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Abstract: Reaction wheels are widely used in the attitude control system of small satellites. Unfortu-
nately, reaction wheels failure restricts the efficacy of a satellite, and it is one of the many reasons
leading to premature abandonment of the satellites. This study observes the measurable system
parameter of a faulty reaction wheel induced with incipient fault to estimate the remaining useful
life of the reaction wheels. We achieve this goal in three stages, as none of the observable system
parameters are directly related to the health of a reaction wheel. In the first stage, we identify the
necessary observable system parameter and predict the future of these parameters using sensor
acquired data and a long short-term memory recurrent neural network. In the second stage, we
estimate the health index parameter using a multivariate long short-term memory network. In the
third stage, we predict the remaining useful life of reaction wheels based on historical data of the
health index parameter. Normalized root mean squared error is used to evaluate the performance
of the various models in each stage. Additionally, three different timespans (short, moderate, and
extended in the scale of small satellite orbit times) are simulated and tested for the performance of the
proposed methodology regarding the malfunction of reaction wheels. Furthermore, the robustness
of the proposed method to missing values, input frequency, and noise is studied. The results show
promising performance for the proposed scheme with accuracy in predicting health index parameter
around 0.01–0.02 normalized root mean squared error, the accuracy in prediction of RUL of 1–2.5%,
and robustness to various uncertainty factors, as discussed above.

Keywords: prognosis; LSTM; reaction wheel; satellite; data-driven; forecasting

1. Introduction

In recent years, small satellites have become our subject of interest due to their low
manufacturing cost, ease of launching into orbit and the capability to deliver the same
outcome as their large counterparts. Reaction wheels (RW) are an integral part of the
attitude control system of a small satellite to have control over the rotation about its axes.
To perform the designated task, a satellite needs to have accurate control over its direction.
Though RWs are very efficient, they are prone to failure, and for a small satellite, that
can lead to a disaster resulting in its complete failure. As there is not much room for
mechanical redundancy in a small satellite to enhance the reliability and useful lifetime,
one needs to increase the analytical redundancy as an alternative solution. If we properly
monitor the performance degradation in the attitude control system components (e.g., RWs)
and estimate the system’s remaining useful life (RUL), we can avoid a potential disaster
and downtime of the service. Although it may not be financially sound or technically
possible to change a defective RW unit on a satellite in orbit to continue its mission; one
can argue that the knowledge of the RUL for the actuators onboard a satellite can help
plan alternative remedies in case the satellite fails or malfunctions in orbit. The remedial
actions can include planning a replacement satellite launch, modifying the mission scope
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for the malfunctioning satellite, or changing actuators or control schemes onboard the
malfunctioning satellite if redundant units are available. The cause of mechanical failure in
RWs is often inadequate, bearing lubrication and uneven frictional torque [1]. This fault
can be monitored from motor torque constant variation. This study develops a data-driven
fault prognosis model to predict the RUL of a faulty RW onboard satellite.

Many studies are found in condition-based monitoring (CBM) and prognostics health
monitoring (PHM). However, only a few are dedicated to satellite RWs. Studies show a
200% growth in microsatellites launches in the last five years [2]. It draws attention to
develop a data-driven approach that can take the measurable sensor data as input and
return the expected RUL of the system under incipient fault. Developing a model-based
prognostic method for a complicated system is very difficult as it requires extensive system
information. To our knowledge, there are a limited number of studies [3–5] found that
involve model-based techniques for prognosis. The authors in [1] have proposed a model-
based approach to predict the RUL of RWs onboard satellites. The authors claim the model
performs considerably well in RUL prediction with the error ranging from 1.5 to 13 percent,
but the prediction interval shows the uncertainty in prediction increases with time.

The authors in Ref. [6] have developed a two-step data-driven approach using the
Kolmogorov–Smirnov test, self-organize map, and an unscented Kalman filter (UKF). In
step one, the authors model the degradation process by learning the degradation. In
the second step, degradation data and UKF are combined to predict the RUL. However,
the method requires a significant amount of training data to perform meaningfully. In
Ref. [7], the authors have developed and implemented a multi-scale extended Kalman
filter (EKF) using telemetry data from an RW onboard a satellite to predict its RUL. An
ordinary differential equation expresses the motor’s dynamic behavior in the process, and
the authors use the damping coefficient as a health indicator. The statistical model-based
and data-driven approaches for machine fault diagnosis and prognosis are also discussed
in Ref. [8]. In Ref. [9], the authors have used machine learning techniques to automatically
detect anomalous spacecraft behavior from telemetry data over a space of seven years.
Although telemetry data in Ref. [9] add tremendous value to the work outcomes, the scope
of the study is limited to the classification of faults and detection of anomalous behavior
rather than RUL prediction.

The authors in Ref. [10] have defined and combined three goodness metrics of correla-
tion, monotonicity, and robustness of the rolling element for degradation feature selection
during the RUL prediction. In Ref. [11], the authors have used wavelet packet transform
(WPT) and an artificial neural network (ANN) for rolling element RUL prediction. Both pro-
posed methods can be used for any similar system, and the outcome and robustness can be
improved if the model can be trained with data from multiple systems. In [12], the authors
have used experimental data and suggested a condition monitoring technique for bearing
life enhancement and preventing torque inequality by controlling the lubrication process.

