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Abstract: To support the “carbon peak and carbon neutrality” goal, new energy is poised to explode,
and new energy power generation converter is simultaneously facing new challenges. The conven-
tional current-controlled new energy converter can quickly transmit active power on the DC bus to
the power grid. However, for the weak grid, the stability margin of the converter grid-connected
system is reduced on the one hand, which can easily cause resonance oscillation; on the other hand,
the current controlled converter cannot actively respond to system frequency and voltage fluctu-
ation to offer support. The voltage controlled virtual synchronous generator (VVSG) is used to
improve system small signal stability and frequency stability; however, its power response speed is
too slow to meet the requirements of fast following power command. Although a voltage/current
dual-mode switching control scheme is put forward to achieve characteristics complementary of
current controlled converter and voltage-controlled converter, the control structure switching and
intermediate variable following is required to realize mode switching, which is prone to large power
shocks and switching failures. In view of the problem, a direct power control strategy based on
VVSG is proposed. The control structure is raised based on a conventional VVSG outer active power
control loop, and the output active power and frequency characteristics are analyzed. Compared
with the voltage and current dual-mode control, VVSG with direct power control can perform large
inertia characteristic in the weak grid and fast power following characteristics in the strong grid by
adjusting λ, and without control structure switching and intermediate variable following. Moreover,
the two characteristics can be smoothly transited. In addition, the active support ability of voltage
source can be maintained under both characteristics. Finally, the effectiveness of the proposed control
strategy is verified through simulation results.

Keywords: virtual synchronous generator; direct power control; virtual inertia; power fast following;
voltage/current dual-mode switching

1. Introduction

To support the “carbon emission peak in 2030 and carbon neutrality in 2060” goal
of China, photovoltaic wind power and other new energy power generations will grow
explosively as the energy supply system is changing from coal to diversification [1,2].
The total installed capacity of photovoltaic and wind power in China reaches 252 GW
in 2020 and is expected to reach 1.2 billion kilowatts by 2030, in an effort to peak CO2
emissions by 2030. On the one hand, as long-distance transmission lines and multiple
transformers are mostly used in new energy grid-connected power generation systems to
connect power sources and the utility grid, the system short-circuit impedance increases as
the penetration of new energy generation increases. On the other hand, the new energy
power generation converter mainly adopts a grid voltage orientated current-controlled
algorithm based on a phase-locked loop (PLL), which does not have voltage and frequency
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support ability. With the increase in new energy generation penetration, the proportion of
a synchronous generator in the grid decreases, and the equivalent inertia of the system also
decreases. As a result, the reform of energy system leads to the gradual transition from
a traditional power grid dominated by synchronous generator sets to a weak grid with
high penetration of new energy and power electronics, and is characterized by “low inertia
and low short circuit ratio”, which brings critical challenges to system safety and stable
operation [3,4]. In September 2015, an overvoltage fault occurred in the transmission end
of a JinSu ultra-high voltage direct current system in East China, and a serious frequency
drop of 0.41 Hz occurred due to insufficient inertia of the power system. On 9 August
2019, a lightning strike and short circuit tripped the UK grid, causing a massive power
outage in England and Wales, due to the share of new energy generation on the UK grid
being over 50% and the low level of new energy immunity and system inertia. In recent
years, the converter control problem of high penetration new energy grid-connected power
generation system has received wide attention from experts at home and abroad.

The conventional new energy converter generally adopts a grid voltage orientated
current-controlled strategy to track the maximum power point to maximize the power
transmitted to the grid. On the one hand, the large impedance of weak grid and the rela-
tively small short-circuit ratio will cause system resonance and stability margin reduction.
In the literature [5], the conclusion that the system stability is affected by negative resistance
of output impedance low frequency band caused by PLL under weak grid is drawn. Ref [6]
states that the higher the bandwidth of PLL, the larger the negative resistance region in
inverter output impedance low-frequency bands. In [7], a bandpass filter is added to PLL
to suppress weak grid resonance. However, the above strategies are only designed to solve
small-signal stability problems under the weak grid, and is not applicable to the system
synchronization instability problem under large disturbances. On the other hand, the
weak grid inertia is small and its frequency stability is poor, while the current controlled
converter cannot actively respond to system frequency and voltage fluctuation to offer
support [8]. In Refs [9,10], a short-time power required for virtual inertia is superimposed
on the current command of a conventional current-controlled converter to achieve rapid
active power regulation according to the rate of change of frequency, thus helping to realize
passive frequency support. However, the strategy has no voltage support capability, and
the system stability issues will still be raised by PLL under weak grids.

