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Abstract: It is difficult to model and determine the parameters of the steer-by-wire (SBW) system 
accurately, and the perturbation is variable with complex and changeable tire–road conditions. In 
order to improve the control performance of the vehicle SBW system, an adaptive fast su-
per-twisting sliding mode control (AFST-SMC) scheme with time-delay estimation (TDE) is pro-
posed. The proposed scheme uses TDE to acquire the lumped dynamics in a simple way and es-
tablishes a practical model-free structure. Then, a fractional order (FO) sliding mode surface and a 
fast super-twisting sliding mode control structure were designed on the basic super-twisting slid-
ing mode to ensure fast convergence and high control accuracy. Since the uncertain boundary in-
formation of the actual system is unknown, a novel adaptive algorithm is proposed to regulate the 
control gain based on the control errors. Theoretical analysis concerning system stability is given 
based on the Lyapunov theory. Finally, the effectiveness of the method is verified through com-
parative experiments. The results show that the proposed TDE-AFST-FOSMC control scheme has 
the advantages of model-free, fast response and high accuracy. 

Keywords: steer-by-wire; time-delay estimation; adaptive super-twisting sliding mode control 
 

1. Introduction 
In recent years, the steer-by-wire (SBW) technology has been greatly developed and 

many research results have been achieved [1–4]. However, the SBW technology can not 
meet the requirements of practical application at present, and there is still a need to im-
prove the reliability and control performance of SBW systems. 

It is difficult to achieve high precision control for the SBW due to its complex dy-
namic characteristics and strong nonlinearity. Many factors affect the control perfor-
mance of SBW simultaneously, such as system dynamics modeling, parameter perturba-
tion, complicated road adhesion conditions, unexpected disturbance, and so on. There-
fore, scholars have done a lot of work to develop applicable control algorithms. Certain 
progress has been made in control schemes based on sliding mode control, H2/H∞ robust 
control, adaptive control, fuzzy control, neural network control and model predictive 
control [5–9]. 

Sliding mode control (SMC) is a variable structure control method, which has been 
widely used in various uncertain systems in recent years and has also achieved good 
results in the application of the SBW system. Various SMC algorithms have been devel-
oped to improve control performance. At first, the basic SMC was adopted in SBW, but 
it could not achieve the finite-time convergence of the error dynamics due to the linear 
sliding manifold. After that, different types of terminal sliding mode control and their 
variants were applied in the SBW system [10–13]. The nonlinear sliding manifold was 
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constructed to accelerate the process of the system state approaching the equilibrium 
point and ensure finite-time reachability. Subsequently, in order to reduce chattering, 
the second-order sliding mode control was applied to the SBW system. The su-
per-twisting sliding mode control component was used to guarantee strong robustness 
while alleviating the chattering phenomenon [14,15]. In practical applications, the 
boundary values of perturbations and parameter uncertainties are usually unknown. 
However, they are needed in the SMC controller’s design. Therefore, the adaptive algo-
rithms are used to estimate the boundary values; then, the controller parameters can be 
adjusted accordingly [10,12]. 

In the steering process of vehicle operation, self-aligning torque and other disturb-
ances act on the steering wheels. Moreover, the self-aligning torque is highly nonlinear 
and affected by many dynamic factors, which will greatly affect the steering tracking 
accuracy of SBW. If these disturbance torques can be estimated and compensated in 
feedforward control, the performance of the SBW controller will be greatly improved. In 
studies [11,16], an adaptive estimation law was employed to estimate the self-aligning 
torque coefficient. In [12], a Kalman filter was combined with an adaptive gain observer 
to calculate the self-aligning torque. The results proved that high tracking accuracy can 
be guaranteed via effectively estimating the self-aligning torque. 

However, accurate estimation of the self-aligning torque requires accurate model-
ing of the vehicle and needs to take into account many effect factors, which are very dif-
ficult to achieve. In the aforementioned literature, simplified methods were employed. 
The influence of tires, suspensions and other characteristics was ignored. Consequently, 
the applicability of these methods is limited. It should also be noted that many parame-
ters are involved in the SBW dynamics model, and these parameters may also have a 
certain degree of perturbation in the working process. These parameters are usually 
needed to complete the control. All the parameters need to be accurately measured for 
high-precision control performance of the SBW system, which is very difficult or even 
impossible. 

In the control design of actual systems, uncertain parameters, unknown dynamics, 
and unexpected disturbances may be encountered. These unknown terms need to be es-
timated by appropriate methods. In the studies [17–19], Bresch-Pietri et al. investigated 
the adaptive control scheme for uncertain time-delay systems. The backstepping trans-
formation is introduced to address the classic problems of equilibrium regulation under 
partial measurements, disturbance rejection, parameter or delay adaptation. Control 
strategies with time-delay on-line updating, parameters adaptation, input disturbance 
rejection, and distributed input estimation have been successively achieved. These re-
search achievements have directive significance to the estimation of uncertain delay and 
unknown parameters for the time-delay system. 

Another estimation technique is the so-called “time-delay estimation (TDE)”, which 
is generally used to estimate and cancel the nonlinear terms in the dynamics of a de-
lay-free system. The TDE technique is originally proposed in areas of robotic control as-
suming that the disturbance does not change much from one sampling period to the 
next when the sampling rate is sufficiently high [20,21]. It has been successfully used to 
approximate the unknown dynamic model of robot manipulators [22–24]. In recent 
years, TDE has been adopted by many highly cited papers and has become a research 
hotspot [25–27]. 