The authors propose a method using support vector machine (SVM) regression in
Ref. [13] for wear assessment of cutting tools and calculation of RUL. The proposed method
is based on feature extraction, and it requires adequate training data for the model to predict
meaningfully. The method uses a combined feature found by dimensionality reduction
and uses it as a health index (HI) parameter. Ultimately, the HI parameter is mapped to
a nonlinear regressor for RUL prediction. In Ref. [14], variational mode decomposition
(VMD) and long short-term memory (LSTM) recurrent neural networks (RNN) are used
for the prediction of rotary machinery health. The authors in Ref. [15] have used a feed-
forward ANN with a Marquardt training algorithm to predict the RUL of a bearing. The
proposed ANN model uses time and measurements of Weibull Hazard rates of root mean
squared (RMS) and kurtosis from its present and previous points as input and returns
normalized life percentage as output.

The authors in Refs. [16–20] have studied and implemented different available tech-
niques for the prognosis of rotary machinery. Different stages of CBM and PHM are
mentioned in these articles, such as data collection, feature selection, and state prediction
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using ANN. The authors have summarized several contemporary works in prognosis up
to the date of publication of their research.

In Ref. [21], the authors mentioned an intelligent technique for the CBM and PHM of
the common rotary component in a system. In this process, vibrational data from the sensor
is used as an input, and feature extraction is carried out using a sparse auto-encoder. The
authors used a moving average filter before feeding the data to the model, which returns an
auto-encoder correlation-based rate (AEC) as output, and AEC is used to understand the
condition of the rotary machinery. A method for CBM of rotary machinery using vibration
data and the sound of working conditions is also mentioned in Ref. [22].

In Ref. [23], the authors used the Fourier transform and an auto-encoder to identify
high-level features for PHM of rotary machinery. The model predicts the RUL with
reasonably good accuracy, but the model performance degrades with noise. The model can
be used in a similar scenario of PHM in any system where vibration analysis is used. In
Ref. [24], the authors have studied acoustic emission, vibration data, acoustic technique,
the shock pulse method, thermal and wear debris monitoring for CBM of mechanical and
electrical devices.

The authors in Ref. [25] have proposed a multidimensional technique using SVM and
particle filter-based method for PHM of rotary machinery; the approach in their study is
claimed to be better in estimating RUL than the methods using data from single sensors.
On the contrary, the model complexity in Ref. [25] is higher, making it unsuiTable for
complex systems that require a faster response.

Some statistical model-based and data-driven approaches for CBM and PHM are
briefly discussed in Ref. [8]. The authors in Refs. [26–28] have used the COVID-19 data set
of infected people to predict the peak during the wave of infection and estimated time to
reach that state, while the authors have used different state-of-the-art machine learning
techniques for the regression analysis in these papers.

LSTM is an effective RNN for regression analysis and feature selection. The fundamen-
tals and different applications of the LSTM model are discussed in Refs. [14,29–32]. The
authors of Ref. [33] have proposed a two-step prognosis technique for satellite RWs and
carried out a state parameter prediction. The authors used an auto-regressive integrated
moving average (ARIMA) model and an LSTM network for state parameter prediction,
and the best accuracy obtained by each model has a normalized root mean squared error
(NRMS) of 0.138 and 0.04, respectively.

The majority of the published literature focuses on single- or two-step approaches to
tackle the problem of remaining useful life prediction for reaction wheels with moderate
performance evaluated based on NRMS. The proposed methods in the literature are
either too complex, with high computation costs, or have inferior performance if the
model complexity is not significant. There is a gap for a methodology that is neither too
complex with high computational costs nor performs inferior to the existing complex and
computationally expensive methods.

This study proposes a three-step data-driven approach for the prognosis of reaction
wheels using LSTM. In the first step, we carry out state prediction. In the second step, we
define and predict the health index parameter (parameter prediction). Finally, in the third
step, with the help of historical data and a threshold, we predict the RUL of RW ITHACO
Type-A by Goodrich as a case study. The novelty of this work is in developing a new
three-stage data-driven prognostic technique using LSTM, which is not complex with high
computational costs and performs reasonably with accuracies achieved in the prediction of
HI around 0.01–0.02 NRMS error, and the accuracy in prediction of RUL of 1–2.5%.

The remaining of this paper consists of the following sections: in Section 2, we
describe the problem in satellite RW fault prognosis, while The detailed methodology
to solve this problem is discussed in Section 3. Next, in Section 4, we implement the
proposed methodology for the evaluation of the model. Finally, in Section 5, we conclude
with the usefulness of the proposed model in a real-life application and the future scopes
of research.
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2. Problem Statement

Reaction wheels were first introduced in automobiles to conserve momentum and
provide smooth power output, and the same idea can be used for many purposes. In
a satellite attitude control system, the reaction wheels are used for a different purpose.
Particularly in small satellites, RWs are used to rotate the satellite on its axes. This is
achieved by using an electric motor to rotate the RW to obtain an equal and opposite
momentum to rotate the satellite in the opposite direction, and multiple RWs can be
assembled in different configurations to gain 3-axis attitude control. As a result, the method
has become very popular for cost-efficient satellite manufacturing and servicing. However,
the reaction wheel as a mechanical device does not have a long lifespan, and in the case of
small satellites, there is not much room for mechanical redundancy to improve reliability.

Furthermore, installing an increased number of RWs in satellites increases the weight
and launch costs, which contradicts the key financial aspect of small satellites. To overcome
this problem, proper CBM and PHM techniques can be used to increase service reliability
as it will nullify the service downtime due to RW failure by providing an estimated RUL of
the system. As mentioned earlier, although this may not be financially sound or technically
possible to change a defective RW unit on a satellite in orbit to continue its mission, one
can argue that the knowledge of the RUL for the actuators onboard a satellite can help
plan alternative remedies in case the satellite fails or malfunctions in orbit. The remedial
actions can include planning a replacement satellite launch, modifying the mission scope
for the malfunctioning satellite, or changing actuators or control schemes onboard the
malfunctioning satellite if redundant units are available.

