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Abstract: With the tremendous growth and usage of digital images, no-reference image quality
assessment is becoming increasingly important. This paper presents in-depth analysis of Benford’s
law inspired first digit distribution feature vectors for no-reference quality assessment of natural,
screen-content, and synthetic images in various viewpoints. Benford’s law makes a prediction for
the probability distribution of first digits in natural datasets. It has been applied among others for
detecting fraudulent income tax returns, detecting scientific fraud, election forensics, and image
forensics. In particular, our analysis is based on first digit distributions in multiple domains (wavelet
coefficients, DCT coefficients, singular values, etc.) as feature vectors and the extracted features are
mapped onto image quality scores. Extensive experiments have been carried out on seven large
image quality benchmark databases. It has been demonstrated that first digit distributions are
quality-aware features, and it is possible to reach or outperform the state-of-the-art with them.

Keywords: no-reference image quality assessment; Benford’s law

1. Introduction

Assurance of acceptable image quality is a crucial task in a very wide range of practical
applications, such as video surveillance [1], medical image processing [2], or vision systems
of autonomous vehicles [3]. Any kind of image noise or distortion does not only deteriorate
the users’ visual experience, but can lead to tragic consequences. For instance, the poor or
low illumination conditions can easily deteriorate the performance of vision-based object
detection (e.g., pedestrians, lane markings, traffic signs, etc.) and semantic segmentation
algorithms of autonomous vehicles [4]. Moreover, assurance of good image quality is of
vital importance in medical applications, such as MRI or endoscopic surgery, where image
quality may influence the diagnostic accuracy [5] or the surgeon’s ability to successfully
carry out complex medical interventions [6].

Image quality assessment (IQA) has been in the focus of research for decades [7].
Despite recent progress, IQA is still a challenging task in the image processing community.
Existing IQA approaches are classified into three groups—full-reference (FR), reduced-
reference (RR), and no-reference (NR)—depending on the availability of the distortion-free,
reference image [8,9]. However, the reference image is not available in the majority of
real-life applications, thus the development of NR-IQA methods is a very popular research
topic in the literature.

To develop, research, rank, and test NR-IQA algorithms, publicly available databases
utilized in the literature. During subjective IQA, a large number of human observers
are asked to evaluate the quality of a set of digital images. Next, the acquired scores are
cleaned and their average are considered as the final quality score which is called mean
opinion score (MOS) in the literature. Subjective IQA is usually carried out in a laboratory
environment involving experts, however some researchers adopt crowdsourcing to collect
individual quality ratings [10]. Single stimulation, double stimulation, and stimulation com-
parison methods are the most common ones for subjective scoring in the literature. For more
details about subjective scoring, we refer to the work of Zhang et al. [11]. An overview
about a wide range of publicly available IQA databases can be found in [12].

Electronics 2021, 10, 2378. https://doi.org/10.3390/electronics10192378 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-3265-5047
https://doi.org/10.3390/electronics10192378
https://doi.org/10.3390/electronics10192378
https://doi.org/10.3390/electronics10192378
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10192378
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10192378?type=check_update&version=1


Electronics 2021, 10, 2378 2 of 17

In this paper, we conduct thorough analysis on the features derived from Benford’s
law for NR-IQA. Benford’s law, also known as the first digit law or the law of anomalous
numbers, is an empirical observation about the relative frequency of first digits in many
natural datasets. It was named after Frank Benford who was a physicist at the General
Electric Research Laboratories in New York. He noticed that the first few pages of log
tables were more worn than the last few pages. As a consequence, the front of the book
was more used than the back of the book because there were more numbers that started
with low digits than those of started with high digits. According to Benford’s law, the first
digit d (d ∈ {1, ..., 9}) occurs with probability

P(d) = log10(d + 1)− log10(d) = log10

(
d + 1

d

)
= log10

(
1 +

1
d

)
. (1)

The distribution of Benford’s law prediction (Equation (1)) is depicted in Figure 1.
Benford’s law has been observed in many natural datasets, such as population numbers,
length of rivers, mathematical and physical constants, etc., [13]. In image processing,
Jolion [14] was the first who demonstrated that gradient images obey the Benford’s law,
although it is not satisfied in the pixel domain, as pixel values distribute between 0 and 255.
Similarly, Pérez-González et al. [15] pointed out that the discrete cosine transform (DCT)
coefficients of an image follow the distribution predicted by Benford’s law.

Figure 1. Distribution of first digits in natural datasets according to Benford’s law. Each bar represents
a digit, and the height is proportional to the relative frequency of numbers that begin with that digit.

First, Li [16] proposed a Benford’s law based metric combined with color ingredient,
image complexity, image order, and Machado–Cardoso metric [17] to establish an aesthetic-
aware feature vector. Specifically, the Benford’s law-based metric was determined as
the distance between the first digit distribution (FDD) of Benford’s law prediction and
those of 9 bins lightness histogram. A similar approach was taken by Ou et al. [18] in
NR-IQA. A composite feature vector of 51-dimension was proposed where two elements
were derived with the help of Benford’s law. Specifically, the Euclidean distance between
the FDD of the input image’s DCT coefficients and the FDD predicted by Benford’s law
was taken first. Subsequently, one more feature was extracted with the difference that the
image is processed first with a Gaussian low pass filter. In our previous work [19], FDD in
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the wavelet domain was defined as a quality aware feature vector and used it as a part of a
larger composite feature vector for NR-IQA.

The contributions of this work are summarized as follows.

• We analyze the FDD-based features in different domains (wavelet, DCT, Shearlet, etc.)
for NR-IQA. Unlike in our previous work [19], we focus on quality-aware feature
vectors derived from FDD distributions of different domains.

