the synapse can be calculated according
to the feature layer neurons’ response. We use ‘0’ to represent the ∆w = +1 level, and
‘1’ to represent the ∆w = −1 level; then, the feature layer neuron and the input layer
neuron’s state registers only need to be bitwise-ANDed to obtain the value of ∆w.
After that, the weight value that needs to be changed is updated.

2.2.2. Pre-Classification

In the pre-classification task, the weight value of the synapse will be kept fixed. The
neural network receives the image data with label information and determines the category
of each feature neuron by measuring the response of the feature neuron to the label. The
pre-classification task requires a smaller sample size, about 400~1000.

The circuit-level workflow of this task includes the preparation stage, CIM stage, and
statistic stage. The preparation and CIM stage are the same as those in the training task. In
the statistic stage, according to the response of feature neurons in the CIM stage, a register
file is maintained in which the labels of the strongest and the second strongest responses of
each neuron are saved. When the pre-classification task is completed, the value inside this
register file will become as labels of each feature layer neuron.

2.2.3. Classification

The classification task is similar to the pre-classification task. The feature neuron that
fires the most to current showed picture will be found, and its label will be taken as the
recognition result (i.e., winner-take-all).

The circuit-level workflow of this task consists of the preparation stage, CIM stage, and
statistic stage. The first two stages are the same as the pre-classification task. In the statistic
stage, a register file will be maintained, which stores the number of spikes generated by all
post-neurons. When the number of spikes generated by a certain feature layer neuron in
the time window reaches upper threshold, the label of this neuron directly becomes the
classification result; or, after the time window is over, the feature layer neuron with the
largest number of spikes will be found using a cascaded comparator, and its label will be
taken as the classification result.

3. Results
3.1. Simulation Environment

We used BRIAN2 as the simulation platform of SNN.
Instead of using the PoissonGroup class provided by BRIAN2, we set the threshold

condition to “rand() < MAX_RATE * pixel grayscale * dt” to generate Poisson-distributed
spike trains [27], as it is the actual method to implement hardware circuits with random
number generators and comparators. We have checked that the spike train generated
by the encoders with different input pixel values is 255 during a whole time window
(350 ms), and the result indicated that they worked adequately. For example, encoders
with input grayscale = 255 fire 54 times on average (which is quite close to the expected
value 156.25 × 0.350 = 54.6875), while those with input grayscale = 0 do not fire at all.
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3.2. Network Parameters

The parameters of our spiking neural network are listed in Table 1.

Table 1. Parameters of our spiking neural network.

Parameter Value

Number of input neurons 256~784
Max firing rate 156.25 Hz

Pulse length 25 ms
Number of feature neurons 100~800

Threshold voltage (Vth) 256 levels or 2.5 V fixed
Time window length 350 ms

Pulse length 25 ms
Inhibition length 15 ms

Timestep 100 µs
Time constant (τm) 50 ms

Number of synapses 25,600~627,200
Max value 250 (1.000)
Min value 1 (0.004)
Precision 8-bit (250 levels)

3.3. Results and Analysis
3.3.1. Number of Input Layer and Feature Layer Neurons

The number of neurons in the input layer is equal to the number of pixels in the
input picture, and each neuron encodes the pixel into a spike train, which needs encoder
hardware. A higher-resolution picture requires more neurons in the input layer. Therefore,
if the requirement for picture clarity can be reduced, the scale and resource of the coding
circuit can be reduced. We tested the influence of the number of input layer neurons on the
recognition accuracy, as shown in Figure 5a.
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It can be seen from the figure that the lower the picture resolution, the lower the recog-
nition accuracy. When the resolution is as low as 12 × 12, the accuracy drops significantly
to about 60% and is almost irrelevant to the number of neurons in the characteristic layer.

The function of feature layer neurons is to perform feature recognition. Each feature
layer neuron has one strongest response to a specific number (which is its label), and each
specific digit pattern corresponds to a most-responded feature neuron. The winner-take-all
algorithm uses this neuron’s label as the recognition result of the current picture. Therefore,
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the number of neurons in the feature layer cannot be too small, otherwise, because the
training process is unsupervised, it may result in no or very few neurons that can recognize
a specific number. We tested this, and the results are shown in Figure 5b.

Our results showed that increasing the number of neurons in the feature layer can
effectively improve the accuracy of the network, provided that the resolution of the image
is not too low. At full resolution (28 × 28), using 800 feature neurons, an accuracy of up to
93.0% can be achieved. At lower resolution (16 × 16), using only 128 neurons, an accuracy
of 84.0% can also be achieved, using only a fifth of the synapses and half of the samples.

