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Abstract: As CNNs have a strong capacity to learn discriminative facial features, CNNs have greatly
promoted the development of face recognition, where the loss function plays a key role in this process.
Nonetheless, most of the existing loss functions do not simultaneously apply weight normalization,
apply feature normalization and follow the two goals of enhancing the discriminative capacity
(optimizing intra-class/inter-class variance). In addition, they are updated by only considering the
feedback information of each mini-batch, but ignore the information from the entire training set. This
paper presents a new loss function called Gico loss. The deep model trained with Gico loss in this
paper is then called GicoFace. Gico loss satisfies the four aforementioned key points, and is calculated
with the global information extracted from the entire training set. The experiments are carried out
on five benchmark datasets including LFW, SLLFW, YTF, MegaFace and FaceScrub. Experimental
results confirm the efficacy of the proposed method and show the state-of-the-art performance of
the method.

Keywords: face recognition; loss function; convolutional neural networks; intra-class variance;
inter-class variance; discriminative capacity; deep learning

1. Introduction

CNNs have greatly promoted the development of face recognition, where the loss
function plays a key role in training the CNNs. Among a large number of loss functions,
cross entropy loss is the most widely used one in deep learning-based classification, but
it is not the best choice in face recognition as it only aims at learning separable features
instead of discriminative features [1]. Most of the face recognition tasks are open-set
tasks that require the features to have strong discriminative capacity. To enhance the
discriminative capacity of the learned features, two targets ought to be thought of: (1) mini-
mizing intra-class variance, and (2) maximizing inter-class variance. Over the past decade,
many different loss functions [1–12] have been proposed for learning highly discrimina-
tive features for face recognition. These loss functions can be broadly grouped into two
categories—the Euclidean distance-based loss functions [1–5] and the cosine similarity-
based loss functions [6–12], where the vast majority of these loss functions are derived
from cross entropy loss by modifying cross entropy loss with additional constraints or
adding a penalty to it. However, only a few of them explicitly follow the aforementioned
two targets.

Typical Euclidean distance-based losses include Center loss [1], Marginal loss [2]
and Range loss [3]. All of them add another penalty to implement the joint supervision
with cross entropy loss. Specifically, Center loss adds a penalty to softmax via computing
and limiting the distances between the within-class samples and the corresponding class

Electronics 2021, 10, 2387. https://doi.org/10.3390/electronics10192387 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0976-3381
https://orcid.org/0000-0003-2526-2181
https://doi.org/10.3390/electronics10192387
https://doi.org/10.3390/electronics10192387
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10192387
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10192387?type=check_update&version=1


Electronics 2021, 10, 2387 2 of 14

center, but it does not significantly optimize the inter-class margin. Marginal loss specifies
a threshold value and considers all possible combinations of the sample pairs in a mini-
batch, forcing the sample pairs from the different classes to have a margin larger than the
threshold and the sample pairs from the same classes to have a margin smaller than the
threshold. However, it is not reasonable to use only one threshold to limit the intra-class
and inter-class distance simultaneously. Range loss calculates the distances between the
samples within each class, and chooses two sample pairs that have the largest distances as
the intra-class constraint; at the same time, Range loss calculates the distance between the
class centers, and forces the class center pair that has the smallest distance to have a larger
margin than the designated threshold. This method can effectively optimize the positions
of the hard samples in the feature space, but ignores the optimization of other samples, so
it is unable to learn the optimal feature space. From the relevant experimental results of the
methods above [1–5], the performance of face recognition benefits from both two targets of
improving discriminative capacity can be found.

Typical cosine similarity-based losses include L-Softmax loss [8], A-Softmax loss [9]
and AM-Softmax loss [10]. L-Softmax transforms the measurement from Euclidean distance
to cosine similarity by reformulating the output of the softmax layer from W · f to |W| ·
| f | · cosθ. In addition, L-Softmax enlarges the angular margins between different identities
by adding multiplicative angular constraints to cosθ. Nevertheless, L-Softmax does not
apply L2 weight and feature normalization. Therefore, the difference between samples
is determined by the angle and size of the feature vectors, which is inconsistent with the
effort to optimize the feature space only by angle. Based on L-Softmax loss, A-Softmax
applies L2 weight normalization, so W · f can be further reformulated to | f | · cosθ, which
simplifies the training target. With L2 weight normalization, A-Softmax helps CNNs to
learn features with geometrically interpretable angular margin. The experiments in [9]
show that the performance can be enhanced by L2 weight normalization, although the
improvement is very limited. However, A-Softmax still keeps the multiplicative angular
constraints, the multiplicative angular constraints are difficult to control and it is difficult
to explain their geometrical meaning.