• We apply various regression methods including support vector regression (SVR),
Gaussian process regression (GPR), binary tree regression (BTR), and random forest
regression (RFR) to give a through performance analysis.

• We conduct comparative analysis with other state-of-the-art methods on a wide range
of publicly available IQA databases containing natural images with authentic and
artificial distortions, screen-content images, and synthetic digital images.

Structure of the Paper

The paper is organized as follows. The related work is surveyed in Section 2.
In Section 3, our method for FDD feature vector compilation is described. Section 4 presents
the experimental results with analysis. Finally, a conclusion is drawn in Section 5.

2. Related Work

As already mentioned, the goal of NR-IQA is to predict the perceptual quality of
digital images without any information about their distortion-free, reference counterpart.
In the literature, NR-IQA algorithms are tested on publicly available benchmark image
quality assessment databases, such as CLIVE [20], KonIQ-10k [21], or SPAQ [22], where
digital images with their mean opinion score (MOS) or differential mean opinion score
(DMOS) values are available. Specifically, individual quality scores are collected from
human users for each distorted image either in a laboratory environment [23] or in a
crowdsourcing-based experiment [10]. Moreover, MOS is determined as an arithemtic
mean of individual scores, while DMOS is calculated as the difference between the raw
quality score of the reference and test images [24]. An overview about subjective image
quality assessment and publicly available benchmark databases can be found in the book
of Xu et al. [25].

NR-IQA algorithms can be grouped into two classes: distortion-specific and general
purpose. As the name indicates, distortion-specific NR-IQA algorithms are designed for
specific distortion types, such as JPEG [26] or JPEG2000 [27] compression noise. In contrast,
general purpose NR-IQA methods are designed to perform over different distortion types.
The approach of natural scene statistics (NSS) has been very popular in general purpose
NR-IQA. Namely, natural images exhibit a number of statistical regularities in spatial
and transform domains that have been utilized to compile feature vectors for perceptual
image quality prediction. For instance, blind image quality index (BIQI) decomposes
first a distorted image over three scales and orientations using wavelet transform. Subse-
quently, generalized Gaussian distributions (GGD) are fitted to the wavelet coefficients and
18 quality-aware features are extracted. Finally, the features are mapped onto perceptual
quality scores using a trained SVR. Another example is Distortion Identification-based
Image Verity and INtegrity Evaluation (DIIVINE) [28] method where a GGD is fitted to
the wavelet coefficients of a distorted image. The parameters of the obtained GGD were
utilized as quality-aware feature and mapped onto quality scores with the help of a trained
SVR. In contrast, Saad et al. [29] first divided the distorted image into blocks and a GGD is
fitted onto the discrete cosine transform (DCT) coefficients of each block. The parameters
of the GGDs are pooled from each block to create a feature vector. Finally, this feature
vector is mapped onto quality scores with an SVR. Zhang et al. [30] proposed an improved
NSS model where the errors of GGD parameter fitting were taking into account during the
feature extraction step.
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Recently, data-driven approaches have gained popularity in NR-IQA that do not rely
on NSS-based or other hand-crafted features [31,32]. The work of Lv et al. [33] is a transi-
tion between hand-crafted features based and deep learning based approaches. Namely,
the authors capitalized on the multi-scale difference of Gaussian (DoG) to decompose the
distorted image in the spatial domain to extract quality-aware features. Next, a three-layer
stacked autoencoder was used for the generation of feature representations and an SVR
was utilized for perceptual quality prediction. In contrast, Kang et al. [34] trained a convo-
lutional neural network (CNN) on image patches from scratch to estimate image quality.
Similarly, Li et al. [35] trained a CNN on image patches but it was combined with the
Prewitt magnitude of segmented images to obtain perceptual quality scores. In contrast,
Ma et al. [36] introduced a multi-task CNN to improve the performance of image quality
prediction with image distortion identification. The above-mentioned CNN-based NR-IQA
approaches consider the input image’s perceptual quality as the arithmetic mean of the
image patches’ predicted quality. He et al. [37] elaborated a pooling strategy where the
image patches’ importance depend on their visual saliency. Tang et al. [38] trained and
fine-tuned a deep belief network to estimate perceptual image quality. Kim and Lee [39]
first trained a CNN on a large number of image patches acquiring quality scores with the
help of a traditional FR-IQA metric.

Comprehensive overviews about IQA or NR-IQA can be found in [9,25,40,41].

3. Methods

Figure 2 depicts the algorithmic framework of the test environment for Benford’s law
inspired no-reference image quality assessment. Specifically, the framework can be divided
into two phases. First, the extracted FDD feature vectors and the ground-truth quality
scores of the training images are sent to the regression module. Second, the extracted
FDD features of a test image are sent to the trained regression module to predict its
perceptual quality score. In [19], it was pointed out that the FDD in different transform
domains matches very well with Benford’s law in case of high quality images. Table 1
illustrates the mean FDD of singular values in KADID-10k with respect to the five distortion
levels found in this database. On the other hand, Table 2 depicts the mean FDD of DCT
coefficients with respect to five equal MOS intervals in KonIQ-10k [21] database. It can be
observed that the distance between the actual FDD and Benford’s law prediction is roughly
proportional to the level of distortion. In these tables, the distance between distributions
is characterized by the symmetric Kullback–Leibler (sKL) divergence which is defined as
between distributions P(x) and B(x):

sKL(P(x), B(x)) =
1
2

KL(P(x), B(x)) +
1
2

KL(B(x), P(x)), (2)

where the Kullback–Leibler (KL) divergence is given as

KL(P(x), B(x)) =
n

∑
i=1

P(x) log2
P(x)
B(x)

. (3)

In this paper, we analyze the efficiency of FDD in horizontal wavelet coefficients,
vertical wavelet coefficients, diagonal wavelet coefficients, DCT coefficients, singular
values, and the absolute values of shearlet coefficients for image quality prediction without
reference images.
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Figure 2. The algorithm framework for Benford’s law inspired NR-IQA.