In recent years, experts of domestic and abroad put forward the voltage source virtual
synchronous generator (VVSG) strategy to improve the stability of weak grid connected
system. As a voltage source, VVSG simulates frequency and voltage droop as well as
virtual inertia of synchronous generator sets, and realizes frequency and voltage support
by outputting active and reactive power through voltage amplitude and phase angle
interaction between the converter and the grid or other voltage sources too [11–14]. In
addition, since PLL is not utilized in VVSG for grid synchronization, the VVSG weak grid
connected system performs better stability. In the literature [15,16], the stability of a VSG
grid-connected system with high grid impedance is analyzed, and the conclusion that
the weak grid system with voltage-controlled converter is more stable than that with a
conventional current controlled converter is reached. However, in the high-penetration new
energy power generation system, the requirements of new energy generation efficiency pose
new challenges to control flexibility of new energy converter. It should not only simulate
synchronous generator characteristics to support voltage and frequency of regional grid or
grid nodes, but should also meet the active power fast following requirement to track new
energy maximum power point or power dispatching command [17]. Nevertheless, in order
to increase system equivalent inertia, VVSG has to present slow power response speed and
poor dynamic characteristics, and cannot highlight the flexible control characteristics of
power electronic to realize economic and reasonable utilization of new energy [18,19].

In summary, current-controlled converter and voltage-controlled converter are com-
plementary in terms of grid-connected system stability and active power fast following
characteristic. A current-controlled converter can quickly track active power commands
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within one or two fundamental periods, and achieve higher system stability in the strong
grid. On the contrary, a voltage-controlled converter achieves higher system stability in
the weak grid; however, as its output active power responds slowly, it generally spends at
least a dozen of fundamental periods before the active power command is followed. To
address this problem, most of the existing literature studies a voltage/current dual-mode
switching control scheme, in which the new energy converter adopts current control mode
to maximize new energy efficiency in a strong grid, and operates in voltage control mode
to improve system stability in a weak grid [20–23]. In the literature [20], the coopera-
tive control of the microgrid central controller and the islanding/grid-connected mode
controller is adopted to realize switching of microgrid to and from the utility grid, and
to reduce transient power shocks during mode switching. In [21], a seamless switching
control strategy between the PQ current control and the VVSG control of microgrid convert-
ers is proposed, which reduces power impact during mode switching through real-time
following of converter current and phase angle in different operation modes. In [22,23],
a voltage/current dual-mode control of single converter is extended to a multi-converter
system, and the converter operation mode mixing ratio is adaptively adjusted according
to the grid impedance, thus improving the weak grid connected system stability. The
above-mentioned voltage/current mode switching control all require switching of con-
verter control structure, which is prone to large power shocks and switching failures due
to parameter changes or synchronization errors during the switching process, leading to
poor system robustness.

Based on the above reasons, a direct power control strategy based on VVSG is pro-
posed. In the strategy, active power command Pref of the conventional VVSG outer ac-
tive power control loop is divided into two parts: Pref*λ/Kω as the power command
feed-forward component of direct power control, which is superposed on the frequency
output of a conventional VVSG active power control loop to speed up the active power
response. By changing the direct power participation factor λ, VVSG can realize smooth
transition between large inertia characteristics and fast power following characteristic.
Pref(1 − λDω/Kω), as the remnant component of direct power control, remains the same
as Pref in a conventional VVSG active power control loop. The error between it and the
output active power is sent to a virtual inertia link to gain an angular frequency output,
thus ensuring that the steady-state output active power of VVSG always remains Pref when
λ is adjusted to regulate dynamic characteristics of active power. Compared with the above
voltage and current dual-mode control, VVSG with direct power control can perform large
inertia characteristic in the weak grid and fast power following characteristic in the strong
grid or under maximum power tracking requirement according to grid damping ratio and
inertia demand just by adjusting λ, and without control structure switching and interme-
diate variable following. Moreover, the two characteristics can be smoothly transited. In
addition, the frequency and voltage active support ability of the voltage source can be
maintained under both characteristics.

