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Abstract: The demand of delivering various services is driving inter-data centers optical interconnec-
tion towards 400 G/800 G, which calls for increasing capacity and spectrum efficiency. The aim of
this study is to effectively increase capacity while also improving nonlinear noise anti-interference.
Hence, this paper presents a state-of-the-art scheme that applies the K-means cluster algorithm in
geometric shaping based on iterative polar modulation (IPM). A coherent optical communication
simulation system was established to demonstrate the performance of our proposal. The investigation
reveals that the gap between IPM and Shannon limit has significantly narrowed in terms of mutual
information. Moreover, when compared with IPM and QAM using the blind phase searching under
the same order at HD-FEC threshold, the IPM-16 using the K-means algorithm achieves 0.9 dB and
1.7 dB gain; the IPM-64 achieves 0.3 dB and 1.1 dB gain, and the IPM-256 achieves 0.4 dB and 0.8 dB
gain. The robustness of nonlinear noise and high capacity enable this state-of-the-art scheme to be
used as an optional modulation format not only for inter-data centers optical interconnection but
also for any high speed, long distance optical fiber communication system.

Keywords: inter-data centers optical interconnection; iterative polar modulation; K-means cluster
algorithm

1. Introduction

With the massive growth of cloud computing, 5G/6G, web-based applications, and
other new types of services in recent years, the Internet traffic has been steadily ex-
panding, which promotes optical interconnection networks (OINs) developing towards
400 G/800 G [1,2]. In this trend, an optical transmission system with high spectral ef-
ficiency is required to accommodate a higher transmission rate. There are numerous
strategies to significantly increase transmission rate, among which advanced coding and
modulation, multi-dimensional multiplexing and forward error correction (FEC) coding
play a vital role [3,4].

Researchers have conducted substantial research on the topic of increasing system
capacity. In terms of multi-dimensional multiplexing, ref. [5] proposed a method to realize
a space-division multiplexing network in data center to overcome the optical network
capacity crunch by using multi-core optical fiber. It performs effectively in data centers with
short distances. However, it is unfavorable for OINs since inter-core crosstalk is becoming
increasingly severe in long-haul transmission. Another significant aspect of improving
capacity is using advanced coding and modulation. The author of [6] proposed a novel
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multi-band approach based on intensity modulation and direct detection (IM/DD), which
combines the use of carrier-less amplitude-phase (CAP). This strategy not only decreases
the transceiver’s complexity, but it also enhances spectrum efficiency. Furthermore, forward
error correction (FEC) coding has been broadly applied in OINs, which can tolerate the
accumulated optical effects of optical fiber as well as the impairment induced by the defects
of optoelectronic devices [7]. When employing the aforementioned advanced modulation
format or FEC, the Shannon limit, on the other hand, cannot be typically achieved and
the gap between the system capacity and the Shannon limit is roughly 1.53 dB [8–10]. To
narrow that gap within the constraints of optical signal-to-noise ratio (OSNR), constellation
shaping is a promising technique [11].

Constellation shaping is divided into probabilistic shaping (PS) and geometric shaping
(GS). Both of them have the advantages of improving capacity and low complexity. PS
approximates the Shannon limit by using Maxwell Boltzmann distribution. Among the
adopted PS algorithms, probabilistic amplitude shaping (PAS) [12] is the most regularly
adopted PS algorithm currently and was first proposed by Georg Böcherer. PAS is im-
plemented by a fixed-to-fixed length encoder and decoder, called distributed matcher
(DM)/de-matcher, which can convert independent and uniformly distributed input bits
into a desired distribution symbol [13,14]. PAS has been shown to operate in optical com-
munication systems both theoretically and experimentally, however it is only appropriate
for square constellations, which drastically limits its application. Unlike PS, GS leverages
mutual information maximization as the objective function to determine optimal constel-
lation coordinates. Its implementation is straightforward and unnecessarily requires the
establishment of a sophisticated hardware framework. In the studies of GS, the authors
of [15] proposed the geometrically shaped 32QAM based on the generalized pair-wise opti-
mization (PO). The experimental results indicated that GS-32QAM outperforms PS-32QAM
in the low SNR scenario. Researchers in [16] designed a circular quadrature amplitude
modulation (CQAM), which generalizes PS to finite prime fields, and enabling non-binary
codes. The CQAM scheme could achieve joint shaping gain by combining PS and GS.
Nevertheless, previous GS algorithms have a large complexity and are unable to overcome
fiber nonlinear issues. Addressing the above challenges, iterative polar modulation was
first introduced in [17] and demonstrated in [18–20].