Table 1. Mean FDD of singular values in KADID-10k with respect to reference images and five distinct distortion levels found in
KADID-10k [42]. Level 1 corresponds to the lowest amount of distortion, while Level 5 stands for the highest amount. In the last
column, the symmetric Kullback–Leibler (sKL) divergences between the actual FDD and Benford’s law distribution are given.

1 2 3 4 5 6 7 8 9 sKL

Reference 0.313 0.185 0.125 0.093 0.074 0.062 0.055 0.049 0.044 0.002
Level 1 0.307 0.184 0.126 0.095 0.076 0.064 0.055 0.049 0.044 8.52× 10−4

Level 2 0.306 0.181 0.124 0.095 0.077 0.065 0.057 0.050 0.045 3.08× 10−4

Level 3 0.312 0.182 0.123 0.092 0.075 0.064 0.056 0.050 0.046 8.59× 10−4

Level 4 0.317 0.185 0.124 0.090 0.072 0.062 0.055 0.049 0.045 0.002
Level 5 0.315 0.192 0.128 0.092 0.071 0.060 0.053 0.048 0.044 0.004

Benford’s law 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046 0

Table 2. Mean FDD of DCT coefficients in KonIQ-10k [21] with respect to different MOS intervals. In KonIQ-10k [21], lowest possible
image quality is represented by MOS = 1.0, while MOS = 5.0 stands for the highest possible image quality. In the last column,
the symmetric Kullback–Leibler (sKL) divergences between the actual FDD and Benford’s law distribution are given.

1 2 3 4 5 6 7 8 9 sKL

4.2 ≤ MOS ≤ 5 0.289 0.178 0.131 0.102 0.082 0.067 0.057 0.050 0.044 9.3× 10−4

3.4 ≤ MOS < 4.2 0.303 0.177 0.125 0.096 0.078 0.066 0.057 0.051 0.046 4.3× 10−5

2.6 ≤ MOS < 3.4 0.310 0.176 0.122 0.094 0.077 0.066 0.058 0.052 0.047 4.2× 10−4

1.8 ≤ MOS < 2.6 0.315 0.172 0.118 0.092 0.077 0.066 0.059 0.053 0.048 0.0012
1 ≤ MOS < 1.8 0.314 0.169 0.117 0.092 0.078 0.068 0.060 0.054 0.049 0.0016

Benford’s law 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046 0

Wavelet transforms were devised to overcome the limitations of the Fourier transform.
Namely, the Fourier transform decomposes signals into sine and cosine waves of specific
frequencies. In contrast, the wavelet transform decomposes signals into shifted and scaled
versions of a wavelet. Moreover, a function’s average has to be equal to zero to be a wavelet.
In this study, we take the single-level 2D discrete wavelet transform of a digital image
applying the order 4 symlet and periodic extension. Moreover, we obtain the FDD from
the horizontal, vertical, and diagonal coefficients of the input image’s wavelet transform.
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DCT describes digital images as sums of sinusoids of varying amplitudes and fre-
quencies. It is often applied in image compression, as significant information about the
image can be found in a few DCT coefficients [43]. The DCT of a M× N grayscale image I
is defined as follows:

Bpq = αpαq
M−1
∑

m=0

N−1
∑

n=0
Imn cos π(2m+1)p

2M cos π(2n+1)q
2N , 0 ≤ p ≤ M− 1, 0 ≤ q ≤ N − 1, (4)

αp =


1√
M

, p = 0√
2
M , 1 ≤ p ≤ M− 1,

(5)

αq =


1√
N

, q = 0√
2
N , 1 ≤ q ≤ N − 1,

(6)

where Bpq values are the DCT coefficients of image I.
Singular value decomposition (SVD) can be described as an algorithm for data reduc-

tion, as it identifies and orders the dimensions along which data points show the most
variation. SVD decomposed a matrix into three other matrices:

A = USVT , (7)

where A is an m× n matrix, U is an m× n orthogonal matrix, S is an n× n diagonal matrix,
and V is an n× n orthogonal matrix. Moreover, S contains the square roots of eigenvalues
from U or V in descending order.

The shearlet transform is a multi-scale extension of the traditional wavelet trans-
form so that can handle anisotropic and directional information at multiple scales [44].
The parabolic scale matrix (Ac, c ∈ R+) and the shear matrix (Sb, b ∈ R) are required to
define a Shearlet system. Formally, they can be expressed as

Ac =

(
c 0
0
√

c

)
, (8)

Sb =

(
1 −b
0 1

)
. (9)

Subsequently, the shearlet system can be given as

{ψg,h,m(x) := 2−
3
2 gψ(S−h A4−gx−m) : g, h ∈ Z, m ∈ Z2}, (10)

where g is the scale parameter, h is the angle parameter, and m is the position parameter.
If these parameters are discretized, a discrete shearlet system can be obtained. The discrete
shearlet transform of function f ∈ L2(R2) corresponds to the inner product of f with all
the shearlets that can be found in the discrete shearlet system.