AM-Softmax uses the additive angular constraints instead of the multiplicative angu-
lar constraints, that is, it replaces cos(mθ) with cosθ −m. AM-Softmax also applies feature
normalization and makes |W| · | f | = s, where s = 30 is introduced as the global scaling
factor. Hence, the training target |W| · | f | · cosθ is again simplified to s · cosθ. In addition,
feature normalization brings benefits such as higher recognition accuracy, better mathe-
matical interpretation and better geometrical interpretation. These benefits are disclosed
in [13–16].

The properties of the best-performing and the most recent losses are summarized in
Table 1, from which we can see that loss functions such as Center loss, Range loss, Con-
trastive loss, Marginal loss and Triplet loss do not apply weight and feature normalization,
and loss functions such as A-Softmax loss, AM-Softmax loss, L-Softmax loss and ArcFace
do not explicitly follow the two targets of improving discriminative capacity. However,
according to the previous description, it can be seen that these four properties contribute to
the improvement of recognition performance to varying degrees. This paper presents a new
loss function, which is called Global Information-based Cosine Optimal loss (i.e., Gico loss),
and the deep model trained with Gico loss is named GicoFace accordingly. An overview
of the proposed training framework is shown in Figure 1. Table 1 shows the properties of
Gico loss, where it can be seen that Gico loss satisfies all four aforementioned properties. To
break through the hardware constraints and make Gico loss possible, Gico loss is calculated
with the global distribution information from the entire training set, which is different from
all other loss functions. The main contribution of this paper lies in the following aspects:

1. We propose a novel loss function to enhance the discriminative capacity of the deep
features. To the best of our knowledge, it is the first loss that simultaneously sat-
isfies all the first four properties in Table 1 and also the first attempt to use global
information as the feedback information;
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2. We propose and implement three different versions of Gico loss and analyze their
performance variation on multiple datasets;

3. To break through the hardware constraints and make Gico loss possible, we propose
an algorithm to learn the cosine similarity between the class center and the class edge;

4. We conduct extensive experiments on multiple public benchmark datasets including
LFW [17], SLLFW [18], YTF [19], MegaFace [20] and FaceScrub [21] datasets. Exper-
imental results presented in Section 3 confirm the efficacy of the proposed method
and show the state-of-the-art performance of the method.

Table 1. The properties of different losses in deep face recognition.

Optimize Intra-Class
Variance

Optimize Inter-Class
Variance WN FN Feedback Source

Contrastive loss [5] Yes Yes No No mini-batch
Triplet loss [4] Yes Yes No No mini-batch
Center loss [1] Yes No No No mini-batch

Marginal loss [2] Yes Yes No No mini-batch
Range loss [3] Yes Yes No No mini-batch

Fair loss [7] No Yes Yes Yes mini-batch
SFace loss [12] Yes Yes Yes Yes mini-batch
CVM loss [11] Yes Yes No No mini-batch

L-Softmax loss [8] No Yes No No mini-batch
A-Softmax loss [9] No Yes Yes No mini-batch

AM-Softmax loss [10] No Yes Yes Yes mini-batch
ArcFace [6] No Yes Yes Yes mini-batch
Gico loss Yes Yes Yes Yes global info

Note: WN: weight normalization. FN: feature normalization.

Figure 1. An overview of the proposed training framework. FN and WN represent feature normalization and weight
normalization, respectively. FC layer is the abbreviation of fully connected layer. A and C are the class centers of the
corresponding classes. AB represents the class range and AC represents the distance between two class centers.
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Please note that an earlier version of this paper [22] was presented at the International
Conference on Image Processing. Compared with the earlier version, this journal paper
adds about 50% new content: (1) experiments on MegaFace and FaceScrub datasets to
further verify the effectiveness of the proposed methods; (2) more detailed description on
related works; (3) more discussion on the proposed methods to answer some key scientific
questions; (4) more details about the complete algorithm are given.