Offline digital signal processing (DSP) is required to be implemented in OINs for
reconstructing the constellation shaping signal since it would be degraded in the long
distance by the influence of impairments related to dispersion and nonlinear phase noise.
Compared with the conventional DSP algorithm, the DSP assisted by machine learning
(ML) algorithm performs better. The K-means clusters algorithm is the preferred method
for classifying constellation points influenced by nonlinear effects of optic-fibers among
the various ML algorithms available. Researchers introduced a weighted K-means cluster
algorithm for PS-64QAM in [21], which significantly addressed the issue of incorrect
centroid judgement precipitated by fewer constellation points on the constellation’s corners.
With the likelihood of each constellation point being distributed equally in the GS scheme,
the aforementioned issues are prevented, and the common K-means clustering algorithm
could be used straight, eliminating computational complexity to a certain degree.

To sum up, constellation shaping has the potential to improve OIN’s capacity and
narrow the gap with the Shannon limit. Simultaneously, the K-means algorithm could
recover the deteriorated signal and minimize the bit error rate (BER). There have not been
full investments in merging machine learning algorithms with it to address nonlinear
deterioration. Therefore, this paper proposes a complete state-of-the-art scheme that
applies the K-means clustering algorithm to geometric shaping based on iterative polar
modulation, which not only brings better performance to the transmission system but also
increases the intelligence of the system. A coherent optical communication simulation
system was established to verify the superiority of the proposed scheme. The simulation
results show that the IPM modulation format excels QAM in terms of mutual information
(MI) under various SNR and transmission lengths. When the modulation order is 16,
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64, 256, respectively, the BER performance of the proposed scheme is compared with
QAM adopting blind phase searching (BPS) in the same order. The results reveal that the
proposed scheme has a lower BER, suggesting that our proposal can enhance capacity
without sacrificing BER performance.

The paper is organized as follows. We begin in Section 2 by discussing the principles
of IPM and K-means and generate the IPM constellations of different orders. In Section 3,
we describe the configurations of the MATLAB simulation system and then evaluate the
simulation results. We discussed the potential application scope in Section 4. Finally, we
provide some concluding remarks in Section 5.

2. Principle of the Proposed Scheme
2.1. Geometric Shaping Based on Iterative Polar Modulation

Geometric shaping could achieve shaping gain by optimizing the shape of the high-
dimensional signal constellation. Most of the GS algorithms are based on optimizing a
specific objective function, such as maximizing mutual information, minimizing BER, or
minimizing mean square error (MMSE) to determine the location of constellation points
satisfying some conditions.

The IPM modulation format considers the MMSE based on iterative polar quantization
procedure [17]. The constellation coordinates determined by a numerical algorithm like
Arimoto-Blahut [22] are optimum in the transmission system with significant influence
of thermal noise and amplified spontaneous emission noise. The nonuniform iterative
polar quantization considers implementing MMSE in two dimensions, including scalar
nonuniform amplitude (r) and scaler uniform phase quantization (ϕ). The calculation
formula of MSE in polar quantization consists of two parts, and could be computed as
Equation (1).

MSE = Dgranul + Doverload (1)

where Dgranul represents the granulation noise and Doverload represents the overload noise.
The granulation noise and overload noise are given by Equations (2) and (3).