In this study, the effects of extended FDD feature vectors for NR-IQA are also in-
vestigated. The extended FDD feature vectors augment FDD feature vectors by adding
certain divergence and shape parameters to the original FDD. After obtaining the FDD
feature vector of an image, the sKL divergence between the actual FDD and Benford’s law
prediction, the skewness, the kurtosis, the entropy, the median, and the standard deviation
of the actual FDD were attached to the FDD feature vector to obtain the extended FDD
feature vector. As a result, the length of the extended FDD is 15.

4. Experimental Results and Analysis

In this section, our experimental results and analysis are presented. Specifically,
a general overview about the used IQA databases is given in Section 4.1.
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4.1. Databases

In this section, an overview is given about the applied publicly available IQA databases.
In the past decade, an increasing number of publicly available IQA databases contain-

ing natural, screen-content, or synthetic images have been released for research [21]. The
images found in IQA databases have been evaluated in subjective user studies involving
human subjects in a laboratory environment [11] or crowdsourcing experiment [10] to
obtain individual quality ratings. These IQA databases can be divided into two groups
with respect to the type of image distortions (artificial or authentic). The first group con-
tains a small set of reference, pristine, distortion-free images and a large set of distorted
images derived from the reference images using various artificial distortions (Gaussian
blur, motion blur, contrast change, etc.) at different levels. In contrast, the images of the
second group were collected from public multimedia databases or personal collections.
Therefore, they contain authentic distortions.

Table 3. Publicly available IQA benchmark databases used in this paper.

Database #Reference Images #Distorted Images Resolution Environment

TID2013 [45] 24 3000 512× 384 laboratory
CLIVE [20] - 1162 500× 500 crowdsourcing

KonIQ-10k [21] - 10,073 1024× 768 crowdsourcing
KADID-10k [42] 81 11,125 512× 384 laboratory

SIQAD [46] 20 980 1280× 720 laboratory
SCID [47] 40 1800 672× 682 laboratory

ESPL v2.0 [48] 25 500 1920× 1080 laboratory

The TID2013 [45] IQA database contains 25 reference, pristine, distortion-free digital
images. Distorted images were obtained from the reference images using 24 different
distortion types in 5 different distortion levels. As a result, 3000 (=25× 24× 5) distorted
images can be found in this database. The images’ resolution is 512× 384.

The LIVE In the Wild Image Quality Challenge Database (CLIVE) [20] contains
1169 digital images with authentic distortions which were captured by different mobile
camera devices. The images were evaluated in a crowdsourcing experiment by obtaining
350,000 opinion scores from 8100 unique human observers.

The KonIQ-10k [21] IQA database consists of 10,073 digital images with authentic
distortions which were selected from the YFCC100m [49] public multimedia database.
The images were evaluated by 1459 crowd workers. Moreover, MOS for each image
was calculated from approximately 120 scores. The resolution of KonIQ-10k images is
1024× 768.

The KADID-10k [42] IQA database contains 81 reference, pristine, distortion-free digi-
tal images. Distorted images were created from the reference images applying 25 different
distortion types in 5 different distortion levels.

Due to the continuous development of multimedia devices and displays, and the
popularity of computer-generated imagery, screen content and synthetic images have
received increasingly more attention in the image processing community [50–52]. In this
paper, we consider two IQA databases with screen content images (SIQAD [46] and
SCID [47]) and one IQA database with synthetic images (ESPL v2.0 [48]). Specifically,
the SIQAD database consists of 20 reference and 980 distorted screen content images which
were evaluated using the single stimulus methodology.

The SCID [47] database contains 40 reference screen content images. Moreover,
1800 distorted screen content images were generated from the reference images using
9 different distortion types at 5 different distortion levels. Each of the distorted images
was evaluated at least by 40 human observers applying the double-stimulus impairment
scale method.
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The ESPL [48] database consists of synthetic images (1920× 1080 pixels) chosen from
video games and animation movies with corresponding quality scores. More specifically,
it contains 25 synthetic reference images and 500 distorted synthetic images generated
from the reference images using 5 different distortion types (interpolation, Gaussian blur,
Gaussian noise, JPEG compression, fast fading channel) at 4 different distortion levels.

Table 3 summarizes the main characteristics of publicly available IQA databases used
in this study.

4.2. Evaluation Metrics

In this subsection, the evaluation metrics of NR-IQA algorithms are presented. The per-
formance evaluation and ranking of NR-IQA algorithms are based on the correlation
between the predicted and ground-truth quality scores.

In the literature, Pearson’s linear correlation coefficient (PLCC), Spearman’s rank-
order correlation coefficient (SROCC), and Kendall’s rank-order correlation coefficient
are the most acknowledged performance measures which are reported in the majority of
research papers [53]. Sheikh et al. [54] proposed applying a nonlinear mapping before the
computation of PLCC,

q′ = β1

(
0.5− 1

1 + exp(β2(q− β3))

)
+ β4q + β5, (11)

where q′ and q stand for the objective quality scores after and before the mapping, respec-
tively. In the literature, the q′ values are considered for PLCC computation. Let x and
y vectors denote the vectors containing ground-truth and predicted quality scores of m
images. Then, PLCC between x and y can be expressed as

PLCC(x, y) =
∑m

i=1(xi − x̄)(yi − ȳ)√
∑m

i=1(xi − x̄)2
√

∑m
i=1(yi − ȳ)2

, (12)

where

x̄ =
1
m

m

∑
i=1

xi, (13)

and

ȳ =
1
m

m

∑
i=1

yi. (14)

SROCC between x and y can be calculated as

SROCC(x, y) =
∑m

i=1(xi − x′)(yi − y′)√
∑m

i=1(xi − x′)2
√

∑m
i=1(yi − y′)2

, (15)

where x′ and y′ stand for the middle ranks of x and y, respectively. KROCC between x and
y can be expressed as

KROCC(x, y) =
C− D

1
2 m(m− 1)

, (16)

where C stands for the number of pairs that correlates consistently between x and y, while
D denotes the number of the other pairs.

