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Abstract: In this work, the effect of randomly distributed stuck-at faults (SAFs) in memristive cross-
point array (CPA)-based single and multi-layer perceptrons (SLPs and MLPs, respectively) intended
for pattern recognition tasks is investigated by means of realistic SPICE simulations. The quasi-static
memdiode model (QMM) is considered here for the modelling of the synaptic weights implemented
with memristors. Following the standard memristive approach, the QMM comprises two coupled
equations, one for the electron transport based on the double-diode equation with a single series
resistance and a second equation for the internal memory state of the device based on the so-called
logistic hysteron. By modifying the state parameter in the current-voltage characteristic, SAFs of
different severeness are simulated and the final outcome is analysed. Supervised ex-situ training and
two well-known image datasets involving hand-written digits and human faces are employed to
assess the inference accuracy of the SLP as a function of the faulty device ratio. The roles played by
the memristor’s electrical parameters, line resistance, mapping strategy, image pixelation, and fault
type (stuck-at-ON or stuck-at-OFF) on the CPA performance are statistically analysed following a
Monte-Carlo approach. Three different re-mapping schemes to help mitigate the effect of the SAFs in
the SLP inference phase are thoroughly investigated.

Keywords: stuck-at fault; RRAM; pattern recognition; memristor; QMM; neural network;
neuromorphics

1. Introduction

Artificial neural networks (ANNs) have demonstrated outstanding results in the field
of pattern recognition [1]. In this particular domain, the matrix-vector multiplication
(MVM) method plays a key role, being the most computationally expensive operation
during the classification phase. When implemented in CMOS-based platforms, MVM
becomes costly in terms of power consumption and latency. As no drastic performance
improvements can be expected from further technology scaling [2], alternative approaches
involving novel technologies are being extensively researched worldwide. Among them,
Resistive random access memory (RRAM) or memristor-based cross-point Arrays [3–6]
(CPA, see Figure 1a) have demonstrated enormous potential in boosting the speed and
energy efficiency of next-generation computing systems [7]. Moreover, the CPA structure
can be scaled down to 4F2, F being the feature size of the technology node [8], which
enables the large-scale integration of memory units.
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Figure 1. (a) Sketch of the CPA structure. Red and blue arrows exemplify the electron flow through the memdiodes
connecting the top (word lines (WL)) and bottom lines (bit lines (BL)). Different resistance states are schematically represented
(high resistance state (HRS) to low resistance state (LRS)). The dashed blue line depicts the so-called sneakpath problem.
The parasitic wire resistance is indicated for WLi and BLi. (b) Schematic representation of the MIM structure where the
RS mechanism takes place, before the forming step and during the LRS-to-HRS alternate transition. Blue and red balls
represent the metal ions and oxygen vacancies (VOs), respectively.

The resistive switching (RS) mechanism is the physical phenomenon behind RRAM
devices. It involves the creation (electroforming event) and the alternate rupture (RESET
event) and completion (SET event) of a conductive filament (CF) spanning across the
insulating layer in a metal-insulator-metal (MIM) structure. In the case of conductive
bridge RAMs (CBRAM) and oxide RAMs (OxRAM), RS relies on the displacement of
metal ions/oxygen vacancies within the dielectric film originating from the application
of an external electrical stimulus [9,10]. For a fully formed CF, the device is in a low
resistance state (LRS, often exhibiting a linear I-V relationship), whereas rupture of the
CF leads to a high resistance state (HRS, usually showing a linear-exponential I-V depen-
dence [9,10]). Voltage-controlled redox reactions occurring inside the insulator modulate
the CF conducting properties in between these two limits, thus rendering intermediate
states. This behaviour is schematically represented in Figure 1b. From the modelling
viewpoint, the compact model originally proposed by Miranda [11] and later extended
by Patterson et al. [12] is able to describe not only the LRS and HRS I-V loops but also
the intermediate states, as well as the gradual transitions occurring in bipolar resistive
switches. This is accomplished by considering a nonlinear transport equation based on
two identical opposite-biased diodes in series with a resistor, as shown in the left inset of
Figure 2a. Given that the resulting I-V relationship resembles a diode with memory, this
device was named the quasi-static memdiode model (QMM).

Memristor-based CPAs for pattern classification have been studied in previous works
using computer simulations relying on different memristor models and array architec-
tures [3,13,14]. Hu et al. [3] reported a simulation-based case study of a CPA for character
recognition using two CPAs of 256× 26 (i.e., 256 rows by 26 columns, totalling ~13k devices)
to represent both the positive and negative synaptic weights using a Verilog-A nonlinear
memristor model [15]. Aiming to reduce both the area and power consumption arising from
having two CPAs, an alternative architecture was considered by Truong et al. [13] (64 × 26,
~1.6k devices) using the same memristive device model. This model was also successfully
used for voice recognition using a set of CPAs, using up to ~2.5k memristors [14].

However, although providing excellent results, these approaches fail to provide a
consistent framework for introducing some of the main challenges currently faced in the de-
velopment of RRAM-based CPAs—fundamentally, those linked to the high manufacturing
variability and the relatively low yield. Different faults can occur in memristor-based CPAs
and they can be roughly split into two groups: hard faults and soft faults. Although the
effects of soft faults, e.g., read-one-disturb and read-zero-disturb, can be easily minimized
as the memristor’s resistance is still tuneable [16,17], hard faults such as stuck-at faults
(SAFs) pose a serious limitation to CPA-based architectures. An SAF denotes a memristor
with its conductance state fixed to a high (stuck-at-ON, SA1) or low (stuck-at-OFF, SA0)
conductance value. SAFs can have their origin in the fabrication process, as well as in the
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intense utilisation of the device, and despite the inherent robustness of the neural networks
to variations [18], they may largely degrade their expected inference accuracy. Since the
conducting properties of a metal-oxide layer in an RRAM device are relatively sensitive to
the oxide thickness and the electroforming method [19], it is hard to prevent the occurrence
of SAFs [20]. For example, a 4-Mb HfO2-based RRAM test chip may contain around 10% of
RRAM faulty devices [21], so this is far from being a minor issue.

The methods proposed to tolerate SAFs in CPAs include redundancy schemes [22]
or analog error correction codes (ECC) [23], retraining of the neural network [18,24], and
alternative mappings of the synaptic weights into the memristor-based CPA [22], each of
them having pros and cons. For example, the first option brings inevitable hardware cost
and power consumption, as it involves large routing overhead to control the individual
access transistors. This severely limits its applicability to large networks. Concerning the
second method, re-training of the neural network may be inefficient as the training of large
networks is computationally expensive, not to mention that in hardware approaches, the
limited write endurance of RRAM cells [25] can lead to an increasing number of RRAM cells
with an SAF during the re-training procedure. Lastly, fault-tolerant mapping algorithms are
an interesting approach as, in contrast to the previously mentioned options, they involve
little or no hardware overhead nor the computational effort of retraining the whole network.
Examples of these are the row-flip, row-permutation and value range transformations
proposed in [18,26]. However, it is worth pointing out that such methods are normally
studied in idealized scenarios and from a logical viewpoint. In a realistic environment,
CPAs have practical limitations such as the line resistances between adjacent cells (RL),
the resistance window of the devices (RON and ROFF), the device-to-device variability
(D2D), as well as the inherent conducting features of CPAs such as the so-called sneakpath
problem (see Figure 1a). Although the former refers to the increase in RL as the fabrication
technology scales down [27,28], the latter relates to the non-negligible current flowing
through unselected devices [28,29].

Accordingly, SPICE simulation (or any other specific simulator) appears to be the most
suitable approach to realistically investigating the complete system (CPA with parasitics
and control electronics) [3,13,14,25,30–32]. However, this approach is also constrained to
the limitations of the memristor model and works well for small-sized memristor-based
CPAs, given again the high computational requirements [33]. Thereby, great attention
has been paid in the last years to achieving a simulation tool that is capable of mod-
elling the wide spectrum of existing memristive devices [34]. This has resulted in a
variety of models, including simple behavioural models [15,35], device-specific physical-
phenomenological models [36], and general phenomenological models (Yakopcic [37],
TEAM [38], VTEAM [39], and Eshraghian [40]). Nevertheless, these models usually rely
on various internal equations or the introduction of artificial window functions in the
memory equation (ME), which pose serious mathematical drawbacks and are the root of
convergence problems [41]. In this regard, the closed-form expression for the I-V curve
(continuous and differentiable) and the iterative nature of the state variable computation
of the QMM makes it suitable for dealing with arbitrary input signals (continuous and
discontinuous, differentiable and non-differentiable). Such is the case of its application
to the realistic circuital modelling of CPA-based single and multi-layer perceptrons (SLPs
and MLPs) involving thousands of devices intended for the classification of large pattern
datasets, as recently demonstrated [28,42]. Although a much simpler approach than the
more complex RRAM-based ANNs explored in the literature (MLPs, [43–45], convolutional
neural networks [46] (CNNs), spike neural networks [47] (SNNs), etc.), SLPs still allow us
to study and clarify the limitations of ANNs caused by parasitic effects and non-idealities
occurring in the synaptic layers implemented with CPAs. However, to the best of the
authors’ knowledge, the impact of SAFs in realistic simulations is still to be evaluated to
fully address the applicability of CPAs for the implementation of SLPs.