Dgranul =
Lr

∑
i=1

Li

∑
j=1

θj+1, i∫
θj, i

ri+1∫
ri

[
r2 + m2

i − 2rmicos
(

ϕ − ϕj,i
)]
·pr(r, ϕ)drdϕ (2)

Doverload =

∞∫
rLr+1

(r − mLr )
2 pr(r)dr (3)

where Li is the number of constellation points on i-th circle; Lr is the number of circles;
θj,i is the phase of j-th points on i-th circle; pr(r) represents the source of probability
density function (PDF). mi is the optimum radius of i-th circle. The optimum number of
constellation points of i-th circle is determined by using Lagrange multiplier method to
implement MMSE. Accordingly, we have

Li =
3

√
m2

i

∫ ri+1

ri

pr(r)dr/

[
∑Lr

i=2
1
M

3

√
m2

i

∫ ri+1

ri

pr(r)dr

]
; i = 1, 2, · · · Lr (4)

As for PDF function of the optimum source, we consider the case of Gaussian distri-
bution, that is

pr(r) =
1

2πσ2 · exp
[
− r2

σ2

]
(5)
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We assumed the partial derivatives to mi and r, respectively, of Equations (2) and (3)
are equal to zero, then the optimum radius is given by

mi =

[
2 sin(∆θi/2)

∫ ri+1

ri

rp(r)dr
]

/
[

∆θi

∫ ri+1

ri

p(r)dr
]

; ∆θi = 2π/Li; i = 1, 2, · · · Lr (6)

Repeat calculating Equations (4) and (5) until these equations satisfied the following
limits of integration determined by Equation (7).

ri =
[
π
(

m2
i − m2

i−1

)]
/[miLi sin(∆θi/2)− mi−1Li−1 sin(∆θi−1/2)]; i = 1, 2, · · · Lr (7)

We could obtain the optimum IPM constellation coordinates using the above
Equations (2)–(7). In this paper, three kinds of constellations are generated based on
nonuniform iterative polar quantization; the orders of these constellations M are equal to
16, 64, 256, respectively. The relevant constellation is shown in Figure 1, which is consistent
with [17–20]. The IPM constellations show that it is a kind of circle modulation method.
Still, the performance is better than circle QAM (CQAM) because of its MMSE and larger
channel capacity, especially in the IPM-256. We find out that there is a point at the origin
of the coordinate axis in constellations of IPM-16 and IPM-256, respectively, as shown in
Figure 1a,c, respectively, which makes it dramatically reduce the average transmission
power, which could be called centered-IPM (CIPM).
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2.2. K-means Cluster Algorithm at the Receiving End of Data Center

IPM signals are impacted by ASE, fiber dispersion, and other phase noise distortions
while they are transmitted from one DC to another. The nonlinear phase noise caused by
the Kerr effect will dominate the modulated signal when OSNR is high sufficient. Kerr
effect is an electro-optic effect, which indicated that the refractive index is proportional to
the square of the applied electric field. Since the refractive index is nonlinear, as the electric
field intensity varies in the optical fiber, the refractive index fluctuates, and the signal
phase shifts as well, resulting in nonlinear phase noise [23–25]. To simulate the nonlinear
phase noise generated by the Kerr effect during optical pulse propagation, the Generalized
Nonlinear Schrodinger Equation (GNLSE) can be used as the mathematical modeling to
describe the process of optical pulse propagation equation [26]. GNLSE, on the other
hand, cannot provide an analytical solution for any input light pulse. As a consequence,
a numerical method called Split-Step Fourier Transform (SSFT) should be employed to
model the propagation of light pulses in a single-mode fiber (SMF) [27]. Accordingly, the
essential DSP module is required to recover optical signals at the receiving end of the data
center. In response to the frequency offset generated by laser and phase rotation caused by
nonlinear phase noise (NLPN), the most common use recovery algorithm is BPS. However,
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the complexity of BPS grew dramatically as the modulation order increased. Additionally,
the BPS algorithm could only compensate (−π/4, π/4) phase shift of the range, which is
clearly insufficient when there is a factor of frequency offset.

K-means cluster algorithm is an unsupervised learning, which will classify comparable
objects into the same cluster. It has the advantages of low complexity, easy implementation,
and fast convergence. Its good classification characteristics could be employed to demodu-
late optical signals that have been greatly affected by NLPN and avoid using BPS algorithm
with high complexity. The principle of K-means is mainly to figure out the associated
centroid according to the sum of minimum Euclidean distance. The specific procedure
of K-means is as follows. Firstly, randomly choose K points as the initial centroids; we
set the initial centroids here as the coordinates of the transmission constellation to make
the algorithm rapidly converge to the optimal. Then calculate the Euclidean distance
between each point and K initial centroids, and assign which clusters the point belongs to.
After resetting the locations of the centroid, repeat the above steps until the centroid will
not change.