In this study, we report on median PLCC, SROCC, and KROCC values measured over
1000 random train–test splits. Specifically, IQA databases containing authentic distortions
(CLIVE [20] and KonIQ-10k [21]) were split randomly into training (approximately 80%
of images) and test (approximately 20% of images) sets 1000 times and the median of
the measured PLCC, SROCC, and KROCC values are reported. On the other hand, IQA
databases with artificial distortions (TID2013 [45], KADID-10k [42], SIQAD [46], SCID [47],
ESPL v2.0 [48]) were split randomly into training and test sets with respect to the reference
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images to avoid any semantic content overlap between these sets. Specifically, approx-
imately 80% of reference images were selected and those distorted images which were
derived from these reference images of the IQA database were used as a training set and
the remaining distorted images were applied as a test set.

4.3. Evaluation Environment

The computer configuration applied in our experiments are summarized in Table 4.
The proposed method was implemented and tested in MATLAB R2021a relying on the built-
in functions of the Statistics and Machine Learning Toolbox, Image Processing Toolbox,
and Wavelet Toolbox.

Table 4. Computer configuration applied in our experiments.

Computer model STRIX Z270H Gaming
CPU Intel(R) Core(TM) i7-7700K CPU 4.20 GHz (8 cores)

Memory 15 GB
GPU Nvidia GeForce GTX 1080

4.4. Parameter Study

In this subsection, a parameter study is presented which contains a detailed analysis
about the different FDD feature vectors. Specifically, we examine the performance effects
of FDD feature vectors extracted from horizontal, vertical, and diagonal wavelet coeffi-
cients, DCT coefficients, singular values, and shearlet coefficients. Moreover, we made
experiments with five different regression algorithms, such as linear SVR, RBF-SVR, GPR
with rational quadratic kernel function, binary regression tree (BTR), and random forest
regression (RFR), to find the best performing method. The results obtained on KonIQ-
10k [21], KADID-10k [42], SCID [47], and ESPL v2.0 [48] are summarized in Tables 5–8.
From these results, it can be clearly seen that GPR with rational quadratic kernel function
is the best performing regression module. It outperforms all the other types of regression
modules in all cases. The performance of individual FDD feature vectors is rather weak,
but the concatenation of all types of FDDs exhibit a strong correlation with perceptual
quality scores. Interestingly, ranking between different types of FDDs cannot be plainly
established. On the one hand, FDD of Shearlet coefficients show the weakest correlation
with perceptual quality scores in almost all cases. On the other hand, FDD of singular
values exhibit a rather strong correlation with the quality scores of synthetic images (see
Table 8 for the results of ESPL v2.0 [48]) but it gives the second weakest performance on
screen content images (Table 7). For natural images with authentic distortions (Table 5),
FDD of DCT coefficients provides the best and FDD of diagonal wavelet coefficients the
second best results. However, the case is exactly the opposite for natural images with
artificial distortions.

Table 5. Comparison of different FDD feature vectors extracted from different domains and different
regression modules on KonIQ-10k [21] database. Median SROCC values were measured over
1000 random train–test splits.

FDD Linear SVR RBF-SVR GPR BTR RFR

Wavelet horizontal coefficients 0.245 0.466 0.470 0.263 0.315
Wavelet vertical coefficients 0.250 0.479 0.483 0.275 0.326

Wavelet diagonal coefficients 0.217 0.483 0.486 0.274 0.324
DCT coefficients 0.336 0.521 0.534 0.334 0.334
Singular values 0.152 0.356 0.357 0.179 0.246

Absolute Shearlet coefficients 0.135 0.440 0.446 0.254 0.308

All 0.407 0.655 0.691 0.471 0.555
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Table 6. Comparison of different FDD feature vectors extracted from different domains and different
regression modules on KADID-10k [42] database. Median SROCC values were measured over
1000 random train–test splits.

FDD Linear SVR RBF-SVR GPR BTR RFR

Wavelet horizontal coefficients 0.250 0.287 0.311 0.181 0.201
Wavelet vertical coefficients 0.258 0.315 0.323 0.196 0.226

Wavelet diagonal coefficients 0.291 0.394 0.396 0.246 0.280
DCT coefficients 0.196 0.344 0.355 0.206 0.242
Singular values 0.157 0.304 0.315 0.181 0.234

Absolute Shearlet coefficients −0.011 0.166 0.171 0.075 0.091

All 0.368 0.605 0.607 0.416 0.468

Table 7. Comparison of different FDD feature vectors extracted from different domains and different
regression modules on SCID [47] database. Median SROCC values were measured over 1000 random
train–test splits.

FDD Linear SVR RBF-SVR GPR BTR RFR

Wavelet horizontal coefficients 0.113 0.307 0.289 0.182 0.181
Wavelet vertical coefficients 0.103 0.321 0.303 0.197 0.206

Wavelet diagonal coefficients 0.140 0.323 0.317 0.203 0.204
DCT coefficients 0.441 0.398 0.442 0.271 0.260
Singular values 0.297 0.269 0.284 0.189 0.168

Absolute Shearlet coefficients 0.224 0.241 0.279 0.160 0.152

All 0.445 0.461 0.495 0.305 0.331

Table 8. Comparison of different FDD feature vectors extracted from different domains and differ-
ent regression modules on ESPL v2.0 [48] database. Median SROCC values were measured over
1000 random train–test splits.