This study aims to predict the remaining useful life of a reaction wheel under incipient
fault using a data-driven approach. To achieve this goal, a three-step process is proposed.
Figure 1 illustrates the flow of the proposed three-step process followed during the progno-
sis of RW in this study. In the first step, we carry out a state parameter prediction, where
unseen system states are predicted based on current and historical system states. In the sec-
ond step, we define and predict the health index parameter, where the degradation model
is generated based on the data from measurable states (wheel speed ωm and motor current
Im) to determine the values of unmeasurable or unavailable system parameters (motor
torque constant kt and bus voltage Vbus) that can be represtative of faults or anomalies in
RW behavior. Finally, in the third step, the kt predicitions are used to intersect with the RW
failure threshold of (30% nominal) to determine the RUL of the RW.

Figure 1. Steps towards prognosis of satellite RW.

The main components of RW that are prone to failure are bearing and electrical motor.
The developing fault can be monitored by motor torque constant (kt) and bus voltage (Vbus),
neither of which can be directly measured from the sensor readings. The available essential
sensor readings are wheel speed (ωm), motor current (Im), and voltage input (Vcomm) as
shown in Figure 2.



Electronics 2021, 10, 2432 5 of 23

The mathematical relation between system states motor current Im, RW speed ωm and
HI parameter motor torque constant (kt) is expressed in Equation (1), and it can be seen
that the relationship between these states and parameters is nonlinear [34].

.
Im = Gdωd[ f3(ωm, Im)− f5(ωm)]−ωd Im + GdωdVComm.
ωm = 1

Jw
{ f1(ωm) + kt Im[ f2(ωm) + 1]− τvωm − τc f4(ωm) + τnoise}

(1)

There are five building blocks ( f1−5) inside Bialke’s RW model, which are discretized
by Sobhani-Tehrani in Equation (1) [34] and Figure 2. In Figure 2, f1 and f2 capture the
motor disturbance, f3 accounts for EMF torque-limiting block, f4 addresses the analytical
approximation of the sign function, and f5 stands for the speed limiter block. A detailed
explanation of these blocks and Equation (1) can be found in Ref. [34].

Figure 2 represents Bialki’s ITHACO type-A reaction wheel by Goodrich. The system
parameters and constants for this reaction wheel are listed in Table 1. Due to the nonlinear-
ity in the mathematical relation, numerical simulations are used to generate accurate input
data. A detailed description of Bialke’s high fidelity reaction wheel model can be found
in [35]. As mentioned earlier, our study used Sobhani-Tehrani’s [34] adaptation of Bialke’s
model to implement numerical simulations and generate assimilated data for our study, as
discussed in the following sections.

Figure 2. Bialke’s ITHACO Type-A reaction wheel model [35].



Electronics 2021, 10, 2432 6 of 23

Table 1. ITHACO Type-A reaction wheel model parameters.

Parameter Value

Coulomb Friction (τc) 0.002 Nm
Viscous Friction (τv) 3.84 × 10−4 Nm/rad/s

Drive gain time constant (τd) 0.245
Ripple Torque (B) 0.22
Temperature (T) 23 ◦C

Cogging Torque (C) 0
Torque Noise Frequency (ωa) 0.2 rad/s

Jitter Angle (θa) 0.05 rad = 3 degrees
BEMF (ke) Nominal 0.029 V/rad/s

Motor Torque Const. (kt) 0.029 Nm/A
Bus Voltage (Vbus) Nominal 8 V

Bridge Resistance (RB) 2 Ω
Driver Gain (Gd) 0.19 A/V

Number of Motor Poles (N) 36
Input Filter Resistance (RIN) 2 Ω

Quiescent Bus Power (Pq) 3 W
Driver Bandwidth (ωd) 9 rad/s

Voltage Feedback Gain (k f ) 0.5 V/V
Over-speed Circuit Gain (ks) 95
Maximum Wheel Speed (ωs) 680 rad/s

Our research aims to develop a data-driven model for the prognosis of RWs in a
three-step process. Although the methodology should be applicable to other systems, the
reaction wheel system is used for the proof of concept. The relation between the states
and the HI parameter is highly nonlinear in [34]. Therefore, in the first stage of our work,
we forecast the future data (RW speed (ωt+1), motor current (Imt+1), torque command
voltage (Vcommt+1) using a forecasting model and the available measurements (RW speed
(ωt), motor current (Imt ), torque command voltage (VCommt ) ). In the second stage of the
proposed approach, we define the HI parameters to be kt, and employ a degradation model
to find forecasted states for these parameters using the degradation model and historical
and available measurements from the system. Finally, in the third stage of the proposed
approach, we establish a threshold for the HI parameter (kt) from the HI data and compare
with the data found in the second stage to predict the RUL.

3. Methodology

There are three major categories of prognostic works in the field. These methods
include model-based, semi-model-based, and data-driven. Model-based techniques are
very accurate and popular for less complicated systems as they require a lot of system
information. It is challenging to build a comprehensive model-based prognostic technique
for a complicated system. This is where semi-model-based and data-driven techniques
shine. The main advantage of using data-driven techniques is that they do not require much
system information, rely more on the inputs and outputs available from measurements,
and can be equally effective for any similar system. Our study found the LSTM network
very efficient in predicting future states from the available measurements.