In the TDE scheme, the system dynamics are composed of the desired dynamics 
and the remaining dynamics. The desired dynamics are known. The remaining dynam-
ics are unknown including the uncertain dynamics and disturbances. Since the values of 
control input and system states at the past moment are known, the remaining dynamics 
at the past moment can be calculated. If the interval is sufficiently small, the difference 
of the remaining dynamics between the current moment and the past moment will be 
very small. So, the time-delayed remaining dynamics can be treated as the estimation of 
the current value. In this process, no specific system model is required. Therefore, TDE 
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provides an attractive model-free property. However, TDE will inevitably introduce es-
timation error, which may lead to the decline of control performance. Therefore, a strong 
robust control scheme is needed to enhance nonlinear control based on TDE. Sliding 
mode control and its variants are widely combined with TDE schemes due to their 
strong robustness and simple form [23,24]. Kali et al. adopted the TDE-based su-
per-twisting algorithm (STA) to control the uncertain manipulator and obtained good 
results successfully [28]. Therefore, in order to deal with the problem of self-aligning 
torque estimation and accurate acquisition of model parameters, time delay estimation is 
a good choice. 

During the steering process, the disturbance torque applied to the steering system 
may change abruptly due to the variation of road adhesion conditions. If the disturbance 
torque cannot be compensated quickly, a large tracking error will be generated in the 
transient process. Therefore, on the basis of existing research, combined with TDE and 
super-twisting sliding mode, an adaptive fast super-twisting sliding mode controller 
based on TDE is proposed. 

In this controller, TDE is adopted to solve the estimation problem of lumped un-
certainty including system parameters and disturbances. The fast super-twisting struc-
ture and fractional sliding mode surface are employed to improve the tracking accuracy 
in the transition process of the system. According to the system state, the designed 
adaptive law can automatically adjust the super-twisting gain parameters. The proposed 
control scheme has the advantages of model-free, high tracking accuracy and strong ro-
bustness. 

2. Plant Modeling 
In the SBW system, the front wheels are driven by the steering motor through the 

steering gear. The rotation of the steering motor shaft is transmitted to the front wheels to 
perform the steering action, and Equations (1) and (2) are established. 

1
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where, 𝑘𝑘1, 𝑘𝑘2 are the gear ratio. 𝜃𝜃𝑓𝑓𝑓𝑓 ,𝜃𝜃𝑝𝑝,𝜃𝜃𝑠𝑠𝑠𝑠  are the rotation angles of the front wheel, 
the pinion and the steering motor shaft, respectively. 

According to the driving torque and resistance torque around the rotation axis act-
ing on the front wheels, Equation (3) is established. 

 fw fw fw fw Fc fw a d sJ B sgn              (3) 

Equation (4) holds for the force analysis of the steering motor rotator. 

2

pg
sm sm sm sm smJ B

k


       (4) 

𝐽𝐽𝑓𝑓𝑓𝑓, 𝐽𝐽𝑠𝑠𝑠𝑠 ,𝐵𝐵𝑓𝑓𝑓𝑓 ,𝐵𝐵𝑠𝑠𝑠𝑠 are the front wheel, steering motor inertia and viscous resistance 
coefficient. 𝜏𝜏𝐹𝐹𝐹𝐹 , 𝜏𝜏𝑎𝑎, 𝜏𝜏𝑑𝑑 are the Coulomb friction torque, self-aligning torque and external 
disturbance torque of the wheel. 𝜏𝜏𝑠𝑠, 𝜏𝜏𝑝𝑝𝑝𝑝, 𝜏𝜏𝑠𝑠𝑠𝑠 are the steering torque acting on the steering 
arm, the torque acting on the pinion, and the torque of the rotor of the steering motor, 
respectively. According to the transmission relationship, 𝜏𝜏𝑠𝑠 = 𝜏𝜏𝑝𝑝𝑝𝑝 ∙ 𝑘𝑘1 , 𝜏𝜏𝑝𝑝𝑝𝑝 = 𝜏𝜏𝑠𝑠𝑠𝑠 ∙ 𝑘𝑘2 . 
Combined Equations (1)–(4), yield Equation (5). 

 Fc a d
e sm e sm fw smJ B sgn

k k k
  

           (5) 
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where, 𝐽𝐽𝑒𝑒 ,𝐵𝐵𝑒𝑒 are the equivalent inertia and equivalent viscous resistance coefficient of 
the steering system. 𝐽𝐽𝑒𝑒 = 𝐽𝐽𝑠𝑠𝑠𝑠 + 𝐽𝐽𝑓𝑓𝑓𝑓 𝑘𝑘2⁄ , 𝐵𝐵𝑒𝑒 = 𝐵𝐵𝑠𝑠𝑠𝑠 + 𝐵𝐵𝑓𝑓𝑓𝑓 𝑘𝑘2⁄ , 𝑘𝑘 = 𝑘𝑘1 ∙ 𝑘𝑘2 . 