In this paper, the impact of SAFs in ex situ-trained CPA-based ANNs intended for
large dataset pattern recognition tasks is addressed within the framework of realistic SPICE
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simulations involving the QMM. By considering an SLP (as well as the case of an MLP) as
a case study, and the classification of grayscale images of hand-written digits and human
faces from two different datasets (MNIST [48] and Yale Face Dataset B [49], respectively)
for benchmarking, we explore the SLP and MLP sensitivity to SAFs as a function of the
CPA’s parameters (RL, CPA size, and mapping). Based on the obtained results, three
different re-mapping algorithms for mitigating the impact of the SAFs on the inference
accuracy are tested in an integral and realistic simulation environment. The rest of this
paper is organized as follows: in Section 2 the available literature regarding the study of
SAFs’ impact on RRAM-based ANNs and their possible mitigation is briefly reviewed.
Section 3 describes the methods, essentially the QMM. Section 4 performs an exploratory
investigation of the impact of SAFs on RRAM-based ANNs from the viewpoint of realistic
electrical simulations, providing useful design considerations and trade-offs. Section 5
discusses the algorithms used for SAF mitigation and evaluates the obtained results. Finally,
the conclusions of this paper are presented in Section 6.

2. Previous Related Works

The impact of SAFs in RRAM-based ANNs has been addressed several times in the
literature. Nevertheless, the vast majority of these research works (if not all of them) fail
at some point to provide a realistic scenario for its study (that is, a SPICE simulation-
based workflow using a realistic memristor model, capable of accounting for the CPA
non-idealities) or they simply do not propose/test any mitigation technique. For instance,
in Supplementary Table S1, we summarize 14 different works reported in the literature
that do not meet these requirements, some of which are very detailed, comprehensive,
and original research articles. In the following sub-sections we analyze in detail the work
already done on this topic.

2.1. CPA Modelling

Very often, parasitic line resistances of the interconnecting lines in the CPA are com-
pletely ignored. In small CPA structures, and when considering thick, wide metal lines
this approach may hold valid, as the resistance per unit length of such wordlines and
bitlines are negligible (<1 Ω per square) when compared to the LRS resistance of the
most potentiated RRAM device (around 1 kΩ). In such cases, the IR drop along the
top and bottom lines of the CPA can be disregarded and it is correct to consider that
the voltages applied to the wordline inputs are effectively delivered to all the RRAM
cells. However, this is not valid for large CPAs or highly scaled metallic lines [27] (due
to the size-dependent resistivity of Cu [50–52]), as the effects of the IR drops become
notorious for the cells located away from the input terminals, resulting in a significant
reduction of the voltage delivered to the cells located away from the input/output termi-
nals. To the best of our knowledge, this is a limitation in the works of Mehonic et al. [53]
(from 2019), Dias et al. [54] (2015), Zhang et al. [55,56] (2019), Xia et al. [22,26] (2017
and 2018), Woo et al. [57] (2020), Huang et al. [58] (2021), Yeo et al. [59] (2019), and
Van Pham et al. [60] (2019).

2.2. Simulation Platform

Different approaches have been considered to investigate the performance of CPA-
based neural networks but they are not suitable for every simulation scenario/analysis
scope. For instance, some works address the problem from a logical/functional perspective,
modelling the forward pass in each of the synaptic layers of the DNN simply as a mathemat-
ical matrix product between a vector of voltages and a matrix of conductances, which results
in a vector of currents. This is the case for the works reported by Zhang et al. [55,56] (2019),
simulated in C++ and MATLAB. Although such a CPA modelling and simulation platform
allows one to deal with large fully connected (FC) and convolutional neural networks
(CNNs) (and even more complex ANN architectures, such as the modified VGG-11 com-
prising 7.66 × 106 synapses considered in the work of Xia et al. [26] (2017)), this approach
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is incapable of accounting for the electrical equivalent of the memristor-based CPA. Similar
approaches have also been reported, considering a different simulation platform such as
Python (Mehonic et al. [53] (2019) and Huang et al. [58] (2021)), but with similar limita-
tions. Last but not least, neither C++, MATLAB, nor Python are circuit simulators, and
therefore in a best-case scenario they are still limited to simulating only the CPA struc-
ture, and cannot deal with the CMOS blocks included in a typical RRAM neuromorphic
circuit. In this context, the most suitable software for the electrical simulation of CPAs
is SPICE (or any alternative language of this type), as it provides the versatility to add
or remove parasitics by simply adding the required passive element to the CPA circuit
netlist, while simultaneously supporting the simulation of the CMOS circuitry. Regarding
the use of hardware approaches, although representing the most realistic scenario, they
are costly and unpractical for the exploration of the wide parametric space of the CPA
parasitics or RRAM characteristics. This is the case for the works by Chen et al. [21] (2015),
Chen et al. [61] (2017), and Liu et al. [24] (2015).

2.3. RRAM Models

Regardless of the simulation platform considered and the realistic or idealized CPA
modelling, a quite common weakness of many reported works is the over-simplified repre-
sentation of the RRAM device. In the most unrealistic scenario, RRAM devices are modeled
as a resistor of fixed value, which imposes a variety of limitations, perhaps the most impor-
tant being: (i) such modelling is not capable of capturing the non-linearity of the RRAM
devices (especially in the HRS regime), which may result in the under/overestimation
of the device current [28]; (ii) it does not account for the SET/RESET transitions. This
is the case for the works by Zhang et al. [55,56] (2019), Xia et al. [22,26] (2017 and 2018),
Woo et al. [57] (2020), and Yeo et al. [59] (2019). As previously mentioned, given these
boundary conditions, the most suitable simulation platform is SPICE. Nonetheless, there
are different approaches in this regard, these being the use of behavioural and compact
SPICE/Verilog-A models. The former are quite extensive and allow a very realistic formu-
lation of the pinched I-V characteristics of memristive devices (see the works from Van
Pham et al. [60] (2019), Cristiano et al. [62] (2018), and Romero et al. [63] (2019)), but this
comes at the cost of increased computational requirements. Therefore, the latter are the
most promising candidates for the simulation of large memristor-based ANNs. This was
the type of model chosen in the work by Dias et al. [54] (2015).

2.4. Alternative RRAM Integration Structures

CPAs formed by memristors have drawn great attention due to the scaling properties
of such structures (4F2). Nevertheless, they suffer from the so-called sneakpath effect, by
which local current loops appear inside the CPA structure, producing errors in the total
output current of each CPA bitline. Alternatives to this structure are the CPAs containing
one transistor-one resistor (1T1R) structures. However, they have larger area requirements,
which threatens the integration density achievable with simpler structures. 1T1R structures
were investigated for the case of pattern recognition by Van Pham et al. [60] (2019) and
Chen et al. [21] (2015) but considering a hardware approach. Another example is works
by Cristiano et al. [62] (2019) and Romero et al. [63] (2019), in which the authors consid-
ered a 2T2R+3T1C structure and two pairs of conductances per synaptic weight, further
compromising the maximum achievable integration density.
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Figure 2. (a) Hysteron model with logistic ridge functions Γ+ (Equation (3)) and Γ− (Equation (4)). Ω is the space of feasible
states S. The black thick faded line superimposed on the hysteron model indicates the trajectory of the state variable λ inside
Ω from an initial S1 to a final S2 state. Note that four transport mechanisms are considered for the pre-forming conduction,
with the forming event taking place at the same voltage. The inset in the left shows the equivalent circuit model for the
current equation (Equation 1) including the series resistance. The diodes are driven by the memory state of the device
and one diode is activated at a time. Typical I-V characteristics for a memdiode [11] obtained via the simulation of the
proposed model are superimposed. Current evolution is indicated by the blue arrows. The inset on the right side shows the
exponential (HRS) to lineal (LRS) transition by varying the value of λ. The red shaded region indicates the possible voltages
applied to the device. IHRS and ILRS currents are pinpointed at a fitting voltage with the grey and white circle markers,
respectively. The overestimation of IHRS may occur when considering a linear model [29] for the HRS regime, and lower
applied voltages as indicated by the cyan, blue and black ball markers. (b) Experimental I-V loops of different materials
reported in the literature, fitted with the QMM model: HfO2 [64] and LMCO [65].