Figure 1 shows the flow of the three main steps towards building our prognostics
model for a RW. As briefly discussed, in the first step, we carry out state parameter
prediction where unseen system states are predicted based on current and historical system
states. In the second step, we define and predict the health index parameter, where the
degradation model is generated based on the data from measurable states (wheel speed
ωm and motor current Im) to determine the values of unmeasurable or unavailable system
parameters (motor torque constant kt and bus voltage Vbus) that can be representative of
faults or anomalies in the RW behavior. Finally, in the third step, the kt predictions are
used to intersect with the RW failure threshold of (~30% nominal) to determine the RUL
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of the RW. In the following sub-sections, additional details on each step of the three-step
process are provided, followed by results and discussions in the next section.

3.1. Data Collection and Preparation

Generally, for data-driven prognosis approaches, the raw data to train and test a model
are collected from the functioning hardware or a computer simulation from a digital twin of
the hardware. The real-life data from a satellite attitude control system not easily accessible,
making the data-driven fault prognosis more difficult. We overcome this by producing
synthetic data from a computer-generated model. We use Bialke’s ITHACO Type-A high
fidelity model, as shown in Figure 2 and formulated in Equation (1), to generate synthetic
data and add Gaussian white noise to the dataset to resemble the dataset from a real-life
unit.

For the simulation, we set all the RW parameters as listed in Table 1, and we inject an
incipient fault in the kt parameter of the model as

kt = kt0

(
1

et×10−4

)
(2)

where kt0 is the initial or nominal value for kt and t is the time in the simulation. As can be
seen, Equation (2) is an exponential decline from the kt0 value, which can be a common
representation of incipient degradation or fault in system parameters. In our simulations,
kt0 = 0.029 from Table 1.

We run the model for and store the model output at every 0.1 seconds during the
simulation into the comma separate value (CSV) file. The model outputs are RW speed
(ωm), motor current (Im), Torque command voltage (Vcomm), motor torque constant (kt),
and bus voltage (Vbus), where ωm, Im, and Vcomm are the measurements that are available
from sensor reading and kt and Vbus are non-measurable system parameters that we can
use for RW health monitoring. All CSV-stored data are used for analyzing and building
a data-driven fault prognosis model in the following steps. We then add Gaussian white
noise to the dataset to resemble the dataset from a real-life satellite.

Missing Data Imputation and Noise Addition

In our study, we use model-generated data, making our dataset free from impurity.
However, there can be missing values, additional disturbance, or noise in real-life datasets
due to errors in the sensor reading or other uncertainties. To ensure real-life implication,
it is crucial to address these issues. We randomly erased data from the simulated dataset
to emulate missing data or sensor reading issues. When working with missing data,
interpolation techniques are used to impute the missing values. In Equation (3), the
interpolation function for missing value imputation can be found.

y = y1 + (x− x1)
(y2 − y1)

(x2 − x1)
(3)

where x and y are the unknown data points and (x1, y1) and (x2, y2) are the known sets to
use for interpolation.

We additionally added Gaussian white noise to the dataset to emulate the real-world
uncertainties. Equation (4) defines a white Gaussian

SX( f ) =
N0

2
, for all f , µX = 0 (4)

where SX( f ) is the flat power spectral density, µX is the mean, and N0/2 is a constant. We
calculate and express the noise quantity signal-to-noise ratio (SNR) in decibel in this study.
The function used for the calculation of noise level can be found in Equation (5)

SNR = 20 log
S
N

(5)



Electronics 2021, 10, 2432 8 of 23

3.2. LSTM Model

LSTM is a specially designed RNN that can address long term dependency issue
that exists with conventional RNNs. LSTM was first proposed by Hochreiter and Schmid-
hube [29]. Currently, there are many versions of the LSTM network available. However, the
LSTM network used in this study is adapted from [36–38]. LSTM has a chain-like structure
similar to all other standard RNNs; however, the repeating module in LSTM has a different
structure with interactive layers. The components of each block inside an LSTM network
are shown in Figure 3.

Figure 3. A block inside an LSTM network. Adapted from [39].

Each block in Figure 3 takes a sequence of input, and a sigmoid function determines the
activation of gates inside the block. Equation (6) represents a sigmoid activation function.

σ(t) =
1

1 + e−t (6)

The first step inside an LSTM network block is a forget gate to decide which informa-
tion to dispose of from the cell state. Equation (7) mathematically represents a forget gate.

ft = σ
(

W f · [ht−1, xt] + b f

)
(7)

The next step has two parts. The input gate layer decides which values will be updated
in the first part, as shown in Equation (8).

it = σ(Wi · [ht−1, xt] + bi) (8)

In the second part, a tanh(·) layer creates new values to add to the state in Equation (9).

C̃t = tanh(WC · [ht−1, xt] + bC) (9)

Later, these two parts are multiplied to update the state in Equation (10).

Ct = ft × Ct−1 + it × C̃t (10)

Finally, the block decides the output in the output gate step. In this step, a sigmoid
function first decides which part of the cell state to pass as output, using Equation (11).

ot = σ(Wo[ht−1, xt] + bo) (11)

Subsequently, the cell state from the input gate passes through a tanh(·) and is multi-
plied by the output of the output gate, using Equation (12).

ht = ot × tanh(Ct) (12)
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As a result, the output gate inside the LSTM block can provide the final output for the
block. In Equations (7)–(12), W f , Wi, WC, and Wo are the weights of the forget gate, input
gate, tanh(·), and output gate, respectively, ht−1 is the output from the previous block, xt is
current time steps contribution, Ct−1 is the contribution of tanh(·) from the previous block
at time (t− 1), and terms b f , bi, bC, and bo are the biases.