According to a DC motor’s equivalent circuit model, Equation (6) can be established. 

sm
e

sm m

ddiu L Ri k
dt dt
k i





    

 (6) 

In a DC motor, L is usually very small and close to zero compared with R. Therefore, 
Equation (6) can be simplified as: 

e sm

sm m

u Ri k
k i




   



 (7) 

Combined (5), (7), 𝜃𝜃𝑠𝑠𝑠𝑠 abbreviated as 𝜃𝜃, yield the dynamic Equation (8). 

 m e e m Fc a d
e

k B R k k
u J sgn

R R k k k
  

  


        (8) 

In the dynamics Equation (8), the steering device and steering motor are simplified 
to a certain extent in the modeling process. Compared with the actual steering system, 
the model has unmodeled dynamics. Moreover, Equation (8) involves parameters 
𝐽𝐽𝑠𝑠𝑠𝑠, 𝐽𝐽𝑓𝑓𝑓𝑓,𝐵𝐵𝑠𝑠𝑠𝑠 ,𝐵𝐵𝑓𝑓𝑓𝑓 , 𝑘𝑘𝑚𝑚, 𝑘𝑘𝑒𝑒 ,𝑅𝑅, 𝜏𝜏𝐹𝐹𝐹𝐹 , in practical applications, it will be difficult to accurately 
determine the parameters. In addition, the self-aligning torque and the external dis-
turbance torque are nonlinear, which are affected by many factors and are difficult to be 
accurately estimated. Therefore, it will face the problem of accurately determining the 
parameters and accurately estimating the self-aligning torque and external disturbance 
torque to achieve accurate tracking control of steering wheel angle with Equation (8). 

3. Control Design of TDE-AFST-FOSMC 
3.1. TDE Scheme 

As aforementioned, the TDE technique directly utilizes the time-delayed infor-
mation of the state variables and control input to estimate unknown dynamics and ex-
ternal disturbances. Only the value of state variables and control input at the past mo-
ment are required in the process. Therefore, it can be used to deal with the problem of 
accurately determining the model parameters and disturbance torque in the system (8). 
The specific implementation is as follows. 

In order to facilitate the realization of the time-delay estimation scheme, a constant 
parameter 𝐽𝐽 ̅ is introduced here, and the value of 𝐽𝐽 ̅ can be determined by experiments. 
Rewrite system (8) as follows: 





   m e e m Fc a d
e

k B R k k
u J J J sgn

R R k k k
  

   


         



Desired dynamics
Control input Remaining dynamics

 (9) 

where, the desired dynamics are known, and the remaining dynamics are unknown. 
Rewrite system (9) as: 

u J N    (10) 

   

m
u

e e m Fc a d
e

k
u

R
B R k k

N J J sgn
R k k k



  
  

        
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 (11) 
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In system (10), 𝜏𝜏𝑢𝑢 is the control input, 𝑁𝑁 is the remaining dynamics that need to 
be time-delay estimated. The value of 𝐽𝐽 ̅ can be set according to the need, the optimal 
value can be determined by experiments. 

In Equations (10) and (11), if N can be obtained timely and accurately, the control 
objectives can be easily achieved. The time delay estimation scheme can effectively sat-
isfy acquisition of N by: 

ˆ
t tN N   (12) 

where ∆t is the delay time. When ∆t is sufficiently small, the difference between N  
and t tN   will be small. Therefore, t tN   can be considered as an estimation of N . The 
lumped dynamics represented by N in (11) can be estimated using this method. Since ∆𝑡𝑡 
is very small, it does not lead to a large dynamics lag to make the system unstable [29]. In 
Equation (12), the TDE scheme uses the time delay value of N itself to obtain the esti-
mated value of its current value. Since ∆𝑡𝑡 is a small value, and it is generally selected as 
an integer multiple of the sampling period, this estimation scheme is effective for most 
systems. 

According to Equations (10) and (12), we obtain: 

ˆ
t t ut Δt t tN N J      

 
(13) 

Therefore, the estimation value of N requires 𝜏𝜏𝑢𝑢𝑢𝑢−∆𝑡𝑡 and 𝜃̈𝜃𝑡𝑡−∆𝑡𝑡 values. 𝜏𝜏𝑢𝑢𝑢𝑢−∆𝑡𝑡 can be 
acquired from the control input, while the 𝜃̈𝜃𝑡𝑡−∆𝑡𝑡 can not be obtained directly without 
angular acceleration sensors. According to the existing literature, the following methods 
can be used to obtain 𝜃̈𝜃𝑡𝑡−∆𝑡𝑡 [29–31]. 

  2
2 1

1

2 / ,
0,

t Δt t t Δt t Δt

t Δt

Δt t t
t t

   


  



      





 (14) 

where, 𝑡𝑡1 ≥ 2∆𝑡𝑡. In the case of small ∆𝑡𝑡, the bounded error generated by numerical dif-
ferentiation in Equation (14) is close to zero and can be ignored. However, since ∆𝑡𝑡 is 
small, ∆𝑡𝑡2 is very small, the influence of noise is greatly amplified. In order to effectively 
suppress the influence of noise, small 𝐽𝐽 ̅ or a low-pass filter can be selected. 

3.2. Control Design of AFST-FOSMC 
In order to achieve accurate tracking control under the condition of variable external 

disturbance and uncertain system parameters, inspired by reference [32], a novel adap-
tive fast super-twisting fractional-order sliding mode control (AFST-FOSMC) scheme is 
proposed in this paper. 

3.2.1. Fast Super-twisting Algorithm with Fractional Order Sliding Mode 
In the steering process, the desired steering motor shaft angle is defined as the ref-

erence angle 𝜃𝜃𝑑𝑑, which can be obtained from the desired front wheel angle 𝜃𝜃𝑓𝑓𝑓𝑓 using 
Equation (15). 𝜃𝜃𝑑𝑑 is usually twice-differentiable due to common curves of roads. 

1 2d fw k k     (15) 

We define the tracking error of the control system e  as 

de     (16) 

The fractional order sliding manifold is designed as 

1 2s e D e    (17) 

where, 𝜆𝜆1, 𝜆𝜆2 > 0, 0 < 𝜇𝜇 < 1. ( )D f  is the  order fractional differential operator, more 
details can be found in reference [33]. 