2.5. Costs Associated with the Mitigation of SAF Effects

Last but not least, it is worth mentioning that in five out of the 14 reviewed ar-
ticles, no mitigation technique is discussed, showing that this is not the standard ap-
proach (Mehonic et al. [53] (2019), Dias et al. [54] (2015), Cristiano et al. [62] (2018),
Chen et al. [21] (2015), and Huang et al. [58] (2021)). Another three articles consider
re-training approaches to overcome the non-functional RRAM cells (Xia et al. [22] (2017),
Yeo et al. [59] (2019), and Van Pham et al. [60]). This is an expensive approach in terms of
computational complexity. However, most importantly, the repeated write cycles of the
RRAM devices during the training loops also generate a new threat to the device endurance.
Four additional works (Zhang et al. [55,56] (2019) and Xia et al. [22,26] (2017) and (2018)) dis-
cuss SAF mitigation techniques, but provide oversimplified CPA and memristor modelling
approaches. Finally, another two works (Liu et al. [24] (2015) and Chen et al. [61] (2017))
tested mitigation techniques over a hardware CPA as a test vehicle. Although this is indeed
the ideal study scenario, it is not capable of an exploratory analysis (CPA parameters are
fixed). In summary, to the best of the authors’ knowledge, there are not many papers (if
any) where the impact of SAFs on the performance of CPA-based SLPs is addressed in a
full framework, comprising a standard circuit simulator with a realistic memristor SPICE
compact model and considering different CPA non-idealities, and it is even less frequent to
find cost-efficient SAF mitigation techniques evaluated within such frameworks.
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3. Materials and Methods
3.1. Quasi-Static Memdiode Model

Physically, the memristor is associated with a potential barrier that controls the electron
flow in the CF. The conduction properties of this non-linear device change according to
the variation of this barrier. Given the uncertainty in the area of the CF, the diode current
amplitude is used as the reference variable instead of the potential barrier height. Following
Chua’s memristive approach, the memdiode model comprises two equations, one for the
electron transport and a second equation for the memory state of the device (ME), which is
based on a hysteresis operator. The equation for the I-V characteristic of a memdiode is
given by the expression:

I = sgn(V)

W
(
αRI0(λ)eα(abs(V)+RI0(λ))

)
αR

− I0(λ)

 (1)

where I0(λ) = Imin(1 − λ) + Imaxλ is the diode current amplitude, α is a fitting constant, and
R is a series resistance. Equation (1) is the solution of a diode with series resistance and
W is the Lambert function. Imin and Imax are the minimum and maximum values of the
current amplitude, respectively. abs(V) is the absolute value of the applied bias and sgn()
is the sign function. As I0 increases in Equation (1), the I-V curve changes its shape from
exponential to linear through a continuum of states as experimentally observed for this
kind of device. λ is a control parameter that runs between a lower limit λmin→0 (setting
the device in HRS), the exact value of which will be discussed below, and λmax→1 (LRS)
and is given by the recursive operator (Equation (2)):

λ(V) = min
{

Γ−(V), max
[
λ

(
↼
V
)

, Γ+(V)

]}
(2)

where min() and max() are the minimum and maximum functions, respectively, and
↼
V is

the voltage a timestep before V. The positive and negative ridge functions in Equation (2),
Γ+(V) and Γ−(V), represent the transitions from HRS to LRS (SET) and vice versa (RESET)
and can be physically linked to the completion and destruction of the CF [9,10], respectively.
They are defined by Equations (3) and (4):

Γ+(V) =
{

1 + e−η+(V−V+)
}−1

(3)

Γ−(V) =
{

1 + e−η
−(V−V−)

}−1
(4)

where η+ and η− are the transition rates and V + and V − the threshold voltages for SET
and RESET, respectively. λ(V) defines the so-called logistic hysteron or memory map of
the device and keeps track of the history of the device as a function of the applied voltage
(see the λ-V curve in Figure 2a). λ, calculated from Equation (2), yields the transition from
HRS to LRS and vice versa through a change in the properties of the diodes depicted in the
left inset of Figure 2a. The combination of Equations (1) and (2) results in an I-V loop such
as that superimposed to the logistic hysteron in Figure 2a, which starts in HRS (λ = λmin)
and evolves as indicated by the blue arrows printed on top.

The HRS (exponential) to LRS (linear) transition is detailed in the right inset of
Figure 2a (solid blue lines), superimposed for comparison with a linear model [29], alto-
gether with some intermediate states (dashed blue lines). It is clear that the memdiode
model can accurately describe both HRS and LRS curves: as λ is swept from λmin (e.g.,
~10−5) to 1, I0 in Equation (1) varies between Imin and Imax, gradually transitioning from
linear-exponential to a linear regime as a consequence of a potential drop in series resistance.
Additionally, this model can account for the transport mechanism in the pre-forming state,
as well as the electroforming event. This is achieved by including two separate transport



Electronics 2021, 10, 2427 8 of 24

equations (namely, TEformed and TEfresh) and a second ridge function Γ+
f orm(V), defined as

per Equation (3) but in terms of η+
f orm and V+

f orm. The proposed model can be described
by a simple HSPICE sub-circuit as shown in Supplementary Table S2. Fowler–Nordheim,
Poole–Frenkel, or space-limited charge can be considered for the conduction mechanism
through the pristine dielectric, but in this paper an ohmic I-V relationship was assumed for
simplicity (see Figure 2a). The accuracy of the model is illustrated in Figure 2b by fitting
experimental data corresponding to HfO2 [64] and LCMO [65] structures measured at room
temperature (details of these samples can be found in Section S1.1 of the Supplementary
Materials).

3.2. Procedure for SPICE CPA Creation, Training, and Simulation

The procedure originally proposed in [28] for creating and simulating the SLP or
MLP used as case study is considered herein. The workflow is summarised in the chart
depicted in Supplementary Figure S1a. The tasks can be split into two parts: on one hand
the SLP creation, training, and circuit-representation SPICE code generation (MATLAB),
and on the other the simulation (HSPICE). The structure of the resulting neuromorphic
circuit is detailed in Section S1.2 in the Supplementary Materials, and a simplified circuit
schematic is presented in Supplementary Figure S1b. For the study reported in this paper,
two different databases are considered, the MNIST (see Supplementary Figure S1c) and
Yale Face Database, the details of which are presented in Section S1.3 in the Supplementary
Materials.

4. Results and Discussion
4.1. Impact of the CPA Parasitics on the Recognition Accuracy

Before analysing the impact of SAFs on CPA-based SLPs or MLPs, it is worth reporting
the main effects of the CPAs’ non-idealities on the inference accuracy of the fault-free
SLP. These are the resistance window amplitude (RON/ROFF), the device-to-device (D2D)
variability, signal-to-noise Ratio (SNR) degradation, the presence of a non-negligible line
resistance RL, and the influence of the image size, among others. For further details
regarding these aspects, the reader is referred to the previous works by our group [28,42].
These were studied within the framework of CPA-based SLP creation, training, and SPICE
simulation presented in Supplementary Figure S2, together with a simplified schematic
representation of the generated SLP circuit. To account for the first issue (RON/ROFF ratio),
12 different model plays for the QMM with a variety of RON/ROFF ratios considered in the
literature [43–45,66,67] were defined by (i) equally scaling the HRS and LRS curves by a
factor of 10: A1 (ROFF~1 MΩ and RON~100 kΩ), A2 (~100 kΩ and ~10 kΩ), A3 (~10 kΩ
and ~1 kΩ), and A4 (~1 kΩ and ~100 Ω); (ii) scaling the HRS curve by a factor 10 while
keeping the LRS fixed: B1 (~1 MΩ and ~100 Ω), B2 (~100 kΩ and ~100 Ω), B3 (~10 kΩ
and ∼100 Ω), and B4 (~1 kΩ and ∼100 Ω); and (iii) scaling the LRS curve by a factor of 10
while keeping the HRS curve fixed: C1 (~1 MΩ and 100 ~kΩ), C2 (~1 MΩ and ~10 kΩ), C3
(~1 MΩ and ~1 kΩ), and C4 (~1 MΩ and ~100 Ω). The corresponding I-V loops are shown
in Supplementary Figure S2a–c. The RON/ROFF ratio’s influence on the inference accuracy
was addressed by simulating a 784 × 10 SLP (using the original 28 × 28 px. MNIST images
shown in Supplementary Figure S2d). Vread was set to 300 mV and RL was fixed to 2 Ω.
For this case, the SAF ratio was kept equal to 0. The simulation results are presented in
Supplementary Figure S2e,f, indicating an accuracy loss corresponding to the upward shift
in the resistance window for model plays A1–A4 (constant RON/ROFF ratio) or the LRS
curve for model plays C1–C4 (constant ROFF, increasing RON/ROFF ratio). On the contrary,
model plays B1–B4 (constant RON, decreasing RON/ROFF ratio) show a highly degraded
accuracy that is almost independent of the model play considered. Therefore, the LRS
characteristic (RON) has a major impact on the inference accuracy. Significant differences
arise between A1–A4 and C1–C4 model plays when their sensitivity to D2D variations is
introduced, as shown in Supplementary Figure S2g. In this scenario, the larger RON/ROFF
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ratio of the latter (particularly for C2–C4) allows one to minimise the susceptibility of the
SLP-to-D2D variability.