3.3. State Prediction (Stage 1)

For our study, available measurements are the RW angular speed (ωm), Motor current
(Im), and Input voltage (Vcomm). An LSTM network is used for the prediction of future
measurements, also known as state reconstruction. The utilized LSTM network incorpo-
rates a visible input layer, a hidden layer comprising four LSTM blocks, and an output
layer. A customized Adam optimizer is used for learning rate and faster convergence. The
Adam optimizer is customized using a scheduler with a learning rate decay rate of 0.85
for every 10 epochs. A large initial learning rate helps the network learn faster and reduce
computational time, but it can result in a suboptimal solution [40]. Hence, the use of a
scheduler solves the problem for the network to learn faster and efficiently. The model is
trained with 70 percent of the dataset and tested with the remaining of the dataset. For
validation, 25 percent of the dataset is used. The predicted measurements are stored and
used for state or HI parameter prediction. However, when predicting the data after the
available dataset, we need to predict based on the prediction in the previous time step.
This causes even a minor error in the prediction of the first-time step to propagate through
the next prediction. We assist our model in overcoming this problem by using a reference
line for the states. The reference line is formed as

ωm(t) = A1 × e(log (b1)×t)

+(A2 × e(log (b2)×t))× sin( fmax ×ω× t + p)
+c

(13)

where, A1, b1, A2, b2, ω, p, c are unknown constants, t denotes time, and fmax is maximum
frequency obtained from a fast Fourier transform (FFT) from the dataset. All unknown
constants excluding fmax in Equation (13) are found using a nonlinear least-squares fit of
the dataset to Equation (13). For fmax an FFT is applied to the required state that needs
reconstruction (in this case ωm) dataset to find the maximum frequency in the dataset,
as shown in Figure 4. The FFT in Figure 4 is the result of ωm data generated from the
simulator and passed through an FFT to identify dominant frequencies in the data and
choose the highest frequency in the FFT as the value for the fmax in Equation (13). Once fmax
is identified from the ωm dataset and substituted in Equation (13), a nonlinear least-squares
fit is used to find the remaining unknown constants in Equation (13) and obtain the final
tren line for ωm.

Figure 4. Fast Fourier transform of a sample data to obtain fmax.
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Using the obtained fmax from Figure 4 as 0.003201 in Equation (13) and using a
nonlinear least-squares fitting approach with the ωm dataset shown in Figure 5 as input,
as well as Equation (13) with a substituted value of fmax as output form will result in
A1 = 8.617, b1 = 5.601, A2 = 0.999, b2 = 0.999, ω = 6.249, p = 0.304, c = 0.441. The
comparison between the fitted curve and the original data is shown in Figure 6.

Figure 5. RW simulation data sample from ITHACO model.
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Figure 6. Comparison between fitted model and original data for state reconstruction.

The results from Figure 6 show a good match between the original dataset and
the fitted model using a combination of FFT and nonlinear least-squares regression. As
mentioned earlier, since slightest mispredictions in future system states (ωm and Im) can
result in major deviations in HI parameter (kt or Vbus) predicitions. Therefore, using a
fitted model for future state reconstruction that can be used by the predictor to estimate
HI values based on system states, deemed necessary in the successful formulation of the
methodology for this study.

3.4. HI Parameter Prediction (Stage 2)

The main goal of our study is to predict the remaining useful life of the reaction wheel,
so we determine the HI parameter (kt) in this stage from measurable sensor data, that is,
the angular wheel speed (ωm) and motor current (Im). A multivariate LSTM network is
used for the calculation of HI parameter motor torque constant (kt). We take wheel speed
(ωm), motor current (Im), and torque command voltage (Vcomm) as inputs to train the model,
and we calculate loss during training from the available motor torque constant data from
the model. A total of 70 percent of the total data is used during training, and the rest are
used to test the model performance. For validation, 30 percent of the dataset is used. A
custom Adam optimizer with a decremental learning rate is used for efficient training.

As there are different types of frequencies in the input data, we use three filters in the
input data before feeding them to the model to assist model performance. For RW speed
data, we use an exponential trend filter as,

y(t) = a×
(

e−(b×t)
)
+ c (14)

where the unknown constants a, b, c are found using a nonlinear least-squares fit for
motor current and torque command voltage data. The values of unknown constants in the
equation are found using the curve_fit function from Python library SciPy. Initially, all the
constant values are set to 1 and using nonlinear least square optimization, the curve_fit
function estimates the values of the unknown constants fitting an exponential to the dataset.
We use a moving average (MA) filter as,

Moving Average (MA) =
A1 + A2 + · · ·+ An

n
(15)
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where n is the window size for calculation of moving average and Ais are the points in the
window that the average is being calculated from.

3.5. Calculation of RUL (Stage 3)

We calculate the remaining useful life based on the predicted value of HI parameter
(kt) and a threshold value for it. As stated in [41], the threshold is based on the nominal
value of motor torque constant (kt). If the degraded value of kt reaches 30 percent of its
nominal state value, as listed in Table 1, the system is assumed to have failed. Thus, the
intersection between the degradation trend of HI parameter (kt) and its 30% threshold
determines the point of predicted failure occurrence. We can calculate the time window
from the present to the point of predicted failure to find out the RUL of the RW with
incipient fault.