FDD Linear SVR RBF-SVR GPR BTR RFR

Wavelet horizontal coefficients 0.321 0.503 0.563 0.354 0.347
Wavelet vertical coefficients 0.226 0.450 0.535 0.376 0.364

Wavelet diagonal coefficients 0.237 0.438 0.545 0.407 0.400
DCT coefficients 0.001 0.423 0.449 0.356 0.338
Singular values 0.424 0.581 0.606 0.478 0.487

Absolute Shearlet coefficients 0.202 0.291 0.331 0.144 0.159

All 0.667 0.695 0.774 0.542 0.560

4.5. Comparison to the State-of-the-Art

Based on the results of the previous subsection, we propose four NR-IQA methods
utilizing FFD feature vectors.

• FDD-IQA: Its feature vectors contains the FDD of horizontal, vertical, and diagonal
wavelet coefficients, DCT coefficients, singular values, and absolute values of Shearlet
coefficients. As a result, the length of the feature vector is 9× 6 = 54.

• FDD+Perceptual-IQA: Besides the features of FDD-IQA, it contains five perceptual
features, such as colorfulness [55], global contrast factor [56], dark channel feature [57],
entropy, and mean of the phase congruency image [58], which are considered consis-
tent with human quality judgments in the literature [59]. As a result, the length of the
feature vector is 9× 6 + 5 = 59.

• eFDD-IQA: Its feature vectors contains the extended FDD of horizontal, vertical, and
diagonal wavelet coefficients; DCT coefficients; singular values; and absolute values
of Shearlet coefficients. As a result, the length of the feature vector is (9 + 6)× 6 = 90.
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• eFDD+Perceptual-IQA: Besides the features of eFDD-IQA, it contains five perceptual
features (colorfulness [55], global contrast factor [56], dark channel feature [57], en-
tropy, mean of the phase congruency image [58]). As a result, the length of the feature
vector is (9 + 6)× 6 + 5 = 95.

All of the above-mentioned methods apply GPR with quadratic rational kernel func-
tion to map the extracted feature vectors onto perceptual quality scores, because it proved
the best solution in the light of experimental results presented in the previous subsection.

The proposed four NR-IQA algorithms were compared on CLIVE [20], KonIQ-10k [21],
TID2013 [45], KADID-10k [42], SCID [47], SIQAD [46], and ESPL v2.0 [48] to several state-of-
the-art NR-IQA algorithms (BLIINDS-II [29], BMPRI [60], BRISQUE [61], CurveletQA [62],
DIIVINE [28], ENIQA [63], GRAD-LOG-CP [64], NBIQA [18], OG-IQA [65], and SSEQ [66])
whose source codes were made publicly available by the authors. The evaluation metrics
and protocol were exactly the same that were given in Section 4.2. The experimental
results are summarized in Tables 9–12. It can be observed from the presented results that
it is possible to reach state-of-the-art performance relying only on FDD feature vectors.
Moreover, FDDs augmented with perceptual features (colorfulness, global contrast factor,
dark channel feature, entropy, mean of phase congruency image) are able to outperform
the state-of-the-art on large IQA databases (KonIQ-10k [21] and KADID-10k [42]) with
authentic and artificial distortions. The use of extended FDDs is able to improve the
performance only on authentic distortions, screen-content images, and synthetic images.
Furthermore, the popular perceptual features can improve the performance in the case
of natural images both on authentic and artificial distortions. Surprisingly, FDD feature
vectors are able to outperform the state-of-the-art on synthetic images by a large margin
as one can see in Table 12. Table 13 summarizes the direct and weighted average PLCC,
SROCC, and KROCC values computed from the results of the seven above mentioned
IQA databases. It can be observed that FDD feature vectors augmented with perceptual
features provide the second best results in the case of direct averages. On the other hand,
FDD with perceptual features give the best results in the case of weighted averages. This
indicates that the proposed method tends to perform better on larger databases, which
can also be observed in Tables 9–11. Table 14 compares the computational times of the
feature extractions of the proposed and other state-of-the-art methods using the computer
configuration described in Table 4. It can be observed that the FDD feature extraction
is rather fast on IQA databases with smaller resolution (CLIVE [20], TID2013 [45], and
KADID-10k [42]). However, the computational times of FDD feature extraction grows
rapidly with the image resolution. The reason for this can be derived from Tables 15 and 16,
where the profile summaries of FDD-IQA and FDD+Perceptual-IQA measured on KonIQ-
10k [21] are presented. It can be seen that the shearlet transform and the computation of
FDDs are responsible for ~98% of the computational time in the case of FDD-IQA. As the
input image resolution increase, the number of wavelet, DCT, and shearlet coefficients
increases and the computational time of FDDs in different domains increases in line with
the number of the coefficients. Future work involves an effective implementation of feature
extraction by carrying out Shearlet transform on GPU [67] and determining FDDs either by
parallel programming or GPU computations.
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Table 9. Comparison of FDD-based NR-IQA methods to the state-of-the-art on authentic distortions
(CLIVE [20] and KonIQ-10k [21]). Median PLCC, SROCC, and KROCC values were measured over
1000 random train–test splits. Best results are typed in bold, and second best results are underlined.