As an example, the transmitting and receiving procedure for 64-QAM is as follows.
The bit stream to be transmitted is modulated into optical 64-QAM signal at the transmitter,
and then the numerical solution of GNLSE using SSFT algorithm to simulate the optical
pulse propagation in SMF is calculated. N symbols affected by dispersion and NLPN are
received at the receiving end and classified using the principle of the above-mentioned
K-means. The acquired centroid is one-to-one corresponding to the points of the ideal 64-
QAM constellation to complete the demodulation. Figure 2 shows the cluster classification
result after deploying the K-means algorithm to 64-QAM; it is evident that even if the
optical signal phase rotated seriously, the algorithm could still classify and demodulate
constellation points more accurately.
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3. Simulation System and Results Discussion
3.1. The Establishment of the Simulation System

To verify the performance of the K-means cluster algorithm applied for the IPM
modulation format scheme, the simulation system of a single carrier system for the data
center interconnection network was established, as shown in Figure 3. Additionally, the
parameters of the system are listed in Table 1. At the transmitter, the iterative polar
quantization procedure was run to generate the transmitted initially constellations. We
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generate three constellations here, and the order of these constellations M is equal to 16,
64, 256, respectively. Random pseudo-random binary sequences (PRBS) are generated in
MATLAB and sent to the modulator to realize IPM modulation. The modulated signals
are shaped by root raised cosine filter, which roll-off factor is equal to 0.25. After pulse
shaping, signals are split up into two streams, amplified by electrical amplifiers (EA),
and sent to one of the branches of Mach-Zehnder Modulator (MZM). Another branch is
driven by External Cavity Laser (ECL), which operates at 1550 nm and its linewidth is
0.1 MHz. Polarization beam splitter (PBS) divide the optical source into two orthogonal
polarization beams. Those two orthogonal polarization beams and two streams of data
signals interact on MZMs to produce the modulated optical signals combined as optical
wave by polarization beam combiner (PBC). Multi-span fiber link consists of recirculation
loop, single-mode (SMF) fiber with a length of 100 km, and erbium-doped fiber amplifier
(EDFA) with the gain of 20 dB. The main parameters of SMF are chromatic dispersion (CD),
attenuation, and nonlinear coefficient, which is equal to 20 ps/(nm·km), 0.2 dB/km, and
1.3 (W·km)−1, respectively. At the receiving end, an optical source generated by another
ECL drives the balanced photodetector (PD) after 90◦ hybrid to complete the process of
coherent receiving.
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Table 1. The parameters of simulation system.

Symbol Description Normal Value

N Number of symbols 105

R Transmission bit rate 60 Gbit/s
r Roll-off factor 0.25
λ Wavelength 1550 nm

∆v Laser linewidth 0.1 Mhz
γ Nonlinear coefficient 1.3 (W·km)−1

D Chromatic dispersion 20 ps/(nm·km)
α Attenuation 0.2 dB/km
G EDFA gain 20 dB

Loop Number of spans 1–10
L Span length 100 km
M Order of constellation 16, 64, 256
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The primary affection influence by SMF in a single carrier system is chromatic dis-
persion and self-phase modulation. Therefore, we need the offline DSP module to recover
signals and calculate the BER. The process of DSP is shown in the block diagram at the
bottom of Figure 3, which consists of normalization using Gram-Schmidt orthogonalizing
process (GSOP), clock recovery using Gardner algorithm, CD compensation, adaptive
equalization using constant modulus algorithm (CMA), and phase recovery using BPS
or K-means. The recovery signals are demodulated, and then the MI and BER of the
transmission are acquired.