4. Results and Discussion

We generate the dataset using a computer simulation in MATLAB, and the simulation
is carried out on a Dell computer with an Intel®Core™ i7-4790 CPU with a processing
power of 8GHz, Intel®HD Graphics 4600, and 8 GB of RAM. An LSTM network from
Python library Keras is used for forecasting future system measurement data, and for state
parameter prediction, a multivariate LSTM network is employed. The LSTM network
employed for forecasting system measurement is known as vanilla LSTM. This network
has an input layer, a visible layer, a hidden layer with four LSTM blocks, and an output
layer. The input layer of this network takes a three-dimensional array as input, where
the first dimension is the batch size, the second dimension is the time step, and the third
dimension is the number of units in one input sequence. A sample dataset for various
input and outputs of the RW model is presented in Figure 5 pertaining to the simulation
parameter in Table 1, degradation in kt as formulated in Equation (1). The input voltage
(Vcomm) is fed into the model as

Vcomm = 5× sin(Freqin × t + Phase) + Bias (16)

where the amplitude of 5 is the range within which the RW can operate, Freqin is the input
frequency that is set to 0.1 rad/s in the simulation shown in Figure 5, t is time, and Phase
and Bias are set to zero. In the following sections where the input frequency is mentioned,
the term refers to Freqin in Equation (16).

The employed multivariate LSTM network HI parameter prediction takes multiple
features as input and returns a single output. In this case, the network takes ωm, Im, Vcomm
as input and returns HI parameter kt as output. The tuned hyperparameters for the LSTM
network used in stage 1 can be found in Table 2, and in Table 3, Table 4, and Table 5, the
tuned hyperparameters for multivariate LSTM network for parameter prediction for three
time spans are listed.

Table 2. Tuned hypermeters and model inputs for the state prediction with LSTM.

Parameter Value

Train to total data ratio 70%
Optimizer ADAM

Initial learning (LR) rate 0.002
LR decrement per 10 epochs 85%

Validation split 25%
Batch size 256

Degree of differencing (LB) 16
Number of epochs 300
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Table 3. Tuned hypermeters and model inputs for the parameter prediction in hour span with LSTM.

Parameter Value

Train to total data ratio 70%
Optimizer ADAM

Initial learning (LR) rate 0.01
LR decrement per 10 epochs 75%

Validation split 25%
Batch size 24

Degree of differencing (LB) 1
Number of epochs 300

Table 4. Tuned hypermeters and model inputs for the parameter prediction in days span with LSTM.

Parameter Value

Train to total data ratio 70%
Optimizer ADAM

Initial learning (LR) rate 0.01
LR decrement per 10 epochs 60%

Validation split 25%
Batch size 128

Degree of differencing (LB) 1
Number of epochs 250

Table 5. Tuned hypermeters and model inputs for the parameter prediction in months span
with LSTM.

Parameter Value

Train to total data ratio 75%
Optimizer ADAM

Initial learning (LR) rate 0.005
LR decrement per 10 epochs 65%

Validation split 25%
Batch size 256

Degree of differencing (LB) 1
Number of epochs 300

4.1. State Prediction:

Figure 7 shows predicted reaction wheel speed (ωm) trend. The magnified axis in
Figure 7 shows a staircase effect in train and test predictions. However, the prediction
successfully follows the sinusoidal and exponential degradation of the true dataset. The
model is tested with different sampling rates, and the model performance is robust when
the model hyperparameters (learning rate, batch size, number of epochs, and size of the
train, test, and validation dataset) are adequately adjusted. Table 6 shows, for the RW
speed predictions, the model accuracy is better for higher input frequencies, and it tends to
be degrading for lower input frequencies. However, higher frequency has some drawbacks
for real-life applications, and lower frequency is preferred due to higher penetration
capability [42]. During other sensitivity analyses and RUL calculations in Table 7, we have
used input frequency 0.1 Hz for sensor data collection.
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Figure 7. Prediction of RW speed data.

Table 6. Model accuracy for different frequencies in the input dataset.

Input Frequency
(rad/s)

Test NRMS
(ωm)

Test NRMS
(Im)

Test NRMS
(Vcomm)

1.0 0.01 0.01 0.01
0.5 0.02 0.01 0.01
0.1 0.01 0.01 0.01

0.07 0.02 0.01 0.01
0.05 0.01 0.01 0.01
0.03 0.02 0.01 0.01
0.02 0.02 0.01 0.01
0.01 0.01 0.02 0.01

Table 7. Model performance degradation for different noise level.

ωm Noise (dB) Im Noise (dB) Vcomm Noise (dB) Prediction NRMS
(Test Data)

0 0 0 0.02
147.58 166.9 170.23 0.02
131.36 150.68 154.01 0.02
130.65 145.82 133.36 0.02
92.13 111.45 114.78 0.04
55.47 74.8 78.12 0.04
27.75 47.7 50.40 0.07
11.53 30.85 34.18 0.34

Figure 8 shows the prediction of motor current (Im) data. As Figure 8 shows, the
model almost accurately predicts the motor current. We obtain a NRMS prediction of
0.01 for motor current data.
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Figure 8. Prediction of motor current data.

Figure 9 shows the prediction of torque command voltage. The prediction in the
Figure shows that it follows the true data in the test segment perfectly and can predict
future data with considerable accuracy. We obtain forecasting accuracy of 0.01 NRMS for
torque command voltage data.

Figure 9. Prediction of voltage input data.