3.3.2. Training Samples

As the learning process progresses, the synapse weights will change, from the random
weights at the beginning, to the shape of a certain number, as shown in Figures 6 and 7.
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Figure 7. Changes in weight image of a single feature layer during training (samples = 0, 1000, 2000, 3000, 4000, 5000, 6000).

Training sample size affects the similarity between the synaptic weight of the feature
neuron and its label features. After the training, the weight value is fixed. As our classi-
fication algorithm uses winner-take-all, the higher the similarity, the clearer the features
(which indicates the more complete the training), the more specific the features recognized
by the neuron, and, finally, the higher the recognizing accuracy.

We tested the impact of training sample size on accuracy when the input image is
28 × 28 and the number of feature layer neurons is 100 or 400, and the results are as follows.

As shown in Figure 8, networks with more feature neurons require more samples to
be fully trained and have a higher steady accuracy. Specifically speaking, our network only
needs about 12,000 samples when there are 100 feature neurons, and about 30,000 samples
when there are 400 feature neurons, to be fully trained. This is far fewer than the size of the
MNIST dataset, indicating that the network performs well at convergence.
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feature neurons is 100 and 400.

3.3.3. Pre-Classification Samples

The pre-classification process detects and saves the label of each feature neuron. In
theory, the larger the number of pre-classified samples, the smaller the probability of
mislabeling neurons, and the smaller the probability of subsequent classification errors.
However, as this stage needs labels of the input image provided and the number of spikes
counted, which is expensive, the number of samples should be reduced as much as possible.
Our experiments showed that this value can be set to as low as 400~800 without massive
accuracy deterioration. The results are shown in Figure 9 below.
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As the weights of this process are no longer updated by lateral inhibition, but only
simple statistics on the responses of all neurons, when the number of pre-classified samples
reaches about 400 to 800, the accuracy rate will not increase. This shows that the influence
of mislabeling has been almost eliminated.
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3.3.4. Encoding Scheme

We tested the three encoding schemes mentioned in Section 2.1.1 and found that
different encoding methods have a certain impact on recognition accuracy. Poisson coding
has the best accuracy, followed by 8-bit variable-rate coding with a slight loss. In addition,
1-bit fixed-rate coding, being the simplest method, is less impressive in accuracy. The
results are shown in Table 2.

Table 2. The impact of different encoding methods on accuracy.

Feature
Neurons

Encoding
Scheme Accuracy Feature

Neurons
Encoding
Scheme Accuracy Feature

Neurons
Encoding
Scheme Accuracy

100 Poisson 85.6% 400 Poisson 90.6% 800 Poisson 93.0%

100 8-bit
variable-rate 81.9% 400 8-bit

variable-rate 88.3% 800 8-bit
variable-rate 91.0%

100 1-bit
fixed-rate 73.0% 400 1-bit

fixed-rate 80.8% 800 1-bit
fixed-rate 82.5%

3.3.5. Weight Precision

For real circuit implementation, the precision of weights needs to be carefully selected,
because it will directly affect the storage cost and complexity of the weight updating, and
further affect memory size (area), bus bandwidth requirement, and energy consumption.
Our test compared the recognition performance between 8-bit fixed-point weights and 1-bit
fixed-point weights, and we found that the fixed-point simplification causes the accuracy
rate to drop by up to 5%. When the number of input neurons is 784 and the numbers
of feature neurons are 100, 400, and 800, the accuracy drops by 4.7%, 2.6%, and 0.4%,
respectively, as shown in Table 3.

Table 3. Impact of weight precision on accuracy.

Feature
Neurons

Weight
Precision Accuracy Feature

Neurons
Weight

Precision Accuracy Feature
Neurons

Weight
Precision Accuracy

100 8-bit 85.6% 400 8-bit 90.6% 800 8-bit 93.0%
100 1-bit 80.9% 400 1-bit 88.0% 800 1-bit 92.6%

3.3.6. Learning Rule

This work proposed a single-step STDP learning rule suitable for multi-bit binary
weights. We conducted different simulations where the number of input neurons is 784
and the numbers of feature layer neurons are 100, 400, and 800, and the results are shown
in Table 4 and Figure 10. It can be seen that this simplified learning rule has few negative
effects on recognition accuracy, and it is even less obvious when there are more neurons in
the feature layer. This rule also did not lead to a significant unconvergence.

Table 4. Impact of learning rules on accuracy.