3.2. Results and Discussion

To study the performance of channel capacity of different orders of IPM and QAM
modulation format, we quantify it by using the physical amount of mutual information.
MI versus SNR of different modulation formats after 100 km transmission is shown in
Figure 4a. The line with black diamonds is the Shannon capacity. We can find out that MI
in IPM outperforms QAM modulation. Moreover, the larger the modulation order is, the
closer the distance IPM is to the Shannon Capacity, especially in IPM-256, the purple line in
Figure 4a. The MI versus recirculation loops are shown in Figure 4b. We consider the range
of the loop is 1 to 10, length of each loop is 100 km. The results show that when employing
IPM-16 and QAM 16, the MI is almost the same at loop = 1 and 2. When transmission
distance is small, the nonlinear effect is not accumulated too much; when increasing the
loop, the MI of IPM-16 is larger than QAM-16, which indicates that IPM-16 could carry
more information. When M = 64, the capacity of IPM outperforms QAM even at the larger
loop. It indicates that the average power of IPM-64 has a much lower value and has good
tolerance to the dispersion, nonlinear effect, and other noises of SMF. When M = 256, the MI
of IPM outperforms QAM at loop = 1 to 4; the performance of IPM is not better than QAM
when loop > 4. However, as we all know, the distance between DC is usually no more than
100 km. Therefore, the IPM-256 is also suitable for the data center interconnection network.
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The fiber channel model can be represented as a linear dispersion noise, additive
white Gaussian noise (AWGN) and nonlinear phase noise channel [28,29]. The iterative
polar quantization process considers AWGN, such as thermal and ASE noise, rendering the
position distribution of constellation points is more subject to the channel characteristics.
Hence, the MI can reach its maximum value and the geometric shaping gain is realized.
The aforementioned are the major reasons which explain how the suggested technique can
effectively narrow the gap with the Shannon limit.
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We evaluate the BER performance of IPM-16 and QAM-16 with K-means or BPS in
different SNR ranges at loop = 5, as shown in Figure 5a, and the recovery constellations
SNR = 16 dB are shown in Figure 5b. The BER decreases as the SNR increases, and it
is evident that IPM-16 with K-means algorithm outperforms IPM without K-means and
QAM-16. The hard-decision FEC (HD-FEC) threshold is 3.8 × 10−3, which is mainly used
to evaluate the BER performance. Specifically, when SNR is small, the performance of these
three schemes is approximately equal. Even the performance of QAM-16 is better than IPM
at SNR = 10 to 13. With the increase in SNR, the advantages of the IPM scheme gradually
appear. It is clear that IPM with K-means reach the HD-FEC threshold at SNR = 16, while
the SNR of reaching the threshold of IPM without K-means and QAM-16 is 16.9 dB, 17.7 dB,
respectively. Therefore, the gain of proposed schemes is 0.9 dB, 1.7 dB compared with
IPM-16 without K-means cluster algorithm and QAM-16. In the diagram of recovery
constellations, the black cross is the centroid locations after a serious iteration, and the
centroid could provide a reference for subsequent demodulation.
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To study the BER performance of IPM-64 and QAM-64, we draw the curves of BER
versus SNR, as shown in Figure 6a. The BER gradually decreases as the SNR increases, and
there is a positive correlation between BER and SNR. Additionally, it could be seen that the
proposed scheme is superior to IPM-64 without K-means and QAM-64 throughout the en-
tire range of SNR. The proposed scheme reaches the threshold of HD-FEC at SNR = 23.7 dB,
while the IPM-64 without K-means cluster algorithm is at 24 dB and QAM-64 is 24.8 dB. The
gap between the proposed scheme and the other two schemes is 0.3 dB, 1.1 dB, respectively.
It is worth observing from the diagram of the recovery constellation that the points in
the corner of QAM-64 mix together and are difficult to distinguish, while the outermost
constellation points of IPM have higher discrimination, which indicates that IPM has good
robustness to phase noise caused by self-phase modulation.
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Figure 7a shows the BER performance of the proposed scheme, IPM-256 without
K-means and QAM-256 when loop = 1. We could observe that when SNR = 28 dB, the
BER performance of QAM-256 is superior to IPM, yet not as good as the proposed scheme.
When SNR > 28.8 dB, the IPM-256 without K-means has a lower BER. For comparison,
our proposed scheme acquires 0.4 dB and 0.8 dB, respectively, at the HD-FEC threshold,
compared with IPM-256 without K-means and QAM-256. The results fully show that
although IPM-256 is not as good as QAM-256 in resisting the influence of nonlinear
effect, the system’s tolerance to nonlinear effect is improved after the application of the
K-means algorithm.
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Due to the involvement of NLPN and the centroid judgement problem, the signal
points are excessively divergent when the algorithm converges. Consequently, the BER
performance is worse than the IPM employing BPS in the initial SNR range. When employ-
ing the K-means algorithm, the SNR of the IPM scheme at HD-FEC threshold is improved
dramatically compared to the other two approaches, as shown by Table 2. K-means algo-
rithm can directly process the constellation with phase noise according to the minimum
Euclidean distance criterion which will bring classification gain to system. We firstly
assign M (depending on the modulation order) initial centroid positions before running
the K-means algorithm and generally use the coordinates of the constellation points of
the ideal constellation as the initial centroid so that the K-means algorithm can converge
quickly. The new centroid of each symbol is determined by calculating the Euclidean
distance between the received N symbols with phase noise and M original centroids. Then,
the new centroid location coordinates are obtained based on the current constellation point
clustering. Repeat the procedure above until the algorithm converges and the final cen-
troid location is the optimum constellation point position with phase offset. Finally, each
computed centroid matches the initial ideal constellation point one by one, completing the
demodulation step. In contrast, BPS procedure should recover the constellation to standard
firstly before demodulating it. The recovery mistake may occur if the constellation was
impacted by sufficient phase noise. That is the main reason why the proposed scheme
has better BER performance than other schemes. Simultaneously, the proposed technique
diminishes the computing complexity by avoiding the phase recovery process.