Taking the time derivative, we yield 
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1 1
1 2 1 2s e D e e D e             (18) 

Referring to the method of literature [29], the control input is designed as 

     1 2 1 22 1 21
1 2

2 2
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 
 

 
 
         



 
(19) 

where, 1 2( ), ( )a t a t  are the gain parameters regulated by the adaptive law. 
Substituting Equation (19) into Equation (9), yield 

 
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1 22 11
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2 2

1 2 2
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Rearrange and simplify, yield 
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  

 

 

 


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   
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Defined TDE error as 1 ˆ( )J N N   , since d e   

 , we obtain 

 
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1 22 11
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

 

  

   
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

 
(20) 

Taking the same (𝜇𝜇 − 1) order differential for two ends of Equation (20), and mul-
tiply factor 𝜆𝜆2, rearrange and simplify, we yield 

  

 
1 21

2 1 1 2

1 2 2 1
2

( ) sgn( ) ( )

sgn( ) 3 sgn( ) 2

D e e a t s s s a t

s s s s D





  

   




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  

 

 (21) 

Define   2t D   , combine with Equation (18), rearranging Equation (21), we get 
the dynamic Equation (22) with super-twisting form. 

 
 

1 2
1

1 2 2
2

( ) sgn( )

( ) sgn( ) 3 sgn( ) 2 ( )

s a t s s s

a t s s s s t

 

   

       





 (22) 

where 1 2( ) ( )a t a t，  are the gain parameters,   is the constant parameter. 
Equation (22) is a variant super-twisting structure originated from the basic su-

per-twisting. Compared with Equation (23), the power reaching law 1 2 sgn( )s s  is re-

placed by the fast terminal reaching law 1 2 sgn( )s s s  in the improved super-twisting 
structure. As shown in Figure 1, the improved structure (22) can significantly accelerate 
the convergence of the sliding manifold under the same condition. 

1 2
1

2

sgn( )
sgn( ) ( )

s a s s
a s f t




    





 (23) 
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Figure 1. Convergence time comparison of different super-twisting structures. 

3.2.2. Design of Adaptive Law 
In the system dynamics Equation (22), the values of gain parameters 𝑎𝑎1(𝑡𝑡), 𝑎𝑎2(𝑡𝑡) 

affect the quality of dynamic processes and need to be chosen reasonably. Due to the in-
fluence of system parameter perturbation and external disturbance torque, N in Equation 
(11) is constantly changing, and the delay estimation error 1 ˆ( )J N N    is also con-
stantly changing. Accordingly, the disturbance term 2( )t D    in system (22) is un-
certain. According to the proof in references [28,31], when the delay time Δt  is small 
enough, the delay estimation error   is bounded and the time derivative   is bounded. 
Since ( )t  is the   order differential of the time delay estimation error  , ( )t  is 
bounded too. Assume ( )t  , fixed design scalar 0 0l  , select scalar function 

 0( ) ,L t max l , the gain parameters 1 2( ) ( )a t a t,  could be chosen according to Equation 
(24) [34]: 

1 1

2 2

( ) ( )
( ) ( )

a t a L t
a t a L t

  
 (24) 

where, 1 20 0a a ， , are factors to be designed. The value of ( )L t  is determined by 
the adaptive law. 

Inspired by reference [32], the gain parameter can be adjusted by an adaptive law to 
make it close to the tight upper bound of the uncertainty. So that, the sliding variable is 
maintained in a preset neighborhood, and accurate tracking of steering angle can be 
achieved under different working conditions. The adaptive law is proposed as shown in 
Equation (25): 

0
( ) 0

0

0
0

0

( )

( )
( )

( )

( )

max

L t min max

min max

min

L t L
s s

L L t L and s s
s

L t
s s

L L t L and s s
s

L t L



 





             



，

， ，  

， ，  

，

 
(25) 

where, 00s  ， ， ( )0 1L t 

( )L t  is lower than the lower limit or higher than the upper limit, it increases or decreases 
at a constant rate  , so that it can be maintained within the upper and lower limits. 
When the sliding mode variable s exceeds the neighborhood defined by s0, the increase 
rate of ( )L t  is given by 0 0( )s s s   . The greater the deviation is, the greater ( )L t  is. 
When the sliding mode variable s is in the neighborhood limited by s0, ( )L t  slowly de-
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creases at the rate of ( ) 0 0( )L t s s s    . So that the system states could be maintained in 

the neighborhood 0s s . 
The block diagram of our proposed TDE-based AFST-FOSMC control scheme is 

depicted in Figure 2. 

 1 2 2
2 ( ) sgn( ) 3 sgn( ) 2a t s s s s  

1 2( )( ) ( ), ( )L t a t a t 

 1 2
1( ) sgn( )a t s s s

1

 2D 
 1 2

1 2 D     

 1 1
2 D   

2JsΔtse

J system

TDE

uτ

uτ


+

-
-

N̂



+

+
+

d

-
-

+

+
+



d

2 2d dt

AFST

SBW

Fractional 
order 
sliding 
mode 
surface

s
e

+

+

 
Figure 2. Block diagram of TDE-based AFST-FOSMC control scheme. 