2. From Cross Entropy Loss to Gico Loss

To better understand the proposed loss, firstly we give a brief review of related works
including cross entropy loss, Center loss and some variants of cross entropy loss based on
cosine similarity. Then we focus on the proposed Gico loss and give a detailed analysis.

2.1. Cross Entropy Loss and Center Loss

Cross entropy loss is the most commonly used loss function in deep learning, which
can be formulated as:

LS = − 1
N

N

∑
i=1

log
eWT

yi
fi+byi

∑P
j=1 eWT

j fi+bj
, (1)

where Wj ∈ Rd is the jth column of the weight matrix W in the final fully connected layer,
fi ∈ Rd is the feature vector of the ith sample belonging to the yith class, bj is the bias
term of the jth class, P is the number of classes in the entire training set and N denotes
batch size. A summary of notation declarations of this paper is shown in Table 2. From
Equation (1), it can be seen that cross entropy loss is essentially calculating the cross-
entropy between the predicted label and the true label, indicating that cross entropy loss
focuses only on optimizing the correctness of the classification results on the training set.
In other words, cross entropy loss aims at separating the training samples of different
classes instead of learning highly discriminative features and enlarging the margin between
those overlapped or non-overlapped neighbor classes. Cross entropy loss is appropriate
for closed-set tasks, where all the testing classes are predefined in the training set, as
with most cases in object recognition and behavior recognition. Nevertheless, in face
recognition, it is almost impossible to collect all the faces that may appear in the test stage,
so most real applications of face recognition are open-set tasks. Open-set tasks require the
learned features to have strong discriminative capacity so as to classify the unseen sample
correctly. To improve the discriminative capacity of the features, Center loss is proposed
by Wen et al. [1]. Center loss can minimize the intra-class distance, which is formulated as
follows:

LC =
1
2

N

∑
i=1
|| fi − cyi ||

2
2, (2)

where cyi denotes the class center of the yith class. Center loss is the sum of all the distances
between each sample and its class center. Center loss is used in conjunction with cross
entropy loss:

L = LS + λLC, (3)

where λ is a hyper-parameter for adjusting the impact of these two losses. Center loss opti-
mizes only the intra-class variance and it does not apply weight and feature normalization.

2.2. Variants of Cross Entropy Loss Based on Cosine Similarity

L-Softmax loss, A-Softmax loss, AM-Softmax loss and ArcFace loss are variants of
cross entropy loss based on cosine similarity. They have all been proposed in the past
three years. All of them are derived from the original cross entropy loss in Equation (1),
replacing the distance measurement from Euclidean distance to cosine similarity. In the
cosine space, the similarity between two vectors is only up to the angle between them
if feature normalization and weight normalization are applied. This makes the training
process more focused on distinguishing different types of samples by optimizing the angle
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between the vectors, without having to consider the complex multi-dimensional spatial
structure in the Euclidean space. The aforementioned variants transform the FC layer
formulation from WT

yi
fi + byi to ‖Wyi‖‖ fi‖cosθyi by setting the bias byi to 0, where θyi is the

angle between Wyi and fi. However, they have different choices for weight and feature
normalization, and use different ways to add marginal constraints.

Table 2. Notation Declaration.

Notations Interpretations

d the number of dimensionality
W the weight matrix in the final fully connected layer
Wj the jth column of W
yi the label of ith sample
f feature vector
fi the feature vector of the ith sample belonging to yith class
bj the bias term of the jth class
P the number of classes in the entire traning set
N batch size
cyi the class center of the yith class
λ a hyper-parameter in the center loss

Wyi the weight matrix of the yith class
θyi the angel between Wyi and fi
m inter-class constraint
cj the center of class j
ej the farthest smaple of class j from the class center

R(j) the cosine range of class j

β
the shrink rate for adjusting the shrink speed of the learned class

range
A set A

∑Top(A, K) the sum of the K largest elements in A

Equations (4) and (5) show the formulation of the L-Softmax loss and the A-Softmax
loss, respectively:

LL = − 1
N

N

∑
i=1

log
e‖Wyi ‖‖ fi‖ψ(θyi )

e‖Wyi ‖‖ fi‖ψ(θyi ) + ∑P
j=1,j 6=yi

e‖Wj‖‖ fi‖ψ(θj)
(4)