Model parameters for the state prediction stage are listed in Table 2, where the final
model characteristics after the tuning and validation are provided.

It is necessary to monitor the model’s loss to understand if the employed network
learns the pattern for future prediction as necessary. We monitor the mean squared error
loss calculated in the model training session (training loss) and the validation loss using
validation data. The loss over time/epoch curves for the state prediction model are shown
in Figure 10, Figure 11, and Figure 12. When comparing the training and validation
loss trends over epochs, three cases can occur in machine learning and deep learning:
(1) Underfitting, this is the only case where training loss is greater than the validation loss,
but only slightly; if the training loss is far higher than validation loss, then there is some
underlying issue with the model. (2) Overfitting is when the training loss is much smaller
than the validation loss, and this means that your model is fitting the training data well
but not at all the validation data; in other words, it is not generalizing correctly to unseen
data. (3) Perfect fitting, when the training loss is more or less equal to the validation loss. If
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both values end up roughly the same, and if the values are converging (in the plot of the
losses over time/epoch), then chances are very high that your model is trained correctly
and working as intended. It can be seen from Figure 10, Figure 11, and Figure 12, that
the training and validation loss curves overlap once the trend plateaus, which is a sign of
behavior 3 from the three cases discussed above and satisfies the proper model for use.

Figure 10. State prediction model loss trends for training and validation sets (ωm).

Figure 11. State prediction model loss trends for training and validation sets (Im).

Figure 12. State prediction model loss trends for training and validation sets (Vcomm).
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The other observation from Figure 10, Figure 11, and Figure 12 is that the loss has
plateaued after 50 epochs, which means additional epochs do not help improve the quality
of the predictions by the trained model. Therefore, one can choose to stop the training and
50 epochs and expect to see the same results as the 300 epochs when the time required for
training the model is an issue.

4.2. Parameter Prediction

Figure 13 shows the motor torque constant (kt) predictions. As Figure 13 shows, the
prediction very closely follows the model-generated motor torque constant data. We obtain
NRMS 0.02 for forecasting motor torque constant data. However, with the increase in time,
there is a slight divergence from the true data. This happens because the uncertainty of the
prediction increases with time.

Figure 13. Prediction of HI parameter (kt).

Model parameters for the parameter prediction stage for hours span are listed in
Table 3, where the final model characteristics after the tuning and validation are provided.

The loss over time/epoch curve for the parameter prediction model is shown in
Figure 14. It can be seen from this Figure that the training and validation loss curves
overlap once the trend plateaus, which is a sign of behavior 3 from the three cases discussed
earlier, and satisfies the proper model for use.

Figure 14. Parameter prediction model loss trends for training and validation sets (kt).
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The other observation from Figure 14 is that the loss has plateaued after 60 epochs,
which means additional epochs do not help improve the quality of the predictions by the
trained model. Therefore, one can choose to stop the training and 50 epochs and expect
to see the same results as the 300 epochs when the time required for training the model is
an issue.

4.3. Calculation of RUL:

In spite of the vastness of the universe beyond Earth’s atmosphere, a large number
of human-made satellites are positioned in one of three orbital regimes: low Earth orbit
(LEO), medium Earth orbit (MEO), and geosynchronous orbit (GEO). About 55% of all
operating satellites are in LEO, and these satellites take 90 minutes and 2 h to complete
a full orbit around the Earth. LEO satellites are ideal for remote sensing missions (e.g.,
Earth’s observation and reconnaissance) due to low altitudes and short orbital periods [43].

Therefore, in this section, three different time spans are covered, one in hours (~4 h)
scale, one in days (~16 days), and one in months (~5 months) to show the performance of
the proposed method over various time spans and life expectancy of the RW unit to make
it more applicable to real-life applications.

4.3.1. Hours Span

For this simulation, the parameters in Table 8 are used to inject the incipient fault
in kt and record measurements at the identified speed. It should be noted that the fault
injection trend is adjusted for each time span to ensure the data trend and degradation are
meaningful for each simulation. If the fault injection for the hours span is used for the days
or months span, the fault would degrade so quickly that at the span of days or months, it
would only last within the first few hours, and the system would fail. Therefore, the speed
of degradations has to be adjusted, as explained for each simulation according to the time
span being simulated.

Figure 15 shows the confidence interval and a threshold line for the HI parameter
to determine the RUL of the RW in the hours span simulation. The confidence is very
narrow, and the model has a good prediction accuracy with NRMS of 0.02. However, it
should be noted that, when predicting the future data, we predict based on the prediction
of the previous time step. Therefore, the error is propagated even if there is a minor error
in prediction. The prediction points out the system failure at 11,800 seconds from the
beginning of the simulation, and the true data almost show the same failure time in the
diagram. The threshold is drawn from historical data. At nearly 30 percent of the initial
motor torque constant, the system fails to perform properly [1].

Figure 15. Confidence boundary of predicted HI parameter and RUL for hours span.
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Table 8. Parameters for hours span simulation.

Parameter/Function Name Parameter Value/The Function

Data sampling rate 0.1 per second
Input frequency 0.1 Hz

Simulation duration 15,000 sec
kt incipient fault trend kt = kt0

(
1/exp

(
t× 10−4))

4.3.2. Days Span

For this simulation, the parameters in Table 9 are used to inject the incipient fault in kt
and record measurements at the identified speed.

Table 9. Parameters for the days span simulation.