This paper is organized as follows. In Section 2, the output active power characteristics
of a conventional VVSG are analyzed. Analysis results show that a conventional VVSG
does not possess fast power following characteristics. In view of this problem, a direct
power control strategy based on VVSG is proposed in Section 3, the control structure is
given, and the steady state and dynamic characteristics of VVSG output active power are
analyzed. In Section 4, simulation cases of a conventional VVSG and VVSG based on direct
power control under various working conditions are designed, and the simulation results
are analyzed. Section 5 concludes the paper.

2. Output Active Power Characteristics of Conventional VVSG

Except P-ω and Q-V droop characteristics simulation of synchronous generator sets,
the virtual inertia algorithm is carried out to simulate the true rotational inertia. Virtual
inertia provides short-time power support in response to the rate of change of frequency,
in order to prevents rapid frequency fluctuations. Primary frequency regulation provides
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continuous active support in response to frequency deviations, which prevents continuous
frequency fluctuations of the system and eventually reaches a new steady state.

The conventional VVSG algorithm is described by Equation (1), the main circuit and
control structure diagram is shown as Figure 1a, and the closed-loop control block diagram
of VVSG output active power is shown in Figure 1b, which includes three sections: primary
frequency regulation section, virtual inertia and damping section, and first-order low
pass filtering of output active powers section. In formula (1), Pref and Qref are active and
reactive power commands, respectively. When VVSG operates in grid-connected mode,
it transmits power to the grid according to power command; when VVSG operates in
multi-parallel mode, Pref and Qref are generally set to zero. ω0 and U0 are VVSG rated
angular frequency and phase voltage amplitude, respectively; kω and KU are the primary
frequency and voltage regulation coefficients, respectively. Generally, VVSG sets kω and
KU values according to the relevant standards, which stipulate a maximum frequency
deviation of 1% with rated active power and a maximum voltage amplitude deviation of
5% with rated reactive power [24]. Tf is the first-order low-pass filter time constant. The
instantaneous output active and reactive power of VVSG are low-pass filtered to obtain the
average active and reactive power of P and Q, respectively, thus to avoid power pulsation
components generated by grid voltage and current harmonics or non-linear loads from
affecting VVSG output voltage quality. In addition, Jω is the virtual inertia and Dω is the
damping coefficient. For the VVSG algorithm adopted in this paper, Dω acts in the same
way as Kω in mathematical expression; it works when VVSG frequency deviates no matter
in steady-state or dynamic process.

Pm = (ω0 − ω)Kω + Pre f
Pm − P = Jωω0

dω
dt + Dω∆ω

Q − Qre f = (E0 − U)KU

(1)
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Figure 1. The main circuit and control structure diagram of conventional VVSG. (a). The main circuit
and control structure diagram. (b). The closed-loop control block diagram of VVSG output active power.

It can be seen that VVSG converts an active power error into a frequency control
signal through a virtual inertia link, thereby regulating the phase angle difference between
VSG and the grid voltage, thus achieving indirect output active power control and active
frequency support.
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Considering the bandwidth of each control loop and as the bottom voltage and current
closed loop of VVSG are neglected for analysis simplification, its active power closed loop
transfer function for grid-connected mode can be obtained:

P =
KP(Tf s+1)

(Jωω0s2+(Kω+Dω)s)(Tf s+1)+KP
Pre f

+
KP(Jω0s+Dω+Kω)(Tf s+1)