LA = − 1
N

N

∑
i=1

log
e‖ fi‖ψ(θyi )

e‖ fi‖ψ(θyi ) + ∑P
j=1,j 6=yi

e‖ fi‖ψ(θj)
, (5)

where ψ(θyi ) = (−1)kcos(mθyi )− 2k, θyi ∈ ( kπ
m , (k+1)π

m ), k ∈ (0, m− 1), m ≥ 1 is the angular
margin. With greater m, the between-class margin becomes larger and the learning objective
also becomes harder. In L-Softmax loss and A-Softmax loss, m is used as a multiplier on the
angle, so we say that L-Softmax loss and A-Softmax loss apply the multiplicative angular
margin. Different from L-Softmax loss, weight normalization is introduced in A-Softmax
loss, which sets ‖Wyi‖ = 1 by L2 normalization, which makes all class centers to lie on
the hypersphere.

On the basis of L-Softmax loss and A-Softmax loss, AM-Softmax loss further adopts
feature normalization and uses the additive cosine margin to replace the multiplicative
angular margin. Feature normalization makes the samples of all classes to lie on the
hypersphere, while the additive cosine margin forces the different classes to be separated
from the cosine similarity level. AM-Softmax loss is formulated as follows:

LAM = − 1
N

N

∑
i=1

log
es(cos(θyi )−m)

es(cos(θyi )−m) + ∑P
j=1,j 6=yi

escos(θj)
, (6)
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where ‖ fi‖ is fixed by L2 normalization and is re-scaled to s. So ‖ fi‖ is replaced with s
in Equation (6). After AM-Softmax loss, ArcFace loss again replaces cos(θyi ) − m with
cos(θyi + m), which enables m to clearly represent the meaning of angle geometrically.
Therefore Arcface loss is computed as follows:

Larc = −
1
N

N

∑
i=1

log
es(cos(θyi+m))

es(cos(θyi+m)) + ∑P
j=1,j 6=yi

escos(θj)
. (7)

2.3. The Proposed Gico Loss

After reviewing the recent loss functions used in deep face recognition, we present
a new loss function, namely Gico loss (Global Information-based Cosine Optimal loss).
Gico loss utilizes the global information from the entire training set and integrates the
advantages of the existing losses. Firstly, L2 weight normalization is applied by fixing
bj = 0 and ||Wj|| = 1. Secondly, we apply L2 normalization on the feature vector fi and
re-scale ‖ fi‖ to s. Similar to Center loss, Gico loss is also used in conjunction with another
loss function. Here, the cross entropy loss is adopted like the Center loss, we choose AM-
Softmax loss, as AM-Softmax loss shows slightly better performance than cross entropy
loss. The total loss is formulated as follows:

L = LAM + λLG. (8)

In designing the Gico loss, two sub-tasks are considered: minimizing the intra-class
variance and maximizing the inter-class variance. To cope with these two sub-tasks, two
“lite” versions of Gico loss are designed, respectively. Finally, we construct a standard
version of Gico loss, which is the combination of these two lite versions. To minimize
the intra-class variance, we propose a “lite” version of Gico loss (Gico Lite A), which is
formulated as below:

LGA =
P

∑P
j=1

R(j)+1
2

R(j) = cos(cj, ej),

(9)

where cj is the center of class j, ej represents the farthest sample of class j from the class
center, R(j) represents the cosine range of class j, namely the cosine similarity between
the class center and the edge of class j, and P is the number of the classes in the entire
training set. During the training, the deep features change after each mini-batch, which also
leads to the change of cj and ej. To make cj and ej as accurate as possible, ideally, cj and ej
should be calculated by traversing the entire training set and updated after each mini-batch.
Nevertheless, this is totally unfeasible in terms of the power of the existing hardware. The
reason lies in two constraints: the computing power and the memory size of GPU, TPU or
other similar processing units. If the computing power constraint can be ignored, the deep
neural network could take the entire training set as the source of feedback information; if
the memory size constraint can be ignored, the deep neural network would input the entire
training set into the memory and get rid of the size limitation of a mini-batch. Perhaps
just because of the above two constraints, there is no loss that uses the entire dataset as the
source of feedback information to optimize the CNNs in face recognition.