3.3. System Stability Analysis 
To facilitate the stability analysis of the system (22), coordinate transformations are 

performed as follows: 

1 2
1

2

( )( sgn( ) )= = L t s s s 
 

             
 (26) 

Taking the derivative of  , obtain 

 

1 1 2

1 2
11 2

1( )( )
2

1( )( ) ( ) sgn( )
2

L t s s
s

L t a t s s s
s

 

  

 

       



 

 (27) 

 1 2 2
2 2

1 2
21 2

( ) sgn( ) 3 sgn( ) 2

1( 2 ) ( )( sgn( ) )

a t s s s s

a t s s s
s

    

  

    

       





 (28) 

Rewrite system Equation (22) with   as system variable: 

1
1 11 2

2
2 11 2

( )1 1( )( 2 )
22 ( )

( )1( )( 2 )
( )

a tL t
L ts

a tL t
L ts

   

   

 
     
  
 
      





 (29) 

where,   is defined as 
1 2

1 2(1 2 )

s

L s










, Equation (29) rewriting to matrix form, we 

obtain 

( )( )D s A B     (30) 
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where, 
1

2

1
2 2

0

a
A

a

 
 
 
 
  

, 0
1

B
 
    

, 1 2

1( ) ( )( 2 )D s L t
s

  . 

Define a symmetric matrix 1 2

2 3

p p
P

p p
 
    

, 2
1 3 2 1 3, 0,p p p p p  , then P is a positive 

definite matrix. The Lyapunov function is constructed as TV P  , V is positive definite 
and radially unbounded. Taking derivation of V along the system trajectory, yield 

2

=( )
[ ( ) ( )] [ ( ) ( )]

( )[ ( ) ]
( )[ ( ) ]

T T

T T

T T T T

T T T T

V P P
D s A B P P D s A B

D s A P PA B P PB
D s A P PA PBB P

   
     

     
    


     
   
   

 

  

For 

1 2 1 2 1 2
1 ( sgn( ) ) (1 )L s s s L s s      ,   

1 2

1 11 2(1 2 )

s
LL s


   


  

  
,  

Then 2
1( )[ ( ) ]T T T TV D s A P PA PBB P        , select  1 0C  , then 

( )[ ( ) ]T T T TV D s A P PA PBB P C C     . 
If the values of 1 2a a,  make the positive definite symmetrix P satisfying inequality 

(31) exit, where 0 0  , then Equation (32) holds. 

0 0T T TA P PA PBB P C C P      (31) 

0
01 2 2V LV LV

s


   (32) 

According to 1 2 1 2
1 (1 )L s s   , there is 1 2

1L s    , and 
2

min ( )P V   , we obtain 1 2 1 2 1 2
min( ( ) )s V P L   , then Equation (32) can be reduced as 

1 2
0 min 0( ) 2V L P V LV     . For 0L l , then 1 2

1 2 0V V V     , where 

1 0 02 l  , 2 0 0 min ( )l P   . Based on the existing work in the literature [35], it is 
known that the system (30) achieves the second-order sliding mode motion in finite time 
Tr, ( ) 0t   holds and Tr satisfies Equation (33). According to the definition in Equation 
(26), 0 0s  ,  hold. According to Equation (22), 0s   holds too. 

1 21

1 2

2 ln 1 (0)rT V
 

      
 (33) 

According to the Bounded Real Lemma, inequality (31) is equivalent to the frequency 
domain constraint  0 s 1G


 , where the transfer function 

1 2
0 1 2( ) : ( ) 1 (2 )G s C sI A B s a s a     . The necessary condition is that 2 1a   to ensure 

 0 s 1G

 . Therefore, the value of 1 2,a a  can refer to the literature [34] and choose as 

1 1.5a  , 2 1.1a  , which will make the inequality (31) hold and make system (22) stable.  
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4. Experimental Verification 
As shown in Figure 3, the SBW experimental plant is composed of steering motors, 

steering gears, front wheels, angle sensors and a controller. The steering angle sensor 
measures the driver’s steering command angle. The multi-ring absolute encoder 
measures the angular position of the steering motor shaft as a feedback signal. The 
dSPACE MAB is used as an SBW controller which receives the sensors’ angle signals 
and outputs the control signal. The host computer records the data in the experiment 
process. In the experiment, the controller receives the sensor’s data through the CAN 
bus, and the CAN bus rate is set as 500 kb/s. The encoder is set to timing mode, angular 
position data is sent to the controller every 50 microseconds. The relevant parameters 
used by the controller are shown in Table 1. 

In order to verify the effectiveness of the control algorithm proposed in this paper, 
the setting condition experiments and simulation experiments are carried out on the ex-
perimental plant. The control accuracy and disturbance estimation performance of dif-
ferent algorithms are verified through experiments. In the experiment, the control algo-
rithm for comparison is carried out under the same conditions. The results validated the 
effectiveness and the advantage of the proposed algorithm. 

Steering wheel

Steering 
angle sensor

Absolute 
angle
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Feedback 
motor

Steering 
motor

Gear box
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Rack

Host PC

Controller

Front 
wheel

Controller
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Connector
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Cable to host PC

Steering angle sensor

Steering wheel

Pinion & rack

Gear box

Steering motor

Absolute angle 
sensor

Feedback motor

 
Figure 3. Experimental platform of the SBW system. 

4.1. Control Algorithm  

for Comparison 
The performance of time-delay estimation, fast super-twisting fractional order slid-

ing mode and adaptive control law are verified in the experiments. In order to carry out 
comparative research, the traditional adaptive sliding mode control (ASMC), the su-
per-twisting sliding mode control based on TDE (TDE-STSMC), the fast super-twisting 
fractional order sliding mode control based on TDE (TDE-FST-FOSMC) are selected as 
the controllers for comparative verification. 