The performance of the CPA-based SLP also depends on RL. As each memristor is
in series connection with a number of RL resistors, the fraction of the voltage effectively
delivered to the memdiode decreases as the ratio RL/RON tends towards unity, as shown in
Supplementary Figure S2h, showing a common trend across the different C1–C4 model
plays. Interestingly, when a smaller SLP is tested (64 × 10, using the MNIST images
down-sampled to 8 × 8 px.) the same trend arises, but right-shifted. As the total resistance
associated with the CPA wires is proportional to the CPA size, it is expected that downsizing
the input patterns would boost the recognition accuracy. Nevertheless, when the resolution
of the MNIST images is reduced below 12 × 12 px. the digit becomes practically illegible
for the human eye (see Supplementary Figure S2d), indicating a trade-off between legibility
and the voltage drop that defines the optimum size of the SLP for a given set of RON, ROFF,
and RL values (see Supplementary Figure S2i). Supplementary Figure S2i also shows a
reduced RL dependency for smaller SLPs (i.e., CPAs with fewer devices) than in their larger
counterparts. The realisation of larger CPAs by considering smaller partitions is shown
to efficiently improve the inference accuracy [27,28,68]. Note that for this latter analysis,
only model play C2 was considered. This is because this model play provides the best
trade-off between SNR, inference accuracy, and tolerance to D2D variations. Model play
C1, for instance, has a poor SNR as the high values of RON and ROFF produce extremely
low operating currents (see Supplementary Figure S2j).

4.2. Impact of the Fault Ratio on the Inference Accuracy

Stuck-at faults cause the unwanted potentiation (SA1, device stuck at LRS) or depres-
sion (SA0, device stuck at HRS, or even not electroformed) of synaptic connections in the
CPA [22,56]. In this paper, the inference accuracy is studied for both cases, also accounting
for possible non-electroformed devices (SA0_nE). The memristor model considered here is
particularly suitable for injecting such faults as it can be achieved by varying one single
parameter: λ (λ = 1 corresponding to SA1 faults, λ = λmin to SA0 faults, and λ = 0 to
SA0_nE faults). Given the stochastic nature of the spatial distribution of SAFs across the
CPA [21,69], Monte Carlo (MC) simulations of the CPA were performed, assuming different
ratios of faulty devices (FD ratio). In each MC run, faulty devices are randomly injected
following a uniform distribution [22,69] into the CPA and, subsequently, the defective CPA
is used to classify the images from the MNIST dataset. Faults are directly injected into the
conductance matrices G+

M and G−M (see the flowchart in Supplementary Figure S1a). The
obtained inference accuracy is then averaged among all MC runs for a given FD ratio and
presented in Figure 3. The inference accuracy for the three SAF cases are presented as a
function of the FD ratio for two image sizes (8 × 8 px. and 16 × 16 px.), different values of
RL (1 Ω, 10 Ω and 100 Ω), and considering model play C2 (See Supplementary Figure S3c).
To minimise the impact of series resistance, for both the SLPs used to classify the 16 × 16 px.
images and the MLPs studied, we have considered the use of small partitions (8 blocks in
the SLP—4 for the positive synaptic weights and 4 for the negatives—and 30 in the MLP).
For the SLP considered for the 8 × 8 px. no partitioning was considered given the rather
small size of the crossbars involved. Different normalisation methods (NM) used to map
WM to G+

M and G−M were tested in terms of robustness against SAFs and their impact on the
inference accuracy. Ten MC runs were considered for each combination or RL, NM, image
size, and FD ratio, totalling ~4.3k simulation runs.
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Figure 3. The change in the distribution of the elements of WM (a) under different normalisation techniques is shown in
(b–f). Inference accuracy as function of the FD ratio, considering different WM normalisation approaches, is presented for
(g) SA1, (h) SA0, and (i) SA0_nE faults. The SLP power consumption during the inference phase is indicated in the inset
of (h) as a function of the SLP size. Similarly, the inference accuracy of the fault-free SLP under different normalisation
methods is presented in (i). (j) Inference accuracy assuming different combinations of SA1 and SA0 faults. Note that the
ratio of SAFs (containing both SA1 and SA0) is swept parametrically from 5% to 30%. (k) and (l) show the inference accuracy
of an MLP ANN as a function of the ratio of SAFs, assuming SA1 and SA0, respectively.

4.2.1. Impact of the Normalisation Method (NM)

The elements of WM are in the range [min{WM}, max{WM}] and follow the distri-
bution shown in Figure 3a. In order to be mapped to a conductance level in the range
[GHRS, GLRS], they must be normalised first to the range [−1, 1]. Usually [18,70], this nor-
malisation is achieved by dividing WM by the absolute value of the maximum element in
WM (normalisation method 1, NM-1) or by measuring the maximum difference between
elements in WM (NM-2). As expected, the normalised WM matrices WMN1 and WMN2 pre-
serve the exact same distribution and max{WM}/min{WM} ratio, as shown in Figure 3b,c,
respectively. Interestingly, for the case of the MNIST images resized to 8 × 8 px., which
were used for benchmarking in this work, ~95% of the elements from WMN1 fall within
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the range [−0.5,0.5], with this ratio reaching ~99% when considering WMN2 . This im-
plies two major drawbacks: first, neither NM-1 nor NM-2 exploits the entire dynamic
range of the memristors, as most of the devices will be set in a conductance value in the
range [GHRS, ((GLRS + GHRS)/2)]. Second, the concentration of synaptic weights close to
0 (GHRS) exacerbates the impact of the SA1 faults, as indicated by the SWV metric [24]: as a
significant fraction of the devices are mapped close to GHRS (thereby λ→λmin) an SA1 fault
(λ=1) causes a significant departure from the target conductance, thus increasing SWV and
degrading the inference accuracy. In order to mitigate both problems, an alternative ap-
proach (NM-3) based on the Gaussian-like distribution of the elements of WM is proposed
in this work. In this context, an element wi,j ∈ WM has a probability Pi of being within
the range µWM ± iσWM , where µWM and σWM are the mean and standard deviation of the
values of WM. For i values ranging from 1 to 4, ~68.3%, ~95.5%, ~99.7%, and ~99.9% of
the synaptic weights will be within this range, respectively [71]. Thus, values exceeding
such limits are set as equal to µWM ± iσWM and then WM is normalised to obtain WMN3 .
The histograms for the elements in WMN3 are presented in Figure 3d–f for 2, 3, and 4σWM ,
respectively.