(Jωω0s2+(Kω+Dω)s)(Tf s+1)+KP

(
ω0 − ωg

)
= Gr(s)Pre f + G f (s)

(
ω0 − ωg

) (2)

The active power characteristics of VVSG can be analyzed through transfer function
Gr(s). The zero-pole diagram of Gr(s) with Jω taking different values is shown in Figure 2.
Gr(s) is a third-order system with three poles and a zero, the position of zero is only
determined by Tf and does not vary with Jω. With Jω gradually increasing, the pole p3
converges to zero point from the left side along the real axis, and eventually forms a
pair of dipoles with the zero; the pole p1 gradually moves to the right along the real axis
from near the zero, and p2 gradually moves to the left along the real axis from near the
origin. As Jω increases, p1 and p2 form a pair of conjugate complexes and move toward
the imaginary axis, illustrating the damping ratio reduction. The system characteristic
changes from overdamped to underdamped; as a result, the dynamic overshoot increases,
and the regulation time lengthens. Therefore, while a large virtual inertia is set for VVSG
to enhance frequency stability of weak grid, it also prevents active power error from
being converted into frequency signal in time, hence slowing down active power response,
making it difficult for VVSG to meet the requirement of power command fast-following.
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The step response of VVSG output active power with various Jω are shown in Figure 3.
As Jω varies from 0 to 1, p3 is a non-dominant pole at a long distance, p1 and z1 form a
pair of dipoles, and p2 is a dominant pole near the origin with little change in position.
Therefore, the active power step response curves basically coincide. With Jω increasing
continuously, the system changes to underdamped, the system initial response speed slows
down, and both the overshoot and regulation times increase.
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Even the grid is strong enough that a large virtual inertia support is not needed
for VVSG operating in the grid-connected mode, but the first-order low-pass filter of
output active power still performs the same time-delay effect. In order to filter out power
pulsations induced by grid harmonics or nonlinear loads, the filter cutoff frequency is
generally set to two to five times the fundamental frequency in tenths, hence the response
speed of the output active power is reduced [25,26]. Setting Jω = 1, and increasing Tf
gradually, the zero and poles trend of Gr(s) is shown in Figure 4.
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The pole p1 moves to the right along the real axis, p2 moves to the left along the real
axis, and they gradually form a pair of conjugate complexes with their real part closing to
the imaginary axis, indicating that the system changes from over-damped to underdamped,
and the overshoot increases. The pole p3 and zero z1 gradually converge to the origin
along the real axis. Since p3 is a non-dominant pole, its influence on active power dynamic
characteristic is small, while z1 is closer to the imaginary axis, resulting in acceleration of
active power response and reduction in the rise time. However, the regulation time still
cannot meet the power fast following requirements of two to five cycles. The step response
curves of VVSG output active power with various Tf are shown in Figure 5.
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3. Direct Power Control Strategy Based on VVSG

In order to realize the power command fast following characteristics of a voltage-
controlled new energy converter just as the conventional current-controlled new energy
grid-connected converter, and to avoid control structure switching and intermediate vari-
able following, a direct power control strategy based on VVSG is proposed, as shown in
Figure 6. In the figure, an active power command Pref of a conventional VVSG outer active
power control loop is divided into two parts: the power command feed-forward component
Pref*λ/Kω and the remnant component Pref(1 − λDω/Kω). λ is the participation factor of
direct power control, which affects participation degree of the feed-forward component.
Pref*λ/Kω is superposed on the frequency output of a conventional VVSG active power
control loop to speed up the active power response. Pref(1 − λDω/Kω) remains the same as
Pref in a conventional VVSG active power control loop, ensuring that the steady-state output
active power of VVSG always remains Pref when λ is adjusted to regulate the dynamic
characteristics of active power.
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Figure 6. Control block diagram of direct power control strategy based on VVSG.