CLIVE [20] KonIQ-10k [21]

Method PLCC SROCC KROCC PLCC SROCC KROCC

BLIINDS-II [29] 0.475 0.433 0.301 0.565 0.562 0.410
BMPRI [60] 0.538 0.483 0.333 0.639 0.620 0.436

BRISQUE [61] 0.520 0.487 0.332 0.707 0.676 0.483
CurveletQA [62] 0.632 0.612 0.433 0.728 0.715 0.520

DIIVINE [28] 0.620 0.581 0.405 0.711 0.691 0.497
ENIQA [63] 0.593 0.556 0.387 0.759 0.744 0.545

GRAD-LOG-CP [64] 0.600 0.567 0.398 0.705 0.696 0.501
NBIQA [18] 0.625 0.600 0.419 0.771 0.748 0.550
OG-IQA [65] 0.539 0.496 0.340 0.653 0.634 0.447

SSEQ [66] 0.479 0.429 0.295 0.588 0.573 0.402

FDD-IQA 0.512 0.467 0.322 0.729 0.691 0.498
FDD+Perceptual-IQA 0.569 0.543 0.378 0.777 0.748 0.551

eFDD-IQA 0.506 0.472 0.324 0.725 0.688 0.495
eFDD+Perceptual-IQA 0.564 0.542 0.377 0.774 0.742 0.546

Table 10. Comparison of FDD-based NR-IQA methods to the state-of-the-art on artificial distortions
(TID2013 [45] and KADID-10k [42]). Median PLCC, SROCC, and KROCC values were measured over
1000 random train–test splits. Best results are typed in bold, and second best results are underlined.

TID2013 [45] KADID-10k [42]

Method PLCC SROCC KROCC PLCC SROCC KROCC

BLIINDS-II [29] 0.524 0.492 0.344 0.545 0.525 0.376
BMPRI [60] 0.700 0.590 0.427 0.557 0.532 0.381

BRISQUE [61] 0.574 0.421 0.294 0.389 0.395 0.275
CurveletQA [62] 0.555 0.464 0.329 0.476 0.448 0.317

DIIVINE [28] 0.524 0.492 0.344 0.430 0.437 0.308
ENIQA [63] 0.602 0.543 0.390 0.633 0.635 0.462

GRAD-LOG-CP [64] 0.432 0.279 0.192 0.584 0.566 0.411
NBIQA [18] 0.692 0.622 0.453 0.617 0.610 0.442
OG-IQA [65] 0.577 0.460 0.325 0.399 0.331 0.230

SSEQ [66] 0.620 0.524 0.375 0.457 0.435 0.303

FDD-IQA 0.686 0.584 0.423 0.663 0.607 0.438
FDD+Perceptual-IQA 0.683 0.588 0.427 0.733 0.692 0.509

eFDD-IQA 0.685 0.578 0.418 0.666 0.613 0.443
eFDD+Perceptual-IQA 0.682 0.585 0.424 0.724 0.683 0.498

Table 11. Comparison of FDD-based NR-IQA methods to the state-of-the-art on screen content
images (SCID [47] and SIQAD [46]). Median PLCC, SROCC, and KROCC values were measured over
1000 random train–test splits. Best results are typed in bold, and second best results are underlined.

SCID [47] SIQAD [46]

Method PLCC SROCC KROCC PLCC SROCC KROCC

BLIINDS-II [29] 0.597 0.573 0.430 0.688 0.658 0.474
BMPRI [60] 0.651 0.617 0.442 0.750 0.705 0.516

BRISQUE [61] 0.439 0.437 0.298 0.635 0.542 0.372
CurveletQA [62] 0.495 0.461 0.323 0.628 0.549 0.382

DIIVINE [28] 0.578 0.547 0.385 0.650 0.616 0.431
ENIQA [63] 0.620 0.588 0.426 0.694 0.660 0.475

GRAD-LOG-CP [64] 0.711 0.703 0.511 0.728 0.694 0.503
NBIQA [18] 0.670 0.656 0.470 0.769 0.739 0.544
OG-IQA [65] 0.331 0.317 0.217 0.696 0.656 0.473

SSEQ [66] 0.534 0.519 0.361 0.701 0.659 0.473

FDD-IQA 0.521 0.495 0.345 0.651 0.620 0.441
FDD+Perceptual-IQA 0.519 0.494 0.343 0.637 0.614 0.441

eFDD-IQA 0.524 0.500 0.347 0.656 0.624 0.444
eFDD+Perceptual-IQA 0.523 0.502 0.348 0.653 0.625 0.447
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Table 12. Comparison of FDD-based NR-IQA methods to the state-of-the-art on synthetic images
(ESPL v2.0 [48]). Median PLCC, SROCC, and KROCC values were measured over 1000 random
train–test splits. Best results are typed in bold, and second best results are underlined.

ESPL v2.0 [48]

Method PLCC SROCC KROCC

BLIINDS-II [29] 0.630 0.627 0.448
BMPRI [60] 0.721 0.740 0.541

BRISQUE [61] 0.559 0.573 0.404
CurveletQA [62] 0.715 0.723 0.529

DIIVINE [28] 0.639 0.665 0.477
ENIQA [63] 0.678 0.684 0.495

GRAD-LOG-CP [64] 0.704 0.715 0.511
NBIQA [18] 0.700 0.701 0.514
OG-IQA [65] 0.721 0.716 0.527

SSEQ [66] 0.561 0.523 0.370

FDD-IQA 0.768 0.774 0.592
FDD+Perceptual-IQA 0.752 0.754 0.569

eFDD-IQA 0.766 0.775 0.594
eFDD+Perceptual-IQA 0.750 0.754 0.568

Table 13. Comparison of FDD-based NR-IQA methods to the state-of-the-art. Direct and weighted
average of PLCC, SROCC, and KROCC values are reported. Best results are typed in bold, second
best results are underlined.