Parameter/Function Name Parameter Value/The Function

Data sampling rate 1 per second
Input frequency 0.01 Hz

Simulation duration 1,400,000 s
kt incipient fault trend kt = kt0

(
1/exp

(
t× 10−6))

Figure 16 shows the threshold line for the HI parameter to determine the RUL of the
RW in the days span simulation. The model has a good prediction accuracy with NRMS of
0.01. Comparing the results in Figures 15 and 16, one can notice the difference between the
true line and the predicted line has slightly increased to the additional time span simulated
and its impact on the model predictions for the kt degradation and its corresponding RUL.

Figure 16. Predicted HI parameter and RUL for days span.

Model parameters for the parameter prediction stage for days span are listed in Table 4,
where the final model characteristics after the tuning and validation are provided. With
this model, the NRMS of 0.01 was achieved for the predictions.

4.3.3. Months Span

For this simulation, the parameters in Table 10 are used to inject the incipient fault in
kt and record measurements at the identified speed.
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Table 10. Parameters for the months span simulation.

Parameter/Function Name Parameter Value/The Function

Data sampling rate two per second
Input frequency 0.0006 Hz

Simulation duration 13,200,000 s
kt incipient fault trend kt = kt0

(
1/exp

(
t× 10−7))

Figure 17 shows the threshold line for the HI parameter to determine the RUL of
the RW in the months span simulation. The model has a good prediction accuracy with
NRMS of 0.02. Comparing the results in Figure 15, Figure 16, and Figure 17, one can notice
the difference between the true line and the predicted line increases as the time span is
extended. Particularly, comparing Figures 16 and 17 shows that the deviation between the
actual and predicted line has noticeably increased when moved from the days span to the
months span simulation. This can be because, as the model relies more on the predicted
data with larger time steps, its ability to predict future parameters correctly, given current
and past data degrades.

Figure 17. Predicted HI parameter and RUL for months span.

Model parameters for the parameter prediction stage for months span are listed in
Table 5, where the final model characteristics after the tuning and validation are provided.
For this model, the NRMS of 0.02 was achieved for the predictions.

4.4. Sensitivity Analysis

To perform robustly in real-life applications, the model needs to perform under
different conditions, including variations in missing data, noise, different input frequencies
in the data, and data sampling rate. It should be noted that the results reported here are for
the hours span simulations only due to space and time limits.

4.4.1. Missing Values

An interpolation technique is efficient enough for the proposed model to address the
missing value issue, as shown in Table 11.



Electronics 2021, 10, 2432 21 of 23

Table 11. Missing data imputation accuracy for RW speed data.

Missing Value Ratio (%) Prediction NRMS

5 0.01
10 0.02
15 0.02
20 0.02
25 0.04
30 0.05

4.4.2. Input Frequency

The accuracy of the model is measured in NRMS error for the test dataset. Table 6
shows that the model accuracy is better for RW speed prediction for higher frequencies
and degrades for lower frequencies. However, for real-life applications, the use of much
higher frequency has some complications. We have used an input frequency of 0.1 Hz for
sensor data collection during other sensitivity analyses and RUL calculations.

4.4.3. Noise

Table 7 shows the model performance under the influence of added Gaussian white
noise in the input data. As Table 7 shows, the model performance is very robust, and it
can handle minor to medium noise in the input data without compromising the model
accuracy. However, the model performance degrades with the introduction of higher noise
levels in the input dataset. It should be noted that noise is added to each of the input data
that is available from the simulations after the data are generated and before being fed to
the model training for state and parameter prediction stages. The reported added noise
strengths in Table 7 are in decibels, and each row lists the NRMS values for the test data for
a combination of added noise strengths among all available measurements from the RW
system, namely ωm, Im and Vcomm.

5. Conclusions

This study proposed a three-step prognosis technique for calculating the RUL of
the RW under incipient fault. A version of the recurrent neural network, LSTM, was
used to predict future system measurements, also known as state reconstruction. Using a
multivariate LSTM network, we predicted the RW health index parameter (kt). From the
failure threshold for the HI and its intersection with the HI predicted trend, we calculated
the RUL of the RW. The proposed method was tested for robustness under noise, missing
data, and different input frequencies. However, we carried out predictions based on the
prediction in the previous time step when predicting the future data. Therefore, even
a minimal error in prediction in the first step propagated to the next one, resulting in
unsuiTable predictions over a longer time window.

The strength and novelty of the proposed method is that it is a new three-stage data-
driven prognostic technique using LSTM, which is not complex with high computational
costs and performs reasonably with accuracies achieved in the prediction of HI around
0.01–0.02 NRMS error, and the accuracy in prediction of RUL of 1–2.5%.

The limitations of the proposed method are as follows: we have considered one
fault severity during our study, so there is provision for continuing the study to build a
model that can address multiple types of fault scenarios at a time. Additionally, we have
considered short and average operation lifespans in our simulations due to limitations
in our computational and storage limits, where there is room for additional studies for
more extended simulations and lifespans. Furthermore, we have considered the motor
torque constant degradation as the HI for this study, where other factors can be additionally
considered in building the degradation model and RUL prediction. Finally, our study
introduced faults in the motor torque constant as an incipient exponential decline; however,
other factors such as temperature changes, lubrication, and wear and tear can contribute to
the overall reaction wheel system degradation.



Electronics 2021, 10, 2432 22 of 23

The use of the proposed model can increase the reliability of the service by managing
the scheduled maintenance time and reduce the possible downtime of the system with
potential proactive measures. The proposed model has potential, as it provides a high
accuracy RUL prediction method for reaction wheels that can be extended to other systems.
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