Table 2. SNR of different approaches at HD-FEC threshold.

Modulation Order IPM Using K-means IPM Using BPS QAM Using BPS

16 16.0 dB 16.9 dB 17.7 dB

64 23.7 dB 24 dB 24.8 dB

256 28.6 dB 29 dB 29.4 dB

4. Potential Application Scope

The existing OIN has a more complex network structure and network equipment,
which generally complete the scheduling and management of network resources by the
software defined network (SDN). The proposed scheme provides a more efficient and
adaptive modulation and demodulation algorithm for SDN. SDN controller dynamically
adjusts network rate, modulation order and other parameters according to the current net-
work link characteristics and quality of service (QoS), controls the data exchange between
switches, and runs network services more effectively and meets dynamic business needs.
Meanwhile, the implementation does not need the corresponding demodulation and DSP
module, which has lower hardware complexity and can effectively save the cost in OIN
deployment. The K-means algorithm used by the receiver is also apt to integrate with SDN,
which provides theoretical support for two-tier OIN.

In addition, we all know that the average communication distance between data
centers in the same city, especially disaster-tolerant backup data center, is about 60 km,
and the longest distance does not exceed 200 km. However, we simulated the MI of each
scheme under different loops in Section 3. The maximum loop is equal to 10, reaching
1000 km. At the same time, the proposed scheme shows better BER performance when the
modulation formats are 16-IPM and 64-IPM and the simulated transmission distance is
500 km. Since the simulated transmission distance exceeds the actual distance between
data centers, and the proposed scheme has better performance, which jointly decide that it
can be used not only for OINs, but also for any high-speed and long-distance optical fiber
communication system.
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5. Conclusions

In conclusion, the state-of-the-art scheme that applied K-means cluster algorithm in
geometric shaping based on iterative polar modulation has been proposed, which could be
employed in OINs. Even if the transmission distance is sufficient, the proposed scheme
could perform better when K-means cluster algorithm in IPM is used, which opens up
new applications for it in high-speed, long-distance optical fiber communication systems.
We establish a 60 Gbps coherent optical transmission simulation system to verify the
performance of our proposal. In terms of mutual information, whether in long/short-
distance transmission, IPM could provide a large capacity for the transmission system.
For the BER performance, the scheme of IPM-16 with K-means achieves 0.9 dB and 1.7 dB,
respectively, compared with IPM-16 without K-means and QAM-16; the scheme of IPM-
64 with K-means achieves 0.3 dB and 1.1 dB, respectively, compared with IPM without
K-means and QAM 64; the scheme of IPM-256 achieves 0.4 dB, and 0.8 dB, respectively,
compared with IPM 256 without K-means and QAM-256. The scheme of IPM with K-
means is superior to the other two schemes, which behave as strong robustness to NLPN,
according to the aforementioned results, whether in terms of BER or channel capacity. We
consider that our proposed scheme will provide a new idea for developing transmission
technology of inter-data center optical interconnection networks.
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