In this paper, the first constraint is broken through by two approximation solutions.
From Equation (6), it is can be seen that the key optimisation object of the AM-Softmax
loss is to minimize θyi and maximize θj, where θyi represents the angle between fi and
Wyj . θj represents the angle between fi and Wj, where j 6= yi. In other words, AM-Softmax
loss is aimed at decreasing the distances between Wj and the sample features in the jth
class (j = 1, 2, ..., P). As the training goes on, Wj is updated automatically to the center
of class j (j = 1, 2, ..., P), as this leads to the minimum distance sum between Wj and the
sample features in the jth class. Therefore, we can simply use Wj as the substitution of cj
without any extra computing power. For ej and R(j), we propose a learning algorithm to
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recursively update the range of each class. In the beginning, R(j) is set to 1 initially, then
we update R(j) using the following iterations:

R(j)t+1 = R(j)t +
N

∑
i=1

φ(yi, j) · ∆Ri, j = 1, 2, ..., P. (10)

∆Ri =

{
cos(Wyi , fi)− R(yi)

t, R(yi)
t > cos(Wyi , fi)

β · (cos(Wyi , fi)− R(yi)
t), R(yi)

t ≤ cos(Wyi , fi),
(11)

where β is the shrink rate for adjusting the shrink speed of the learned class range. φ(yi, j) =
0 when yi 6= j, otherwise φ(yi, j) = 1. The learning algorithm takes two cases into
consideration and performs two operations accordingly: (a) Replace the class range directly
with the cosine similarity between the input sample and its corresponding class center,
if their cosine similarity is smaller than the recorded class range; (b) Let the class range
shrink by scaling their cosine similarities with β, if the cosine similarity between the input
sample and its corresponding class center is larger than the recorded class range. Operation
(a) keeps the learned class range up to date. Nevertheless, as the training goes on, the
real class range will become smaller and smaller, so operation (b) is performed to help the
learned class range shrink to its real value.

To maximize the inter-class variance, we also propose another "lite" version of Gico
loss (Gico Lite B):

LGB =
∑Top(A, K)

K

A = { cos(Wa, Wb) + 1
2

: a, b = 1, 2, 3, ..., P; a > b},
(12)

where A is a set and ∑Top(A, K) denotes the sum of the K largest elements in A. Gico
Lite B is aimed at finding K pairs of nearest class centers in the entire training set and
then calculates the sum of their distances. Compared with the non-adjacent class centers,
the corresponding classes of the adjacent centers have a high probability to have small
margins or overlaps. If all adjacent classes have proper margins, the non-adjacent classes
would have larger margins. Therefore, taking all center pairs into account is unnecessary.
The most effective way is optimizing the distances of all the adjacent centers, but it is
time-consuming to calculate the number of the adjacent center pairs that exist on the
hypersphere. Here, a conservative strategy is adopted, namely set the value of K to P
where P is the number of classes. As the minimum number of adjacent center pairs is P
which takes place when all the class centers line up in a circle on the hypersphere.

For best performance, we propose the standard version of Gico loss (Gico Std) in the
end, which integrates the above two lite versions:

LGstd = LGA ∗ LGB =
P ∗∑Top(A, K)

K ∗∑P
j=1

R(j)+1
2

. (13)

Algorithm 1 shows the basic learning steps in the CNNs with the finally proposed
Gico Std.
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Algorithm 1 Learning algorithm in the CNNs with the proposed Gico Std.

Input: Training samples { fi}, initialized parameters θC in convolution layers, parameters
W in the final fully connected layer, learning rate µt, initialized class ranges {R(j) =
1|j = 1, 2, ..., P}, class hyperparameters λ, hyperparameters β, and the number of
iteration t � 1.

Output: The parameters θC and the total loss L.

1: while t < maximum iteration number do

2: Calculate LGA by LGA = P
∑P

j=1
R(j)+1

2

, where R(j) = cos(cj, ej).

3: Calculate LGB by LGB =
∑Top(A,P)

P , where A = { cos(Wa ,Wb)+1
2 : a, b = 1, 2, 3, ..., P; a >

b}.

4: Calculate LGstd by LGstd = LGA ∗ LGB .

5: Calculate the total loss by L = LAM + λLGstd .

6: Calculate the backpropagation error ∂Lt

∂ f t
i

for each sample i by ∂Lt

∂ f t
i
=

∂Lt
AM

∂ f t
i

+ λ
∂Lt

Gstd
∂ f t

i
.