Table 1. SBW system parameters. 

Parameters Value 
Back EMF coefficient  ke 0.2209 V·s/rad 

Torque coefficient  km 0.3255 Nm/A 
Motor resistance  R 2.083 Ω 

Equivalent moment of inertia  Jeq 0.0010 kg·m2 
Equivalent viscous resistance coefficient  Beq 0.0090 Nm·s/rad 

Coulomb friction moment  𝜏𝜏𝐹𝐹𝐹𝐹  8.0 Nm 
Steering gear ratio  k1 18 

Steering motor reduction ratio  k2 20.5 
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In order to facilitate the design of the comparison controller, the SBW system dy-
namic equation is arranged as follows. Substituting Equation (7) into Equation (5) and 
rearranging into state equation form, the steering system dynamic Equation (34) can be 
obtained. 

1 2

2 0 0( ) ( )
x x
x g x u f x d

    





 (34) 

where,    1 2, ,
TT

sm smx x x     , 2
0 2

( )
( ) m e e Fc

e e

k k B R sgn x
f x x

J R kJ


  ,
0 ( ) m

e

k
g x

J R
 . d is the 

lumped disturbance term, ax dx param umd      . a
ax

ekJ


   denotes the equivalent 

self-aligning torque, d
dx

ekJ





  denotes the external disturbance torque, 

  param g u f x      denotes the parameter uncertainty and um  denotes the unmod-
eled uncertainty. 

The definition of tracking error is the same as Equation (16), the sliding mode vari-
able is designed as Equation (35): 

s e e   (35) 

The first derivative of the sliding mode variable can be written as Equation (36): 

0 0 2

0 0

( ) ( )
( ) ( )

d d

d

s g x u f x x d x x
G x u F x d S

      
   
    (36) 

where, 0 0( ) ( )G x g x , 0 0 2( ) ( )F x f x x  , d d dS x x   . 

4.1.1. Traditional ASMC Controller 
According to reference [16], the ASMC controller is designed as shown in Equation 

(37): 

( ) ( ) ( )1
0 0 1 1 1 2 1tanh( ) tanh( ) tanh( )ASMC du G x F x S s KKsign s x s x s xϖ µ µ−  = − + − − − ⋅ + ∫   (37) 

Define the tracking error e  as 1 de x x  . The linear sliding variable s  is defined 
as s e e  , 0 0( ) ( ) dG x F x S, , are the same as Equation (36). 2, ,KK   , 1 2 eJ     
are the parameters of ASMC. 

4.1.2. TDE-STSMC Controller 
The design of the TDE-STSMC controller is shown as Equation (38): 

1 2
u 1 2

ˆsgn( ) sgn( )dJ x e a s s a s N           (38) 

Define the tracking error e  as 1 de x x  . The linear sliding variable s  is defined 
as s e e  , u  is the control input, N̂  is obtained by time-delay estimation. 

4.1.3. TDE-FST-FOSMC Controller 
The TDE-FST-FOSMC controller is designed according to Equation (39): 

 
 

1 22 11
1

2 2

1 2 2
2

1 sgn( )

ˆsgn( ) 3 sgn( ) 2

u dJ x D e D a s s s

a s s s s N

 
 

 

 

 

   

   



 

(39) 
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Define the tracking error e  as 1 de x x  . The nonlinear sliding variable s  is de-
fined as 1 2s e D e   , u  is the control input, N̂  is obtained by time-delay estima-
tion. 

4.1.4. Selection of Controller Parameters 
Different controller gain parameters lead to different control performance. For fair-

ness, the gain parameters of the controller with the same structure are selected as the 
same values. Integer order sliding mode surface s e e   is adopted in ASMC and 
TDE-STSMC controllers, the parameter is selected as 5 . Fractional order sliding 
mode surface 1 2s e D e    is adopted in TDE-FST-FOSMC and TDE-AFST-FOSMC 
controllers, the parameter is selected as 1 25 =1, 0.75   , , the parameter in su-
per-twisting structure is selected as 1 . The parameters 1 2, ,  ,  are related to the 
tracking bandwidth of the sliding mode variable. A larger   leads to a faster response 
rate and higher tracking accuracy, which, however, may bring excessive high-frequency 
noises to the system that deteriorate the tracking accuracy inversely. 1 2 , ,  are treated 
the same as  . The selection of   can be gradually reduced from 1 until the system 
performance begins to decline. The parameter   is a positive integer. A larger   can 
shorten the convergence time of the sliding manifold, but it will lead to the oscillation of 
the reaching process. It can be seen in Figure 1. The gain parameters of super-twisting 
sliding mode can be selected according to reference [34], and the upper bound of uncer-
tainty can be determined by experiment. The gain is selected as 1 215, 110a a   in 
TDE-STSMC and TDE-FST-FOSMC controllers and 1 21.5, 1.1a a   is selected in 
TDE-AFST-FOSMC controllers. 

The parameters of the ASMC controller are selected according to reference [16], the 
parameters are selected as 245 120 20KK=  ， ， . Unlike the reference [16], the pa-
rameter 2  is tuned according to the experimental results. Increasing 2  can improve 
the convergence rate of the estimation, but it will lead to the oscillation of the control 
voltage, which is very harmful to the motor driver. 