Direct Average Weighted Average

Method PLCC SROCC KROCC PLCC SROCC KROCC

BLIINDS-II [29] 0.575 0.553 0.398 0.559 0.543 0.391
BMPRI [60] 0.651 0.612 0.439 0.618 0.584 0.417

BRISQUE [61] 0.546 0.504 0.351 0.546 0.514 0.362
CurveletQA [62] 0.604 0.567 0.405 0.594 0.562 0.402

DIIVINE [28] 0.593 0.576 0.407 0.569 0.557 0.395
ENIQA [63] 0.654 0.630 0.454 0.677 0.661 0.481

GRAD-LOG-CP [64] 0.638 0.603 0.432 0.627 0.597 0.430
NBIQA [18] 0.692 0.668 0.485 0.692 0.671 0.489
OG-IQA [65] 0.559 0.516 0.366 0.535 0.484 0.341

SSEQ [66] 0.563 0.523 0.368 0.541 0.511 0.359

FDD-IQA 0.647 0.605 0.437 0.679 0.628 0.453
FDD+Perceptual-IQA 0.667 0.633 0.460 0.724 0.684 0.501

eFDD-IQA 0.647 0.607 0.438 0.679 0.630 0.453
eFDD+Perceptual-IQA 0.667 0.633 0.458 0.720 0.679 0.495

Table 14. Comparison of feature extractions’ computational times (in seconds). Best results are typed in bold, and second
best results are underlined.

Method CLIVE [20] KonIQ-10k [21] TID2013 [45]/KADID-10k [42] SCID [47] SIQAD [46] ESPL v2.0 [48]

BLIINDS-II [29] 15.23 47.25 11.96 11.6 7.01 129.23
BMPRI [60] 0.29 0.78 0.24 0.86 0.52 1.92

BRISQUE [61] 0.03 0.11 0.03 0.14 0.07 0.31
CurveletQA [62] 0.65 1.75 0.49 1.93 1.08 4.94

DIIVINE [28] 6.99 18.79 5.27 22.21 12.46 57.82
ENIQA [63] 4.19 13.00 3.25 14.80 8.17 32.98

GRAD-LOG-CP [64] 0.03 0.10 0.03 0.13 0.07 0.29
NBIQA [18] 6.35 20.07 5.04 24.74 13.47 54.19
OG-IQA [65] 0.03 0.10 0.02 0.13 0.07 0.30

SSEQ [66] 0.41 1.28 0.33 1.53 0.83 3.40

FDD-IQA 2.17 16.19 2.63 18.85 8.16 62.94
FDD+Perceptual-IQA 4.65 23.97 4.56 27.92 13.06 83.45

eFDD-IQA 2.18 16.20 2.65 19.01 8.21 63.33
eFDD+Perceptual-IQA 4.66 23.98 4.58 28.08 13.11 83.84
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Table 15. Profile summary of FDD-IQA measured on KonIQ-10k [21]. It presents statistics about the
overall execution and a representation of the time spent in different modules of FDD-IQA.

Operation % of Total Time

Wavelet transform 0.73%
Discrete cosine transform 0.26%

Singular value decomposition 0.75%
Shearlet transform 34.63%

Computation of FDDs 63.62%
Other 0.01%

All 100.0%

Table 16. Profile summary of FDD+Perceptual-IQA measured on KonIQ-10k [21]. It presents statis-
tics about the overall execution and a representation of the time spent in different modules of
FDD+Perceptual-IQA.

Operation % of Total Time

Wavelet transform 0.47%
Discrete cosine transform 0.17%

Singular value decomposition 0.49%
Shearlet transform 22.50%

Computation of FDDs 41.34%
Colorfulness 0.08%

Global contrast factor 25.21%
Dark channel feature 8.78%

Entropy 0.01%
Mean of phase congruency 0.94%

Other 0.01%

All 100.0%

5. Conclusions

In this paper, Benford’s law, also known as the first digit law, inspired feature vectors
were proposed and studied for NR-IQA. Specifically, we analyzed FDD-based feature
vectors extracted from different domains (wavelet, DCT, shearlet, singular values) for
no-reference quality assessment of natural images with authentic or artificial distortions,
screen-content images, and synthetic images. First, a detailed parameter study was pre-
sented with respect to different domains and different regression modules. Second, we
demonstrated that state-of-the-art performance can be achieved by considering FDDs from
different domains. Experimental results have been presented on various IQA benchmark
databases containing natural, screen-content, and synthetic digital images.
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Abbreviations
The following abbreviations are used in this manuscript:

BTR binary tree regression
CNN convolutional neural network
CPU central processing unit
DCT discrete cosine transform
DIIVINE Distortion Identification-based Image Verity and Integrity Evaluation
DMOS differential mean opinion score
DoG difference of Gaussians
ESPL Embedded Signal Processing Laboratory
FDD first digit distribution
FR full-reference
GGD generalized Gaussian distribution
GPR Gaussian process regression
GPU graphics processing unit
IQA image quality assessment
JPEG joint photographic experts group
KL Kullback–Leibler
KROCC Kendall’s rank order correlation coefficient
LIVE Laboratory for Image and Video Engineering
MOS mean opinion score
NR no-reference
NR-IQA no-reference image quality assessment
NSS natural scene statistics
PLCC Pearson’s linear correlation coefficient
RBF radial basis function
RFR random forest regressor
RR reduced-reference
SCID screen content image database
SIQAD screen image quality assessment database
sKL symmetric Kullback–Leibler
SROCC Spearman’s rank order correlation coefficient
SVD singular value decomposition
SVR support vector regressor
TID Tampere image database
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