The impact of the NM on the inference accuracy as a function of the FD ratio is
presented in Figure 3g–I, considering SA1, SA0 and SA0_nE faults. RL was set to 10 Ω in
all cases. As reported in the literature [45,53], SA1 faults have a much more significant
impact on the inference accuracy than SA0 faults. Little, if any, difference exists between
the SA0 and SA0_nE cases. A major influence of NM on the inference accuracy as a
function of the FD ratio can be observed in Figure 3g for the case of injecting SA1 faults,
with NM-3 showing the highest robustness against this kind of SAF. Unlike the rapid
accuracy loss observed as the FD ratio increases for NM-1 and NM-2, the NM-3 cases have
a greater tolerance to faulty devices. In fact, the more WMN3 departs from a Gaussian-like
distribution, the smaller the impact of the FD ratio on the inference accuracy (see the
difference between NM-3 with 2σWM and with 4σWM ). Nevertheless, this improvement
comes at the cost of a higher power consumption (reaching roughly ~10 mW in an SLP
comprising ~15.6k synapses) during the inference phase (see the inset of Figure 3h) and a
slightly lower accuracy in the fault-free scenario (see the inset of Figure 3i). The increase
in the power consumption is an expected side-effect of mapping a larger fraction of the
WM elements closer to GLRS, which inevitably increases the currents flowing through the
CPAs. This also plays a role in the lower accuracy observed for higher values of RL in the
fault-free SLP (inset of Figure 3i), which could be regarded as an increase in the RL/RON
ratio. Moreover, even for reduced values of RL, there is a sensible accuracy degradation
caused by the re-distribution of the synaptic weights from WM to WMN3 . Thereby, NM-3 is
considered from here on, as it provides the highest robustness against SAFs and the lowest
accuracy loss in the fault-free scenario.

The differing robustness demonstrated against SAFs, when considering SA1 or SA0
faults, can be attributed to the distribution of the synaptic weights (see Figure 3a–f). Note
that not only are SA1s more problematic than SA0s in terms of the accuracy degradation
(as can be seen in Figures 2g and 3h), but the CPA sensitivity to SA1 also increases as the
synaptic weights to be mapped in the CPA are increasingly concentrated around λ = 0
(that is, mapped close to an HRS). As previously mentioned, the higher the concentration
of synaptic weights to be mapped close to an HRS, the higher the chance that an SA1
affects a device, which in a fault-free scenario would be mapped to an HRS, thus causing a
significant departure from the target synaptic weight. In a similar fashion, but with the
opposite outcome, a large concentration of devices being mapped to an HRS increases the
probability that an SA0 will affect a device which in a fault-free scenario would be mapped
to an HRS. However, in such a situation, the error induced is minimal.

For the sake of completeness, it is also worth discussing the case of considering the
combination of SA0 and SA1 in the CPAs, assuming different ratios. In this regard, the
inference accuracy as a function of the ratio of SA1s with respect to the total number of
SAFs is shown in Figure 3j (note that in the top axis, the equivalent ratio of SA0 faults with
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respect to the number of SAFs is indicated). The ratio of SAFs was swept parametrically,
resulting in six different scenarios: the ratios of SAFs are assumed to be 5%, 10%, 15%,
20%, 25%, and 30%. Note that as this ratio increases from 5% to 30%, the accuracy trends
are downshifted, while keeping a common feature—for a given ratio of SAFs, as the SA1
faults become dominant when compared to their SA0 counterparts, the inference accuracy
gradually decreases, and the extreme cases can be studied in detail in Figure 3g–i.

Last but not least, the sensitivity of SAFs with different normalisation methods is
considered for the case of an MLP. In this case, we have assumed the MNIST images are
rescaled to 8 × 8 px, and we classified them using an MLP with a 64 × 54 × 10 structure.
The first synaptic layer (64 × 54) is divided into 12 partitions (totalling 24 partitions if we
consider the positive and negative synaptic weights), each of size 16 × 18, and the second
into three partitions (18 × 10), and the same memristor model play and line resistance
are assumed (C2 and RL = 10 Ω). The simulation results show that similar trends to the
SLP case are obtained, showing a higher sensitivity to the SA1 faults in comparison with
the SA0 faults. There is also a higher sensitivity to both SAFs when comparing these
trends to those obtained for the SLP case. This can be attributed to the fact that the second
(and following layers) not only induce errors in the output vector produced by the MVM
operation, but also receive an erroneous input vector caused by the errors introduced by the
previous layers. Finally, an increase in the ANN robustness by considering an alternative
normalisation method is also observable for this scenario. Note that NM-3 achieves a more
robust mapping, as was also observed in the SLP scenario.

4.2.2. Influence of the Line Resistance (RL) and Image Size (n × n)

The inference accuracy vs. FD ratio was also studied for different RL values (1 Ω,
10 Ω and 100 Ω) and MNIST image sizes (8 × 8 px. and 16 × 16 px.). In both cases, the
inference accuracy for FD ratio→0 is down-shifted as RL increases [28] from 1 Ω to 100 Ω,
in agreement with the results shown in Supplementary Figure S2i. For the smaller images
(8 × 8 px., SLP of size 64 × 10) and regardless of the SAF mode, the inference accuracy
sensitivity on the FD ratio notably increases as RL decreases, which is most notable for
the 1 Ω case, as illustrated in Figure 4a–c. Interestingly, for the SA0 faults, the inference
accuracy becomes insensitive to the FD ratio for the maximal RL (100 Ω), as expected for
a lower SWV metric [24]. When addressing the 16 × 16 px. MNIST images, very similar
trends can be observed, but with a shallower dependence on the FD ratio. For comparison
purposes, such trends are superimposed onto the previous ones in Figure 4a–c. Note that
for the classification of the 16 × 16 px. MNIST images, the inference accuracy already
becomes insensitive to the FD ratio for RL = 10 Ω if SA0 faults are injected.

This behaviour can be ascribed to the combination of two factors. On the one hand, it
has been shown in the literature [27–29] that the CPA’s read margin (RM, that is, the fraction
of the applied input voltage (Vread) effectively delivered to the memory cells (Vcell), i.e.,
Vcell/Vread) is jointly determined by RL and the memristor resistance (Rmemd, which varies
between ROFF and RON). In a very basic analysis, each memristor is part of a conductive
path between the CPA’s input wordline i and output bitline j. For an N × M SLP, the
average parasitic resistance associated with this path is RL[(N + M)/2 + 1] [28,45]. Within
this simplified scenario, the Vcell/Vread ratio could be obtained from the voltage divider
between Rmemd and RL[(N + M)/2 + 1]. The calculated values are shown in Table 1 for the
two image sizes and different RL values, considering both SA0 and SA1 faults. Despite
being a limitation when attempting to improve the inference accuracy in fault-free CPAs,
the observed reduction of RM as RL increases has a positive side effect when considering
SAFs as it results in lower voltages applied to defective devices. This is particularly
noticeable for the case of SA1 in the 256 × 10 SLP used to classify the 16 × 16 px. MNIST
images: only ~49% of the input voltage is applied to the faulty devices, which thereby
reduces their contribution to the bitline output current in roughly the same amount.
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Figure 4. Inference accuracy vs. FD ratio for different values or RL is presented for the (a) SA1, (b) SA0, and (c) SA0_nE
cases. (d) CPA Inference accuracy vs. ratio of biased stuck-at-ON devices. Each marker corresponds to an MC run. Data are
codified in terms of the nominal fault ratio (marker type) and CPA size (marker colour), e.g., blue circle markers indicate the
inference accuracy results for simulations of the 8 × 8 px. image CPAs with 1% of faulty devices, whereas red pentagon
markers stand for the results obtained from 16 × 16 px. image CPAs and 30% of faulty devices. The case of 30% of faulty
devices (pentagonal markers) have been highlighted for the three CPA sizes considered to provide a guide to the eye: As
the CPA size increases, the ratio of biased faulty devices decreases from ~5% in the 1280 sys. CPA, to ~3.7% in the 5120 sys.
and finally to ~2.3% in the 15,680 sys CPA.

Table 1. Vcell/Vread ratio, calculated with the equivalent series-like simplified model.

8 × 8 px. MNIST (64 × 10 SLP) 16 × 16 px. MNIST (256 × 10 SLP)

RL = 1 Ω RL = 10 Ω RL = 100 Ω RL = 1 Ω RL = 10 Ω RL = 100 Ω

SA1: RMemd = RON (10 kΩ) ~0.99 ~0.96 ~0.72 ~0.99 ~0.90 ~0.49

SA0: RMemd = ROFF (1 MΩ) ~1 ~0.99 ~0.99 ~1 ~0.99 ~0.98

On the other hand, images from MNIST-like datasets [28] include a fraction of inactive
pixels (for example, those close to the image borders). Interestingly, this ratio does not
hold as the images are downscaled, as visually represented in Supplementary Figure S2d.
Instead, smaller images have a lower ratio of inactive pixels. Thereby, when presenting the
inputs of a faulty n2 ×M SLP with the n × n test images, the fraction of unbiased RRAM
cells in the CPA is found to increase with n. This is shown in the inset of Figure 4d. It
can be seen that the number of unbiased devices in the CPA exhibits a steeper increase
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than the number of faulty devices for 1%, 5%, and 20% FD ratios. As the faulty devices
are distributed uniformly all over the CPA, it is reasonable to expect that in a large CPA,
a significant fraction of the faulty devices are unbiased and therefore play no role in the
inference stage. To test this interpretation, the raw data (that is, the inference accuracy
calculated in each MC run) obtained for RL = 10Ω from Figure 4a were represented in the
scatterplot from Figure 4d as a function of the ratio of biased faulty devices (BFD ratio).
For the sake of completeness, the full-sized 28 × 28 px. images were also included. The
total number of synapses in the simulated SLP sizes are 1280 sys. (8 × 8 px. images (blue
markers)), 5120 sys. (16 × 16 px. (red markers)), and 15,680 sys. (28 × 28 px. (black
markers)). Two relevant observations can be made regarding Figure 4d: first, despite the
clearly different trends exhibited in Figure 4a for the 8 × 8 px. and 16 × 16 px. image cases,
a common overall behaviour is observed when considering the inference accuracy vs. the
BFD ratio for multiple SLP sizes. Second, only a fraction of the faulty devices is effectively
biased, and this fraction decreases as the CPA becomes larger (the case of 30% of faulty
devices has been shaded as a guide to the eye).