Feature
Neurons

Learning
Rule Accuracy Feature

Neurons
Learning

Rule Accuracy Feature
Neurons

Learning
Rule Accuracy

100 Exponential 76.4% 400 Exponential 88.8% 800 Exponential 93.7%
100 Single-step 73.0% 400 Single-step 88.3% 800 Single-step 93.0%
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3.3.7. Resistance Fluctuation of MTJ

The network described in this article will be implemented using MRAM, so the
resistance fluctuation of MTJ may have a potential impact on correctness and performance.
We have studied this, and the following is our analysis and experiment:

As a single weight value is represented with a group of eight MRAM cells, and the
MTJs only participate in the MAC operation, which is performed in the form of analog, the
influence path of its resistance fluctuation on the training process should be: R fluctuates→
G fluctuates→ Vmem fluctuates→ spike train may fluctuate (depends on the comparison
result of Vmem and Vth)→ ∆w may fluctuate→ training may fluctuate. As the fluctuation
of the spike train depends on the comparison result of Vmem and Vth, the fluctuation in
Vmem can be equivalently substituted by the fluctuation in Vth, where R is the resistance of
the MTJ, G is the conductance, Vmem is the membrane potential of the feature layer neuron,
and Vth is the threshold voltage. Assuming that the standard deviation of a single MTJ’s
resistance is 6%, we simulated the possible results by imposing a normally distributed
artificial fluctuation on Vth with a standard deviation of 6%. We tested the impact of this
10 times, as shown in Figure 11. The simulation results showed that there is no significant
change in the accuracy rate and the number of samples required for training. This result
can conclude that our SNN is resistant to the resistance fluctuation of MTJ.
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3.3.8. Comparison

Table 5 shows the comparison of performance and cost between this work and others.

Table 5. Comparison with similar works.

Architecture Two-Layer
SNN [17]

Two-Layer
SNN [18]

Two-Layer
SNN [22]

Two-Layer
SNN [28]

Three-Layer
SNN [29]

Four-Layer
SNN [30] This Work This Work

Learning
Rule Exponential Rectangular Exponential Exponential Exponential Exponential Single-step Single-step

Encoding
Scheme Rate Rate Temporal Rate Rate Rate Rate

(multi-mode)
Rate

(multi-mode)

Pixel Depth 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 1-bit

Vmem
Leakage Exponential Exponential Exponential Exponential Exponential Exponential Exponential Linear

Lateral
Inhibition Yes Yes No Simplified No Yes Yes Yes

Threshold
Voltage

Adaptive,
Analog

Adaptive,
Analog Fixed Adaptive,

Analog
Adaptive,
Analog

Adaptive,
Analog 256-level Fixed

Total
Neurons 2384 1084 7184 1184 5294 1595 1184/384 384

Total
Synapses 1,254,400 235,200 5,017,600 313,600 3,573,000 318,400 313,600/32,768 32,768

Training
Samples 900,000 180,000 60,000 >100,000 60,000 >150,000 <30,000/<12,000 <4000

Accuracy 95.0% 93.5% 94.6% 91.7% 98.5% 92.1% 90.6%/84.0% 77.0%

Some state-of-the-art spiking neural networks are shown in Table 5. Those in [17]
and [18] are the most complicated ones in the table, with all the components of SNN
not being optimized for hardware cost. The study in [22] managed to simplify some
mechanisms of the SNN, but the cost of hardware was not reduced, as more neurons
and synapses were needed to maintain high accuracy. The study in [28] aimed to lower
the complexity of lateral inhibition. The network in [29] is a three-layer SNN with both
supervised and unsupervised learning optimized for accuracy, but it is too large and too
complicated for hardware implementation. The network in [30] is a partially connected
four-layer SNN. As a multi-layer one, it successfully reduced the number of synapses with
small accuracy loss compared to larger ones, but the learning rule and threshold voltage are
still expensive for hardware. In comparison, our network architecture has a lower cost and
is more hardware-friendly—the numbers of neurons and synapses are relatively small, and
the learning rule and threshold voltage are discretized and require fewer training samples,
but it still reaches a good accuracy. In addition, it can adapt to ultra-low-cost situations.
For example, with 16 × 16 grayscale MNIST images, it holds an accuracy of 84.0%; with
16 × 16 black-white MNIST images, it holds an accuracy of 77.0%, and both require even
fewer samples for training.

4. Conclusions

In this paper, based on the binary MRAM device, we proposed a low-cost hardware-
friendly spiking neural network. The synaptic array was built on binary MRAM cells and
could utilize in-memory computing to accelerate the computation. The encoders were well-
designed to make the spike trains sparse enough, that way reducing the area and power
of the SA array. To collaborate with 8-bit discrete weights, a new single-step learning rule
was also introduced, avoiding costly circuits for exponential computation. The LIF neuron
model was adjusted to constant-leaking; therefore, the difficult exponential operations
were again avoided. Alongside these hardware-friendly features, it performed well against
the resistance fluctuation of MTJ, and reached a decent accuracy with a small number of
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samples. As a result, this network effectively reduced the cost and complexity of circuit
design, and may become a promising realization of energy-efficient neuromorphic chips.
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