4.2. Slalom Path Following 
The slalom path following is used to test the steering angle tracking performance of 

the SBW system. In order to simulate the maneuvering steering in the test, the reference 
front-wheel steering angle is generated by expression (40): 

0.4 (0.4 )fw sin t   (40) 

According to the force analysis of the front wheel, the self-aligning torque can be 
obtained by  a yf p mF t t    , and the lateral tire force of the front wheels yfF  can be 

calculated by yf f fF C   . According to the literature [36], the front wheel sideslip 
angle f can be calculated by f f fl V       , and the sideslip angle   can be 

calculated by  1tan tan( ) / ( )f r r fl l l    . Therefore, according to the 2-DOF vehicle 
model, the self-aligning torque can be obtained from expression (41) [15,36]. 

 1

1

2

tan tan( ) / ( )

1

( )( )

f r r f

f r f r r f f
f

a f m p f f

l l l

C C C C l C l
mV mV mV

C t t l V

 

   

   





                                



 (41) 

, ek J  are the same as parameters in Equation 
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(5), 0 ( )g x  is the control matrix in Equation (34), nw is white noise signal. According to 
the parameters of the experiment platform and reference [14], the parameters of the ve-
hicle model are set as in Table 2. 

0( ( ))
a a e wu kJ g x n    (42) 

Table 2. Vehicle model parameters. 

Parameters Value 
Mass of vehicle  m 1170 kg 
Vehicle speed  V 15 m/s 

The distances of front axle from the c.g. of the vehicle  lf 0.96 m 
The distances of rear axle from the c.g. of the vehicle  lr 0.84 m 

Front-wheel mechanical trail  tm 0.023 m 
Front-wheel pneumatic trail  tp 0.015 m 

When the adhesion condition switches on different road, the self-aligning torque is 
influenced by the adhesion and changes abruptly. The rapidly changing self-aligning 
torque is applied to the system as a disturbance, which has an adverse impact on the 
tracking control. In order to verify the robustness and tracking accuracy of different al-
gorithm, typical road conditions are adopted according to reference [14] in this experi-
ment. The tires’ cornering stiffness is set as: 

12000 / ,0 18.75 ,
45000 / ,18.75 33.75 ,
80000 / ,33.75 60 ,

f r

f r

f r

C C N rad t s
C C N rad t s
C C N rad t s

            

snowy road
wet asphalt road

dry asphalt road
  

The tracking performance and error comparisons of the different algorithms are 
shown in Figure 4 and Table 3, respectively. In Figure 4a, corresponding to the ASMC 
algorithm, at the switching point of different road, the jump of disturbance torque 
caused a large steering angle tracking error, the amplitude is 0.0067 rad. In the stable 
stage, the error amplitude is maintained at ± 0.0044 rad. In Figure 4b, corresponding to 
the TDE-STSMC algorithm, due to the disturbance torque could be estimated and com-
pensated by TDE, there is no large tracking error at the switching point of different road. 
In the stable stage, the error amplitude is maintained at ± 0.0041 rad. In Figure 4c, corre-
sponding to the TDE-FST-FOSMC algorithm, the tracking error has no obvious change 
at the switching point of different road. The tracking performance is consistent in three 
stages. The stable error amplitude is maintained at ± 0.0010 rad. In Figure 4d, corre-
sponding to the TDE-AFST-FOSMC algorithm, the tracking performance is consistent in 
three stages, there is no obvious change at the switching point of different road. The sta-
ble error amplitude is maintained at ± 0.00073 rad. The performance of the 
TDE-AFST-FOSMC algorithm is the best. 

Table 3. Tracking errors comparison of different algorithms in slalom path following. 

Controller ASMC TDE-STSMC TDE-FST-FOSMC TDE-AFST-FOSMC 
Maximum error 

(rad) 
0.0067 0.0041 0.0015 +0.0011 

Steady-stat error 
(rad) 

±0.0044 ±0.0041 ±0.0010 ±0.00073 

It should be noted that the first derivative of the reference steering angle has a jump 
at 5 s and 50 s, which is equivalent to introduce an impact in the system. It can be seen 
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from Figure 2 that all the controllers can maintain a stable state, showing good robust-
ness. 

The estimated performance validation results for the perturbations are shown in 
Figure 5. The self-aligning torque jumps to a large extent when the vehicle turns at the 
junction of different road surfaces. That is displayed in red lines in the graph as a dis-
turbance. Obviously, the ASMC controller has a large error in estimating disturbance 
torque. Especially on the snowy road, the ASMC algorithm can only estimate the dis-
turbance torque on the general trend. For TDE, the disturbance term in the original sys-
tem after a certain small time delay is equivalent to the estimated value of system un-
certainty, so the disturbance torque term can be accurately estimated. It can be seen in 
Figure 5, at the switching point of different road, the self-aligning torque has a jump, 
and the estimated value of TDE can track the disturbance torque within 7 ms. This 
shows the good estimation performance of TDE. Therefore, in the case of unknown sys-
tem model parameters and external disturbances, it has great advantages to apply TDE 
to closed-loop system control. 
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Figure 4. Tracking performance and the control voltage: (a) ASMC algorithm; (b) TDE-STSMC algorithm; (c) 
TDE-FST-FOSMC algorithm; (d) TDE-AFST-FOSMC algorithm. 

 
Figure 5. Estimation of disturbance torque in slalom path following. 
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The effect of the adaptive law is shown in Figure 6. It can be seen that L(t) can be 
adjusted automatically with the change of the system state so that the super-twisting gain 
parameters 1 2( ), ( )a t a t  are adjusted accordingly. 