According to Figure 6, the active power closed-loop transfer function of VVSG in
grid-connected mode can be obtained:

P1 =
KP(Tf s+1)(λJωω0s+Kω)

Kω((Jωω0s2+(Kω+Dω)s)(Tf s+1)+KP)
Pre f

+
KP(Jωω0s+Kω+Dω)(Tf s+1)

(Jωω0s2+(Kω+Dω)s)(Tf s+1)+KP

(
ω0 − ωg

)
= Gr1(s)Pre f + G f 1(s)

(
ω0 − ωg

) (3)

Compared with Equation (2), there is an extra differential term with respect to λ in
Gr1(s), which speeds up the active power response. As λ varies, the zero-pole diagram is
shown in Figure 7.
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Gr1(s) has three poles and two zeros; the zero z1 and the poles p1, p2, and p3 are the
same as the zero and poles of Gr(s); and z2 = –Kω/(λJωω0) is the new added zero point
introduced by direct power control. As λ gradually increases from 0 to 5, z2 approaches the
origin along the negative real axis and finally becomes the dominant zero point. Hence, the
effect of the active power command differential term is gradually enhanced and the power
response is accelerated. Figure 8 shows VVSG output active power step response curves
with λ varying from 0 to 5. As λ increases, the response of output active power speeds up
and the regulation time decreases. As λ = 0, the feed-forward component of direct power
control does not work, and the VVSG output active power regulation time is about 0.2 s. As
λ = 5, the regulation time is about 0.05 s, indicating that VVSG with direct power control
possesses the fast power following characteristics similar to current-controlled converters.
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In addition, by comparing Equations (2) and (3), we can see that Gf(s) without direct
power control algorithm and Gf 1(s) with direct power control algorithm are the same.

In summary, if the power grid is a weak grid with small inertia, and VVSG is adopted
to enhance system stability, VVSG should perform slow power following and frequency
variation characteristics with large virtual inertia. Setting λ = 0, VVSG operates in a
conventional voltage control mode, and its inertia and primary frequency regulation
characteristics remain unchanged. If VVSG is connected to a strong grid with high inertia,
or if it is required to quickly track active power command, it should mainly perform active
power fast following characteristics with small virtual inertia and a large rate of change in
frequency. By reasonable configuration of λ according to the state of the connected grid
and the system inertia requirements, the smooth transition of VVSG between active power
fast following characteristics and large virtual inertia characteristics without control mode
switching and intermediate variable following can be achieved. Moreover, the voltage
support capability is maintained under both characteristics, as shown in Figure 9.
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4. Simulation Analysis 
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Figure 9. Active power and frequency characteristics of VVSG with participation factor of direct
power control λ varies.

The characteristics transition of VVSG according to grid status and requirements can
be briefly illustrated with a flow chart shown in Figure 10.
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4. Simulation Analysis

In this paper, a 100-kW VVSG grid-connected simulation platform is established in
MATLAB/Simulink environment to verify the output active power and frequency steady-
state and dynamic characteristics of the conventional controlled VVSG as well as VVSG
with direct power control. The main parameters of the simulation model are shown in
Table 1.

Table 1. Main parameters of simulation model.

Symbol Parameters Value

Srate rated power 100 kVA
E0 rated phase voltage amplitude 311 V
ω0 rated angular frequency 314.15 rad/s
fs VVSG Switching Frequency 5 kHz
Lf filter inductance value 0.5 mH
Cf
Tf
Jω