7: Update W by Wt+1 = Wt − µt ∂Lt

∂Wt = Wt − µt ∂Lt
AM

∂Wt .

8: Update θC by θt+1
C = θt

C − µt ∑N
i

∂Lt

∂ f t
i

∂ f t
i

∂θt
C

.

9: Update R(j)t+1 = R(j)t + ∑N
i=1 φ(yi, j) · ∆Ri, j = 1, 2, ..., P, where ∆Ri is calculated

by Equation (11).

10: t � t + 1.

11: end while

2.4. Discussion

1. Why combine LGA and LGB using multiplication instead of simple addition? Does
it cause instability?
The idea of multiplication is inspired by LDA (Linear Discriminative Analysis). Using
multiplication, only one parameter λ is needed for adjusting the impact of Gico Std.
Using addition, two parameters are needed for the two parts of Gico Std respectively.
Roughly speaking, Gico Std is the quotient of the average inter-class distance and
the average intra-class distance as shown in Equation (13). Both denominator and
nominator have limits, and they are mutually constrained; thus, their quotient does
not lead to instability. We checked the loss curves, and confirm that the cases of
instability did not happen.

2. The improvements on recognition accuracy are somewhat incremental?
Our observation is that incremental improvements are common in General Face
Recognition (GFR). GFR has reached a very high level of performance so the scope of
improvement is limited. Most of the recent GFR methods have marginal improvement
or even worse than the state-of-the-art but are aimed to solve specific problems. For
example, Sphereface+ [9], Center loss [1] and CosFace [15] have improvements from
−0.19% to 0.31% on LFW dataset.

3. What are the highlights of the proposed method?
Our method creates two "firsts". It is the first loss function that simultaneously satisfies
all five properties in Table 1 and is the first to use global information as feedback.



Electronics 2021, 10, 2387 9 of 14

Therefore, the proposed loss has its own merits, will encourage others to carefully
consider the use of global information and will create opportunities for new research.

4. Cross entropy loss separates the samples of different classes, but does not enlarge
the margin between neighbor classes". What’s the difference?
These two cases correspond to two kinds of features: separable features and discrimi-
native features. Separable features are able to separate classes by decision boundaries.
Discriminative features are further required to have better intra-class compactness
and inter-class separability to enhance predictivity. The Example can be found in
Figure 1 of [1].

5. Using global information is better than just using mini-batch? Why is global in-
formation introduced?
No, both of them are necessary for training a deep learning model. All practitioners
are aware that using mini-batch SGD (Stochastic Gradient Descent) makes the neural
network generalize better than using standard gradient descent that takes the entire
dataset as input, as the randomness helps the network jump out of some local mini-
mals which is beneficial to the generalization. Therefore, the proposed deep model
is trained by the mini-batch data on one hand. On the other hand, the proposed
methods also introduce global information, as the mini-batch data cannot provide
the loss functions with precise measurement information, like the positions of the
class center and the class edge in Gico loss. Introducing global information makes the
measurement information precise, thus improve the final recognition accuracy.

3. Experiments
3.1. Experiment Settings

Our network models are implemented by Tensorflow with Inception-ResNet-v1 [23] as
the trunk network. We combine Inception-ResNet-v1 with different losses resulting in five
different combinations: (1) ResNet+Softmax; (2) ResNet+AM-Softmax; (3) ResNet+Gico
Lite A; (4) ResNet+Gico Lite B; and (5) ResNet+Gico Std.

In all experiments, we set 320 as the epoch size, 120 as the batch size, 5 × 104 as the
weight decay, 0.4 as the keep probability of the fully connected layer, 512 as the embedding
size and 0.01 as the shrink rate. We manually optimize the hyperparameter λ. Since it is
not sensitive to the performance, we just try multiple different values on the verification
set and choose the value that leads to the minimum total loss. The initial learning rate is
set to 0.05 and is reduced by a factor of 10 every 100,000 iterations. Table 3 summarizes all
experimental simulation parameters.

Table 3. Experimental simulation parameters.