4.3. Impact Disturbance Suppression 
When a vehicle is driven on a broken road or collides with obstacles, the front 

wheels will be subjected to a shock torque. Since the mechanical connection between the 
steering wheel and the front wheels has been removed, the driver cannot exert coun-
ter-torque to eliminate the impact. If the SBW system could not quickly estimate the im-
pact torque and suppress it, the vehicle will turn in an unexpected direction and result in 
a dangerous situation. For this reason, a shock disturbance rejection experiment was car-
ried out to verify the controller’s performance of suppressing impact torque and keeping 
the direction. 

In the experiment, the vehicle is set as running straight on a road with good adhe-
sion conditions. The reference steering angle is set to zero, and the tires cornering stiff-
ness are set as 80000 /f rC C N rad  . A pulse voltage signal with a width of 0.5 s and 
an equivalent amplitude of 300 Nm is exerted on the steering motor at the 2nd second to 
simulate the impact disturbance. 

The impact disturbance suppression performance of each algorithm is shown in 
Figure 7 and Table 4. For the ASMC control, due to the poor disturbance estimation, it 
results in a front-wheel deflection angle of −0.0044 rad with a duration close to 0.6 s under 
the impact torque, and the deflection is single direction, which can seriously affect the 
vehicle safety. For the TDE-AFST-FOSMC, the deflection angle is very small and with a 
symmetrical shape, and the duration time is very short. It will not cause a dangerous 
situation. 

Table 4. Deviation of the front wheels under shock disturbance. 

Controller ASMC TDE-STSMC TDE-FST-FOSMC TDE-AFST-FOSMC 
Deviation angle 

(rad) 
0 +0.0023 +0.001 +0.0006 

−0.0044 −0.0017 −0.001 −0.0008 

The impact torque estimation performance of each control algorithm is shown in 
Figure 8. Obviously, the dynamic response of the ASMC algorithm is too slow. The im-
pact torque cannot be accurately estimated. While the TDE adopted by the other three 
control algorithms can quickly and accurately estimate the impact disturbance torque 
within 7 ms. 

 
Figure 6. Adaptive effect of control parameter L(t). 
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Figure 7. Front wheel deviation under shock disturbance. 

 
Figure 8. Performance of estimation of shock disturbance torque. 

4.4. Double Lane Change Co-Simulation 
In this section, CarSim and Simulink co-simulations are conducted on different SBW 

system controllers to verify the effectiveness of the control algorithm under actual driv-
ing conditions. The simulation procedure is selected as “DLC@120 km/h(Quick Start)”, 
and the “Constant target speed” is modified to 60 km/h. The road friction is selected as 
“Friction: Mu via S-L Grid”, and the friction coefficient is set as: 
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In the DLC simulation test, the “Steer_DM” variable is used as a reference com-
mand for the SBW system. The output of the SBW system acts on the vehicle steering 
system to steer the vehicle. The tracking performance and tracking error in the DLC test 
are shown in  Figure 9;  Figure 10 and Table 5. It is obvious that the TDE-AFST-FOSMC 
algorithm has the best performance when the road adhesion condition changes abruptly, 
and the maximum tracking errors are +0.024 degrees and −0.01 degrees. 

Table 5. Steering wheel angle tracking errors of controllers in the DLC test. 

Controller ASMC TDE-STSMC TDE-FST-FOSMC TDE-AFST-FOSMC 

Tracking error 
+1.044 +0.344 +0.073 +0.024 
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The disturbance estimating performance is shown in Figure 11. The ASMC algo-
rithm has the worst performance. Its dynamic response is severely lagging. The other 
controllers made a good performance, the TDE estimation can quickly track the dis-
turbance. It is shown in the figure at 4.45 s, the self-aligning torque acquired from CarSim 
has a large jump due to the road adhesion coefficient change, the TDE estimation can 
follow the change within 20 ms, and the TDE-AFST-FOSMC controller performs best. 

Comparing  Figure 10;  Figure 11, the ASMC controller produces large steering 
angle tracking errors at the moments when the disturbance torque estimation error is 
large. It indicated that the accurate estimation and compensation of the disturbance term 
can help improve the tracking accuracy. Comparing the tracking performance of 
TDE-STSMC controller and TDE-FST-FOSMC controller, the maximum tracking error of 
the former is about 6 times higher than the latter. This shows that the transient response 
performance of the TDE-FST-FOSMC controller is better due to the fractional-order 
sliding mode surface and the fast super-twisting structure. Thanks to the adaptive con-
trol of the gain parameters, the maximum tracking error of the TDE-AFST-FOSMC con-
troller is reduced to one-third of the TDE-FST-FOSMC controller. 

 
Figure 9. Tracking performance of steering wheel angle. 

 
Figure 10. Tracking error of steering wheel angle. 
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Figure 11. Estimation performance of disturbance torque. 

5. Conclusions 
In this paper, the time-delay estimation scheme was adopted to solve the problems 

of precise model design, system parameter determination and estimation of disturbance. 
An improved super-twisting structure combining with a fractional order sliding mode 
was proposed to ensure fast dynamical response and high control accuracy. Thanks to 
the TDE, fast super-twisting with fractional order sliding mode and adaptive algorithm, 
the proposed control scheme has the advantage of model-free, fast response and high 
accuracy. Co-simulation and comparative experiments were carried out to validate the 
effectiveness of the proposed control scheme. Corresponding results indicate that our 
TDE-AFST-FOSMC can achieve better control performance under practical applications. 

However, in the control scheme, the input reference steering angle signal is required 
to be smooth and second-order differentiable, this puts forward high requirements for 
the steering angle sensors. Therefore, further research is needed to process the sensor 
signal, suppress noise interference and improve the reliability of practical application. 
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