Kω

filter capacitance value
first-order low-pass filter time constant

virtual inertia
primary frequency modulation coefficient

90 µF
0.0064 s
2 kg·m2

31,831 W·s/rad

Case 1: The conventional VVSG and the VVSG with the direct power control algorithm
are connected to a strong utility grid at 1.5 s separately. The grid inertia is large, and its
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frequency does not fluctuate. At 1.6 s, the active power command increases from 0 kW
to 60 kW. The waveforms of VVSG output active power are shown in Figure 11, and the
angular frequency waveforms are shown in Figure 12. Due to the large virtual inertia,
VVSG output active power regulation time is as long as 0.2 s before it reaches steady
state. While active power response of VVSG with direct power control algorithm is so fast
that its active power regulation time can be within 0.06 s. In Figure 12, since the active
power command feedforward component of the direct power control algorithm is directly
superimposed on VVSG angular frequency, the angular frequency surges when active
command increases, while the large inertia of the grid ensures that the system frequency is
not affected by VVSG frequency fluctuation.
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Case 2: The conventional VVSG and the VVSG with a direct power control algorithm
are connected to a utility grid at 1.5 s separately. At 1.6 s, the active power command
increases from 0 kW to 60 kW, and from 2.0 s the grid frequency deviates 0.2%, the
waveforms of VVSG output active power are shown in Figure 13. As the grid frequency
decreases, the steady-state output active power increases by 20kW. In addition, the active
power response of conventional VVSG and VVSG with a direct power control algorithm
to grid frequency deviation are the same, indicating that direct power control only affects
VVSG output active power characteristics when the active power command changes, so
that it will not affect its active frequency support capability.

Case 3: The VVSG with direct power control algorithm is connected to a strong utility
grid at 1.5 s, and the active power command increases from 0 kW to 60 kW at 1.6 s. At 2 s,
due to the grid operation state changes, it becomes a weak grid and the system inertia is
reduced. VVSG perform larger virtual inertia characteristics to support system frequency.
At 5 s, the active power command increases from 60 kW to 90 kW. Figure 14 shows the
waveforms of VVSG output active power, angular frequency, line voltage, and phase
current during the characteristics transition and command step. In order to avoid active
power impact, a first-order linear function of λ = f (t) is set in the simulation and λ reduces
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to zero at 4 s. In the figure, it can be seen that VVSG output active power and frequency
basically do not fluctuate. At 5 s, as VVSG performs large virtual inertia characteristics,
and its output active power characteristics are the same as in case 1.
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Case 4: The VVSG with direct power control algorithm is connected to a strong utility
grid at 1.5 s, and the active power command increases from 0 kW to 60 kW at 1.6 s. At 2 s,
a 12-kW load is connected to PCC point. At 2.5 s, the grid becomes a weak grid, and
VVSG transits to large virtual inertia characteristics to support system frequency. At 5 s, a
12-kW load is connected to the PCC point. The waveforms of VVSG output active power,
output frequency, line voltage, and phase current during the characteristic transition and
active command step are shown in Figure 15. No matter whether the direct power control
component works or not, when the system load increases, VSG acts as a voltage source
with active support capability, and suppresses system frequency fluctuation by reducing
its own frequency change rate and supplying short-time active power.
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5. Conclusions

In this paper, a direct power control strategy based on VVSG is proposed and three ob-
jectives are completed. (1) The control structure of direct power control is proposed based
on the conventional VVSG outer active power control loop. The active power command
Pref in the conventional VVSG outer active power control loop is divided into two parts,
the power command feed-forward component is superposed on the frequency output
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of the conventional VVSG active power control loop to speed up active power response,
and the remnant component remains the same as Pref in the conventional VVSG active
power control loop to ensure that the steady-state output active power of VVSG always
remains Pref when the participation factor is adjusted to regulate dynamic characteristics
of active power. (2) The effects of λ to VVSG output active power and frequency charac-
teristics are analyzed. Compared with the voltage and current dual-mode control, VVSG
with direct power control can perform large inertia characteristic in the weak grid and
fast power following characteristics in strong grid or under maximum power tracking
requirement according to grid damping ratio and inertia demand just by adjusting λ, and
without control structure switching and intermediate variable following. Moreover, the
two characteristics can be smoothly transited. In addition, the frequency and voltage
active support ability of voltage sources can be maintained under both characteristics.
(3) Simulation cases of conventional VVSG and VVSG based on direct power control under
various working conditions are designed to verify the output active power steady-state
and dynamic characteristics, as well as the active support characteristics of VVSG with
direct power control. In addition, the smooth transition process of VVSG between large
inertia and fast power following characteristics by adjusting λ is also implemented. The
future work will focus on the adaptive adjustment of λ according to grid state and system
optimization operation requirements.
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