5. CPA Remapping Procedures

The ideal mapping of synaptic weights to conductances [18,70] (see Section S1.2 in the
Supplementary Materials) can be altered in order to minimise the impact of SAFs. In this
connection, three different approaches, described through Sections 5.1–5.3, are explored
in this work. They all rely on two premises: (i) that the locations of the faulty devices are
known, and (ii) that rows in the weight matrix can be permuted (electrically re-addressed).
On one hand, and concerning point (i), in [72] the authors presented a simple method to test
the switching activity in the CPA and thereby to easily obtain the spatial location of the SAF
devices in the CPA. On the other hand, the order of the rows and columns in a matrix can be
permuted without changing the final result of a matrix-vector multiplication if the order of
the inputs and outputs are simultaneously permuted [56]. The three algorithms discussed
are based on: (i) the compensation of the defective cell in a dual CPA scheme, (ii) the
minimisation of the sum weight variation, and (iii) the mean-bias-dependent mapping of
the image pixels. It is worth noting that although similar approaches have been discussed
in the literature, they have always been addressed towards oversimplified modelling of
both the CPA and the RRAM device (assuming no line resistance, linear devices, and
providing no details of the simulation procedure).

5.1. Algorithm 1: Fault-Tolerant Adaptative Mapping

In this paper, and as in many previous studies [3,22,68,73], two memristors are used to
represent each element of the weight matrix. Furthermore, as mentioned in the Supplemen-
tary Materials in regard to the simulation method (see Section S1.2 in the Supplementary
Materials), WNorm is computed as WNorm

+–WNorm
−, with WNorm

+ and WNorm
− being the

positive and negative elements of WNorm, respectively. This technique allows one to im-
plement a simple yet powerful remapping procedure to minimise the impact of SAFs.
This implies that for a given faulty RRAM cell in the positive (negative) CPA denoted as
g+(−)

i,j , the corresponding RRAM cell in the negative (positive) CPA g−(+)
i,j is tuned so as to

compensate the error in g+(−)
i,j . This can be summarised as follows (see Equation (5)):

g+(−)
i,j =

 g+(−)
i,j ,

∣∣w+
MNorm

∧ w−MNorm
are f ault− f ree

g+(−)
i,j − g−(+)

i,j

∣∣w+
MNorm

∨ w−MNorm
are f ault− f ree

(5)

For example, if the target weight (wMNorm ) is positive but the corresponding RRAM
cell in the positive crossbar (w+

MNorme f f
) contains an SA1 fault, an error occurs with the

original mapping method because the positive RRAM cell cannot be tuned to the target
value. Since the positive cell is stuck at the highest value, wMNorm is realized by increasing
the conductance of the corresponding RRAM cells in the negative CPA. Nevertheless, it
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is worth noting that the direct application of Equation (5) to mitigate the effect of faulty
devices may result in non-realisable synaptic weights. For example, for a positive target
value which is to be realized with a fault-free memristor in the positive CPA and SA1
device in the negative CPA, Equation (5) would indicate a corrected weight for the positive
memristor larger than 1. Therefore, certain faults can be tolerated by the direct application
of the method denoted as (recoverable faults), whereas others require further processing as
(unrecoverable faults), as shown in Table 2. Note that recoverability of a given combination
of a fault-free/faulty pair of memristors depends on the polarity of the synaptic weight to
be represented. Let us consider, for instance, the case of an SA1 fault in the g+i,j memristor,

whereas consider the g−i,j memristor to be fault-free. In this case, if the synaptic weight

associated with that element (wi,j) is positive, then the fault is recoverable, as g−i,j can be

tuned to compensate for the excess in g+i,j caused by the SA1 fault. On the contrary, if wi,j is

negative, the fault is unrecoverable, given that g−i,j should be increased beyond LRS (λ > 1)

to compensate for the SA1 fault in g+i,j.

Table 2. Recoverable and unrecoverable fault combinations.

Target (Wi,j)
RRAM Cell State
in Positive CPA

RRAM Cell State
in Negative CPA Recoverable?

Positive Stuck-at-ON Fault-Free YES
Positive Stuck-at-OFF Fault-Free NO
Positive Fault-Free Stuck-at-ON NO
Positive Fault-Free Stuck-at-OFF YES *

Negative Stuck-at-ON Fault-Free NO
Negative Stuck-at-OFF Fault-Free YES *
Negative Fault-Free Stuck-at-ON YES
Negative Fault-Free Stuck-at-OFF NO

* Actually not a fault, as the SA0 occurs in a RRAM cell which is expected to be set to 0.

By means of an iterative-row permutation algorithm, unrecoverable faults can be turned
into recoverable faults, as depicted in Figure 5a. Note that, as an example, the {i,j} and {k,l}
row pairs are permuted, which allows one to turn unrecoverable faults in

{
g+i,1, g+j,1, g−k,1, g−l,3

}
(Figure 5a, top) into recoverable faults (Figure 5a, bottom). The complete re-mapping
procedure, including the row permutation and conductance compensation, is presented in
pseudo code in Algorithm 1.

5.2. Algorithm 2: SWV-Minimisation-Based Row Permutation

Let the weight variation (WV) be equal to
∣∣∣wSAF

i,j − wi,j

∣∣∣, where wSAF
i,j is a synaptic

weight in the faulty weight matrix WSAF
MNorm

and wi,j is the corresponding synaptic element
in the fault-free weight matrix WMNorm . Then, the metric referred to as the sum weight
variation (SWV) [24] can be derived in order to quantify the deviation of the WSAF

MNorm
matrix

from the fault-free WMNorm matrix and it is computed as indicated by Equation (6):

SWV =
M

∑
i=1

N

∑
j=1

∣∣∣we f f
i,j − wi,j

∣∣∣ (6)

where M and N stand for the number of rows and columns of WMNorm . From Equation (6),
it can be noted that the lower the value of SWV, the lower the impact of the SAFs on the
mapped weight matrix. The proposed algorithm therefore consists in minimizing SWV by
performing a sequential row permutation until reaching the minimum possible value of
SWV. This approach is illustrated in Algorithm 2.
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required to turn unrecoverable faults into recoverable faults (See Table 2). (b) Row permutation is also used for Algorithms 
2 and 3. In the latter, it is employed to re-map the faultiest CPA rows to the inactive image pixels. The MNIST case is 
shown as an example. 