Parameters Values

epoch size 320
batch size 120

weight decay 5 × 104

keep probability of the fully connected layer 0.4
embeding size 512

shrink rate 0.01
initial learning rate 0.05

In all experiments, VGGFace2 [24] is used as the training data. To guarantee the
reliability of the results, we removed the identities which might be overlapped with the
testing sets from VGGFace2 but we did not do data cleaning, as VGGFace2 is a very
clean dataset. Finally, there are 3.05 million face images in the preprocessed training set.
For testing, we use diverse public benchmark datasets: LFW [17], SLLFW [18], YTF [19],
MegaFace [20] and FaceScrub [21] datasets. For image preprocessing, we applied the same
pipeline of processes on every raw image in the training set and the testing sets. At first,
MTCNN [25] is employed for face detection. MTCNN occasionally fails to detect the face.
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If this occurs for a training image, the image is simply abandoned. If it occurs for a testing
image, we use the provided official landmarks or bounding boxes instead. All the face
images are cropped to the size of 160 * 160. To strengthen the randomness of the training
data, random horizontal flipping is performed on the training images. The final features of
a testing image are generated by concatenating the features of the original image and the
features of its horizontally flipped counterpart so as to improve the recognition accuracy.

3.2. MegaFace Challenge 1 on FaceScrub

In this section, we evaluate the performance of the proposed Gico loss on the MegaFace
dataset [20] and the FaceScrub dataset [21]. Following the experimental protocol of
MegaFace Challenge 1, we use the MegaFace dataset as the distractor set and set 1 million
distractors. FaceScrub dataset is used as the testing set. The evaluation is conducted
with the officially provided code [20]. Figure 2a,b report the CMC curves and the ROC
curves of different methods with 1M distractors on MegaFace Set 1, respectively. The
results of the benchmark methods (including Barebones FR, SIAT MMLAB, Vocord and
Faceall) are generated with the evaluation code and features provided by MegaFace team
http://megaface.cs.washington.edu/participate/challenge.html accessed on 30 June 2021.
From Figure 2a, we can observe that the three versions of Gico loss outperform Softmax,
AM-Softmax and other benchmark methods on the Rank1 identification rate by 5% to
22%. On Rank10, the best-performing comparable method is Vocord, but Gico Std still
outperforms it by 7%. On all the values of rank, Gico Std shows better performance than
Gico Lite B and Gico Lite A, while Gico Lite A performs better than Gico Lite B. Figure 2b
shows the verification performance, where all three versions of Gico loss significantly
outperform the other methods with the change of False Positive Rate. Specifically, the
proposed Gico loss has a higher True Positive Rate than the other methods by at least 4%
when the False Positive Rate is 10−6. Gico Std still shows better performance than Gico Lite
B and Gico Lite A. These results on the FaceScrub dataset demonstrate the effectiveness of
the proposed Gico loss.
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Figure 2. (a) The CMC curves of different methods with 1 million distractors on MegaFace Set 1. (b) The ROC curves of
different methods with 1 million distractors on MegaFace Set 1.

3.3. Results on LFW, YTF and SLLFW

In this section, the proposed methods and the state-of-the-art methods are evaluated
on the LFW, YTF and SLLFW dataset. The LFW [17] face image dataset is collected from the
web. It contains 13,233 face images with large variations in facial paraphernalia, pose and
expression. Following the standard experimental protocol of “unrestricted with labeled
outside data” [26], 6000 face pairs are tested according to the given pair list. The YTF [19]
face video dataset contains 3425 videos and is obtained from YouTube. We also follow the

http://megaface.cs.washington.edu/participate/challenge.html
http://megaface.cs.washington.edu/participate/challenge.html
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standard experimental protocol of “unrestricted with labeled outside data” to evaluate the
relevant methods on the given 5000 video pairs.

Table 4 shows the experimental results of different methods on the LFW and YTF
datasets. As we follow the same experimental protocol and settings, the results shown
in the upper part of the table are cited from their original papers. From Table 4, it is
can be observed that Gico Std shows higher verification accuracy on LFW than Softmax,
AM-Softmax, Gico Lite A and Gico Lite B by about 0.1%. Gico Std ties with FaceNet for
first place on LFW. However, Gico Std utilizes only 3.05 million images for training, whilst
FaceNet utilizes 200 million images for training. Gico Std also beats the other benchmarks
methods by 2.28% to 0.11% on LFW, most of which are published in leading computer
vision conferences. As for the results on the YTF dataset, all three versions of Gico loss have
a better performance than the comparable methods by at most 3.42%, which demonstrates
the state-of-the-art performance of the Gico loss.