Algorithm 1: Fault-tolerant adaptive mapping 
 Input: GM0+(i,j), GM0-(i,j) (faulty-free conductance matrices), GM+(i,j) and GM-(i,j) (faulty conductance 

matrices), with i={1,…,n2} and j={1,…,m} 
 Output: GM+remap(i,j), GM-remap(i,j) (remapped faulty conductance matrices) 
1 Assign the number of rows with unrecoverable faults to the unrec_faults variable 
2 while iteration_i < max_iterations ˅ unrec_faults>0 do 
3  for i=1:n2 do 
4   if Row(i) has unrecoverable faults then 
5    for j=1:n2 do 
6     Permute CPA weights in Row(i) for Row(j) 
7     if Rows(i) and Rows(j) has no unrecoverable faults, then break 
8    end 
9   end 
10  end 
11  Recalculate unrec_rows 
12 end 
13 for i=1:n2 do 
14  for j=1:m do 
15   if GM+(i,j)=SA1 ˄ GM-(i,j)=OK ˄ W(i,j)>0 then 
16    GM-remap(i,j)=GM0-(i,j)+(GM+(i,j)-GM0+(i,j)) 
17   end 

if GM+(i,j)=OK ˄ GM -(i,j)=SA1 ˄ W(i,j)<0 then 
18    GM+remap(i,j)=GM0+(i,j)+(GM -(i,j)-GM0-(i,j)) 
19   end 
20  end 
21 end 

Figure 5. (a) Sketched representation of the fault-tolerant adaptative mapping process (Algorithm 1) depicting the con-
ductance compensation (top) that allows the tolerance of faults in the first and last rows (green-shaded cells) but which
is uncapable of handling other SAFs (unrecoverable faults, grey-shaded cells). A row permutation approach (bottom) is
required to turn unrecoverable faults into recoverable faults (See Table 2). (b) Row permutation is also used for Algorithms
2 and 3. In the latter, it is employed to re-map the faultiest CPA rows to the inactive image pixels. The MNIST case is shown
as an example.
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considerable number of pixels remain black (inactive) whereas some others are normally
white (active), regardless of the digit being considered. As we are encoding the pixel
brightness as a voltage value ranging from 0 to Vread, we can obtain the mean brightness
(voltage) for each pixel in the MNIST dataset. These two cases have been exemplified
in Figure 5b: pixel i stands for a normally inactive pixel (e.g., pixels close to the image
borders), whereas pixel j indicates a normally active pixel (e.g., a pixel located in the centre
of the image). For the 12 × 12 px. image-size case, each of the resulting 144 px. is used
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and the inactive pixels to the faultiest rows. This re-mapping procedure is schematically
depicted by the row permutation in Figure 5b (bottom) for pixels i and j and in Algorithm 3.
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5.4. Performance of the CPA-Remapping Algorithms

From the results presented in Sections 4.1 and 4.2, it is evident that SAFs (both SA1
and SA0 faults) have a non-negligible impact on the classification accuracy of the SLP,
regardless of the normalisation method, image size, and RL/RON ratio considered. In this
regard, techniques to help tolerate such faults are required to enable the reliable operation
of CPA-based SLPs. Three different approaches were proposed in Sections 5.1–5.3, defined
as re-mapping Algorithms 1–3, and their capability to mitigate the impact of SAFs is tested
in this Section. Two possible scenarios are assumed. First, the classification of the 8 × 8 px.
MNIST images by a partitioned (number of Partitions, NP=4, for each polarity of synaptic
weights) 64 × 10 SLP is considered, as this case shows the highest sensitivity to SAFs
in Figure 4. Second, a different image dataset was taken into account to provide a more
representative test of the proposed algorithms. In this way, images from Yale Face Dataset
B were downscaled to a 16 × 16 px. resolution and classified by means of a 256 × 38 SLP,
where each of the G+

M and G−M matrices are implemented by four (NP=4) 64 × 38 CPAs.
Some image samples in this dataset are shown in Figure 6a. As for the previous simulations,
the I-V characteristics of the memristors were represented by model play C2, RL was set to
10 Ω, G+

M and G−M were obtained by NM-3, and 10 MC runs were performed for each FD
ratio. Note that only SA1 and SA0 cases were considered, given the very similar outcomes
of SA0 and SA0_nE presented in Figures 3 and 4. In addition, the study is presented in
terms of the extreme case of having only SA1 or SA0 faults, as assessing the combined effect
of both would require multiple scenarios with different ratios of SA1 to SA0 faults. Finally,
simulations (i)–(iv) are performed for a given kth sample of complete randomly distributed
SAFs: (i) original mapping; (ii)–(iv) the fault-free cells are tuned based on Algorithms 1–3
while keeping the SAFs at the exact same locations. As such, ~1.7k simulation runs were
executed.

Figure 6. (a) Samples of Yale Face Database B showing 3 classes with 32 × 32 px. (top) and 16 × 16 px. (bottom) resolutions.
In both cases, the x and y axis in the leftmost image stands for the pixel index. The re-mapping Algorithms 1–3 are tested
with the MNIST dataset for the SA1 and SA0 faults in Figures (b) and (c), respectively. The corresponding trends for Yale
Face Database B are shown in Figures (d) and (e). In both cases, Algorithm 1 shows the best results for SA1 faults and
Algorithm 2 is the preferred one to tolerate SA0 faults.
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The mean inference accuracy vs. FD ratio for the 8 × 8 px. MNIST images is shown
for the cases of SA1 and SA0 faults in Figure 6b,c, respectively. The inference accuracy for
the fault-free case (~90.1%) is indicated as a reference in both cases. Although the three
algorithms show an accuracy improvement in the faulty CPAs for the considered range
of FD ratios regardless of the SAF type (SA1 or SA0), there are remarkable differences
to discuss. On the one hand, for SA1 faults (see Figure 6b), Algorithm 1 offers the best
results, allowing an inference accuracy above ~75% for an FD ratio up to 10%. It is then
outperformed by Algorithms 2 and 3 for FD ratios above 20%; however, they are unable
to provide an improvement greater than ~10% in a scenario of very low accuracy (the
inference accuracy for an FD ratio considering SA1 faults is below 30%). These latter two
Algorithms (2 and 3) show an almost statistically identical performance improvement for
the considered range. On the other hand, Algorithm 2 shows an outstanding improvement
in accuracy when assuming SA0 faults (see Figure 6c), enabling an inference accuracy
greater than ~80% for FD ratios reaching 30%. Once again, the enhancement provided
by Algorithm 1 falls short for FD ratios above ~20%. The reduction in the accuracy
improvement obtained with Algorithm 1 might be due to the fact that for higher FD ratios,
there are not enough fault-free rows in the CPA to turn unrecoverable faults into recoverable
faults (see Table 2 in Section 5.1) by means of row permutations. Thus, the number of
SAFs that cannot be compensated for increases, and this consequently limits the inference
accuracy. Note that this happens for both SA1 and SA0 faults when the ratio of stuck-at
faults surpasses the 10% threshold, above which a clear and sustained reduction in the
accuracy can be seen in Figure 6b,c. Instead, for the case of SA0 faults (shown in Figure 6c)
it can be seen that Algorithm 2 shows a clear improvement which cannot be replicated in
the case of SA1 faults. This can be explained by considering the distribution plots shown
in Figure 3a–f and the logic behind the algorithm. In this method, row permutations are
used for mapping synaptic weights close to LRS in the stuck-at-ON devices and synaptic
weights close to HRS in the stuck-at-OFF devices. However, as can be seen in Figure 3a–f,
there are much more synaptic weights close to HRS than close to LRS. Thereby, while on
the one hand this makes it easier to map synaptic weights close to HRS for the stuck-at-OFF
devices, on the other hand this implies that there are not enough synaptic weights close to
LRS to fill all the stuck-at-ON devices, which consequently makes the method less efficient
for mitigating SA1 faults.

The previously-noted general trends are replicated when assessing the classification
of the 16 × 16 px. Yale Face Database B images for the cases of SA1 and SA0 faults,
shown in Figure 6d,e, respectively. In this case, Algorithms 1 and 2 emerge as the best
options to tolerate SA1 and SA0 faults. Nevertheless, the FD ratio range in which they
provide an accuracy improvement shrinks. For SA1 faults (Figure 6d), Algorithm 1 cannot
improve the inference accuracy beyond an FD ratio of 10%. In fact, beyond an FD ratio of
15%, Algorithm 1 worsens the accuracy of the SLP with respect to the original mapping.
Algorithm 2 instead provides a constant yet negligible improvement of no more than
roughly 5% in the accuracy metrics. When considering SA0 faults (Figure 6e), Algorithm 2
provides the best outcome. However, it is not as efficient as for the MNIST images in
Figure 6c, as a subtle but still evident change occurs at roughly a 10% FD ratio, where
the improvement starts decreasing. It is worth introducing a final comment regarding
Algorithm 3. Unlike the MNIST case, where it provides a small yet valuable improvement
(mainly for the SA1 case), when testing Algorithm 3 with the Yale Face Database B, a
reduction in the inference accuracy occurs. This can be explained by the particular features
of the datasets and the algorithm considered itself—as Algorithm 3 relies on mapping the
rows of the CPAs with the higher count of defective devices to the less active pixels (those
normally off), it is efficient for the MNIST dataset given the large number of black pixels
close to the borders. Instead, no unactive pixels exist in the cropped images from Yale Face
Database B, and thus the row permutation scheme becomes inefficient.
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6. Conclusions

In this study, we investigated the impact of stuck-at faults (SAFs) on the inference
accuracy of cross-point array (CPA)-based aingle and multi-layer peceptrons (SLPs and
MLPs) intended for image recognition tasks by means of realistic SPICE simulations. The
quasi-static memdiode (QMM) was chosen because it provides a high fitting accuracy to
the experimental I-V characteristics obtained from real resistive random-access memory
(RRAM) devices, comprising both standard and novel materials with resistive switching
(RS) properties at a reduced computational cost. Moreover, the simple and versatile
representation of the QMM allows us to account for defective cells in the CPA, as SAFs
can be easily simulated by tuning one single parameter in the memory equation (ME) of
each device. Additionally, the QMM can simulate the different conduction mechanisms
governing the I-V characteristics of the devices before and after the electroforming event.
Beyond its own applications, the study of SLP structures is relevant as it sheds light upon
some limitations of more complex artificial neural networks (ANN) caused by parasitic
effects and non-idealities occurring in the synaptic layers implemented with CPAs, which
are very similar to the SLP.

The impact of SAFs, both stuck-at-ON (SA1) and stuck-at-OFF (SA0) faults, on the
inference accuracy of SLPs and MLPs when classifying the images of the MNIST hand-
written digits and Yale Face Database B human faces was addressed by means of systematic
realistic SPICE simulations, following a Monte Carlo approach. The sensitivity of the
inference accuracy to the ratio of faulty devices (FD ratio) was studied as a function of the
memristor conductive characteristics and different values of the parasitic line resistance RL,
image sizes, and representation methods of the synaptic weights with the conductances
of the CPAs. A higher sensitivity to SA1 faults was observed, which was accentuated by
lower values of RL, and for images with low resolution. Similarly, the concentration of
synaptic elements with conductance values close to the minimum one should be avoided,
not only to exploit the entire conductance range of the RS devices, but also to reduce the
impact of SA1 faults. Nevertheless, both an excessive increase in RL and a redistribution
of synaptic weights may lead to a reduction in inference accuracy and an increase in
power consumption, respectively. Thus, this implies a trade-off between accuracy–power
consumption and robustness against SAFs.

Beyond establishing certain guidelines regarding the selection of the CPA character-
istics that improve the robustness against SAFs, three different mapping schemes were
proposed to further mitigate the impact of such faults. They rely on two premises, namely,
the ability of localizing the defective devices in the CPA and the possibility of permuting
rows in the synaptic weights’ matrices without altering the output characteristics. The
simulation results show that all of these methods provide an improvement in the inference
accuracy; however, the optimal approach may differ depending on the nature of the SAF.
For SA1 faults, the best results are obtained by compensating for the faulty cell through
tuning the equivalent device in the complementary CPA (in a dual-CPA structure). On
the contrary, for SA0 faults, the minimisation of the sum weight variation (SWV) via row
permutations is the best option.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/electronics10192427/s1, Supplementary Table S1: Literature review; Supplementary
Table S2: QMM SPICE model; Supplementary Figure S1: SLP/MLP circuit creation procedure;
Supplementary Figure S2: Effects of CPA parasitics.
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64. Blasco, J.; Jančovič, P.; Fröhlich, K.; Suñé, J.; Miranda, E. Modeling of the switching I-V characteristics in ultrathin (5 nm) atomic
layer deposited HfO 2 films using the logistic hysteron. J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas.
Phenom. 2015, 33, 01A102. [CrossRef]

65. Miranda, E.; Román Acevedo, W.; Rubi, D.; Lüders, U.; Granell, P.; Suñé, J.; Levy, P. Modeling of the multilevel conduction
characteristics and fatigue profile of Ag/La1/3Ca2/3MnO3/Pt structures using a compact memristive approach. J. Appl. Phys.
2017, 121, 205302. [CrossRef]

66. Li, C.; Hu, M.; Li, Y.; Jiang, H.; Ge, N.; Montgomery, E.; Zhang, J.; Song, W.; Dávila, N.; Graves, C.E.; et al. Analogue signal and
image processing with large memristor crossbars. Nat. Electron 2018, 1, 52–59. [CrossRef]

67. Shi, Y.; Nguyen, L.; Oh, S.; Liu, X.; Koushan, F.; Jameson, J.R.; Kuzum, D. Neuroinspired unsupervised learning and pruning with
subquantum CBRAM arrays. Nat. Commun. 2018, 9, 1–11. [CrossRef] [PubMed]

68. Fouda, M.E.; Lee, S.; Lee, J.; Eltawil, A.; Kurdahi, F. Mask Technique for Fast and Efficient Training of Binary Resistive Crossbar
Arrays. IEEE Trans. Nanotechnol. 2019, 18, 704–716. [CrossRef]

http://doi.org/10.1063/1.5108650
http://doi.org/10.1109/TED.2015.2439635
http://doi.org/10.1038/s41467-018-04484-2
http://www.ncbi.nlm.nih.gov/pubmed/29921923
http://doi.org/10.1109/TED.2018.2882779
http://doi.org/10.1109/TNANO.2013.2250995
http://yann.lecun.com/exdb/mnist/
http://doi.org/10.1109/34.927464
http://doi.org/10.1146/annurev-matsci-082908-145415
http://doi.org/10.1116/1.1642639
http://doi.org/10.1063/1.1834982
http://doi.org/10.3389/fnins.2019.00593
http://doi.org/10.1063/1.4922148
http://doi.org/10.1109/TCAD.2019.2944582
http://doi.org/10.1038/s41598-020-68547-5
http://www.ncbi.nlm.nih.gov/pubmed/32678139
http://doi.org/10.3389/fnins.2021.639526
http://www.ncbi.nlm.nih.gov/pubmed/33841082
http://doi.org/10.1109/TED.2019.2914460
http://doi.org/10.3390/mi10040245
http://doi.org/10.1063/1.5042462
http://doi.org/10.1039/C8FD00107C
http://doi.org/10.1116/1.4900599
http://doi.org/10.1063/1.4984051
http://doi.org/10.1038/s41928-017-0002-z
http://doi.org/10.1038/s41467-018-07682-0
http://www.ncbi.nlm.nih.gov/pubmed/30552329
http://doi.org/10.1109/TNANO.2019.2927493


Electronics 2021, 10, 2427 24 of 24

69. Wang, J.; Dong, X.; Xie, Y.; Jouppi, N.P. I2WAP: Improving non-volatile cache lifetime by reducing inter- and intra-set write
variations. In Proceedings of the 2013 IEEE 19th International Symposium on High Performance Computer Architecture (HPCA),
Shenzhen, China, 23–27 February 2013.

70. Hu, M.; Strachan, J.P.; Li, Z.; Grafals, E.M.; Davila, N.; Graves, C.; Lam, S.; Ge, N.; Yang, J.J.; Williams, R.S. Dot-product engine for
neuromorphic computing. In Proceedings of the 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC), Austin,
TX, USA, 5–9 June 2016.

71. Montgomery, D.C.; Runger, G.C. Applied Statistics and Probability for Engineers; John Wiley & Sons: Hoboken, NJ, USA, 2010;
ISBN 0470053046.

72. Miranda, E.; Morell, A.; Muñoz-Gorriz, J.; Suñé, J. Simple method for monitoring the switching activity in memristive cross-point
arrays with line resistance effects. Microelectron. Reliab. 2019, 100–101. [CrossRef]

73. Prezioso, M.; Merrikh-Bayat, F.; Hoskins, B.D.; Adam, G.C.; Likharev, K.K.; Strukov, D.B. Training and operation of an integrated
neuromorphic network based on metal-oxide memristors. Nature 2015, 521, 61–64.

http://doi.org/10.1016/j.microrel.2019.06.019

	Introduction 
	Previous Related Works 
	CPA Modelling 
	Simulation Platform 
	RRAM Models 
	Alternative RRAM Integration Structures 
	Costs Associated with the Mitigation of SAF Effects 

	Materials and Methods 
	Quasi-Static Memdiode Model 
	Procedure for SPICE CPA Creation, Training, and Simulation 

	Results and Discussion 
	Impact of the CPA Parasitics on the Recognition Accuracy 
	Impact of the Fault Ratio on the Inference Accuracy 
	Impact of the Normalisation Method (NM) 
	Influence of the Line Resistance (RL) and Image Size (n  n) 


	CPA Remapping Procedures 
	Algorithm 1: Fault-Tolerant Adaptative Mapping 
	Algorithm 2: SWV-Minimisation-Based Row Permutation 
	Algorithm 3: Mean-Bias-Dependent Mapping 
	Performance of the CPA-Remapping Algorithms 

	Conclusions 
	References