Table 4. Verification performance of state-of-the-art methods on LFW and YTF datasets.

Methods Images LFW(%) YTF(%)

ICCV17’ Range Loss [3] 1.5M 99.52 93.7
CVPR15’ DeepID2+ [27] 99.47 93.2
CVPR14’ Deep Face [28] 4M 97.35 91.4

CVPR15’ Fusion [29] 500M 98.37
ICCV15’ FaceNet [4] 200M 99.63 95.1

ECCV16’ Center Loss [1] 0.7M 99.28 94.9
NIPS16’ Multibatch [30] 2.6M 98.20

ECCV16’ Aug [31] 0.5M 98.06
ICML16’ L-Softmax [8] 0.5M 98.71
CVPR17’ A-Softmax [9] 0.5M 99.42 95.0

Softmax 3.05M 99.50 95.22
AM-Softmax 3.05M 99.57 95.62
Gico Lite A 3.05M 99.60 95.70
Gico Lite B 3.05M 99.62 95.78

Gico Std 3.05M 99.63 95.82

LFW is a popular face dataset. However, more and more methods are gradually
touching its theoretical upper limit. Consequently, it becomes more and more difficult
to differentiate different methods on LFW. To confirm the performance of the proposed
methods, we conducted an additional experiment on SLLFW [18]. SLLFW uses the same
positive pairs as LFW for testing, but in SLLFW, 3000 similar-looking face pairs are delib-
erately selected out from LFW by human crowdsourcing to replace the random negative
pairs in LFW. SLLFW adds more challenges to the testing, causing the accuracy of the same
state-of-the-art methods to drop by about 10–20%.

From Table 5, we can see the verification accuracy of different methods on SLLFW.
The results of some benchmark methods are shown in the top half of the table, which
are provided by the SLLFW team [32] and are publicly accessible http://www.whdeng.
cn/SLLFW/index.html#reference accessed on 30 June 2021. As shown in Table 5, Gico
loss achieves considerably higher verification accuracy on SLLFW when it is compared
with other methods. In the top half of Table 5, the accuracy of the benchmark methods
drops by between 4.68% and 16.75% from LFW to SLLFW. By comparison, the accuracy of
the proposed Gico loss drops by between 1.45% and 1.49%. The experimental results on
SLLFW further confirm the effectiveness of the proposed methods.

http://www.whdeng.cn/SLLFW/index.html#reference
http://www.whdeng.cn/SLLFW/index.html#reference
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Table 5. Verification performance of different methods on SLLFW.

Method Images LFW(%) SLLFW(%)

Deep Face [28] 0.5M 92.87 78.78
DeepID2 [5] 0.2M 95.00 78.25

VGG Face [33] 2.6M 96.70 85.78
DCMN [32] 0.5M 98.03 91.00

Noisy Softmax [34] 0.5M 99.18 94.50

Softmax 3.05M 99.50 96.17
AM-Softmax 3.05M 99.57 98.02
Gico Lite A 3.05M 99.60 98.15
Gico Lite B 3.05M 99.62 98.13

Gico Std 3.05M 99.63 98.17

4. Conclusions

This paper presents a novel loss function—Global Information-based Cosine Optimal
loss (i.e., Gico loss). To the best of our knowledge, Gico loss is the first attempt to use
global information as the feedback in face recognition. We propose a novel algorithm
to learn the cosine similarity between the class center and the class edge so as to break
through the constraint and make Gico loss possible. In addition, the advantages of the
best losses proposed in recent years are also integrated into the Gico loss. Extensive
experiments are conducted on the LFW, SLLFW, YTF, MegaFace and FaceScrub datasets.
The experimental results show that the proposed Gico loss outperforms all comparable
methods on all datasets. Especially in the FaceScrub dataset, the three versions of Gico
loss outperform the comparable methods on the Rank1 identification rate by 5% to 22%.
The results demonstrate the effectiveness of the Gico loss and show that we achieve a
state-of-the-art performance. However, since the class center and the class range used in
Gico loss are obtained through a learning process, there is a time lag, which leads to a
longer time to complete convergence. Future work will focus on reducing the convergence
time while ensuring the learning accuracy of the class center and class range.
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