
electronics

Article

IQ-Data-Based WiFi Signal Classification Algorithm Using the
Choi-Williams and Margenau-Hill-Spectrogram Features:
A Case in Human Activity Recognition

Yier Lin 1,2,* and Fan Yang 3,4,*

����������
�������

Citation: Lin, Y.; Yang, F.

IQ-Data-Based WiFi Signal

Classification Algorithm Using the

Choi-Williams and Margenau-Hill-

Spectrogram Features: A Case in

Human Activity Recognition.

Electronics 2021, 10, 2368. https://

doi.org/10.3390/electronics10192368

Academic Editor: Giovanni Dimauro

Received: 2 September 2021

Accepted: 25 September 2021

Published: 28 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Post-Doctoral Station, CRRC Corporation Limited, Beijing 100070, China
2 School of Electronic Science and Engineering, University of Electronic Science and Technology of China,

Chengdu 611731, China
3 College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010028, China
4 Shenzhen Research Institute, University of Electronic Science and Technology of China,

Shenzhen 518063, China
* Correspondence: lye@crrc.tech or yierlin@foxmail.com (Y.L.); nmgyangfan@imnu.edu.cn (F.Y.)

Abstract: This paper presents a novel approach that applies WiFi-based IQ data and time–frequency
images to classify human activities automatically and accurately. The proposed strategy first uses
the Choi–Williams distribution transform and the Margenau–Hill spectrogram transform to obtain
the time–frequency images, followed by the offset and principal component analysis (PCA) feature
extraction. The offset features were extracted from the IQ data and several spectra with maximum
energy values in the time domain, and the PCA features were extracted via the whole images and
several image slices on them with rich unit information. Finally, a traditional supervised learning
classifier was used to label various activities. With twelve-thousand experimental samples from four
categories of WiFi signals, the experimental data validated our proposed method. The results showed
that our method was more robust to varying image slices or PCA numbers over the measured dataset.
Our method with the random forest (RF) classifier surpassed the method with alternative classifiers
on classification performance and finally obtained a 91.78% average sensitivity, 91.74% average
precision, 91.73% average F1-score, 97.26% average specificity, and 95.89% average accuracy.

Keywords: activity classification; WiFi signal; feature extraction; machine learning; principal compo-
nent analysis; time–frequency image

1. Introduction

With the development of life rescue technology, especially the development of detec-
tion technology for earthquake survivors and outdoor sports victims, human activities
behind obstacles such as walls and debris have become a critical direction in life detec-
tion [1]. An essential characteristic of microwaves is their weak diffraction ability and
almost linear propagation. Their carrier frequency determines the ability of the microwave
signal to pass through a wall. Microwaves penetrate well through concrete walls [2] with
a 2–4 GHz carrier frequency. In the range of this frequency, the power is low and will
not harm the human body. According to the IEEE 802.11 standard, WiFi signals use a
2.4–2.4835 GHz carrier frequency [3], so WiFi signals can pass through walls [4]. Wireless
behavior recognition based on WiFi is realized by detecting the WiFi signals’ characteristics
reflected by the human body [5]. Using WiFi signals to carry out nonvisual behavior
recognition has substantial research and application value in life rescue.

Some specific problems limit the application of WiFi for nonvisual behavior recog-
nition, such as cochannel interference, anisotropic wireless propagation, and data traffic
jams in WiFi networks. Reference [6] showed that WiFi network interference can cause
radar performance deterioration by enhancing the probability of false alarms. Besides the
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cochannel interference, the anisotropic wireless propagation also has adverse effects on
the performance. A WiFi device with a link-centric architecture, even if the underlying
devices are all equipped with omnidirectional antennas, creates an anisotropic wireless
propagation environment [7]. Moreover, due to data traffic jams in WiFi networks, the bea-
con signal interval is challenging to manipulate [8]. The important information in reflected
WiFi signals received by the spectrum/signal analyzer is easily lost. The classification
performance based on weak information data is likely to be poor.

1.1. Article Contribution

To improve the classification performance based on weak information, we propose
a novel classification algorithm based on time–frequency features using WiFi signals to
improve classification performance in this article. Our method applies the Choi–Williams
distribution [9] and the Margenau–Hill spectrogram distribution [10] time–frequency
analysis to obtain the images of the signals. The classification features include offset
parameters and principal component analysis (PCA) values. Our approach uses energy
to obtain the central time frames of the spectra and image slices. The offset parameters
are calculated from the IQ data and several spectra with maximum energy values in the
time domain, and the PCA values are calculated using the whole images and several image
slices on them with rich unit information. This strategy is likely to avoid the weak unit
information of the whole time–frequency image because the unit information of the image
slices is rich compared to that of the entire time–frequency image. Hence, our method of
using the features from the entire signal is likely to boost the classification performance.

1.2. Symbols and Article Organization

In this paper, scalars are denoted by lowercase letters, e.g., x, whereas vectors are
denoted by bold lowercase letters, x. Matrices are denoted by bold uppercase letters, X.
Furthermore, =denotes the equal operator. (·)∗ and E(·) denote the conjugate operator and
the estimated operator, respectively.

The remainder of this paper is structured as follows. Section 2 introduces the related
works. Section 3 describes the details of our method. Section 4 describes the experimental
environment and the recording process of the measurement data. Our algorithm perfor-
mances are illustrated with numerical results from the human activity classification in
Section 5. Finally, conclusions are drawn in Section 6.

2. Related Work

In the past decade, many works in the literature have been devoted to researching the
characteristics of WiFi signals. These characteristics include reconstructed images [4,11,12],
channel status information (CSI) [7,13–23], and the amplitude and phase information in
the I-axis and Q-axis of the Cartesian coordinate system (also known as IQ data) [6,24,25].

In [4], the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL)
proposed a transparent wall technology with a low bandwidth, low power consumption,
a compact structure, and accessibility by nonmilitary entities. This technology uses the
2.4 GHz WiFi signal based on the Industrial, Scientific, and Medical band, eliminating
static object reflection, including walls. The CSAIL used a radio frequency capture device
to capture the wireless signal behind a wall or occlusion and reconstructed the human
image by analyzing the reflected wireless signal [11]. To realize static target positioning
by sensing the micromotion caused by the target’s breathing, Reference [12] proposed a
multiperson positioning system based on the wireless signal in a complex environment.

Reference [7] designed a scheme with a ubiquitously deployed WiFi infrastructure
and evaluated it in typical multipath-rich indoor scenarios using CSI data. In [13,14],
Y. Zeng et al. applied the WiFi CSI to classify shopper status and recognize the gait of
people 2–3 m away. Wang et al. used the CSI to identify human gait [15] and proposed a
human activity recognition and monitoring system to quantify the relationship between
human movement speed and human activity [16]. M. I. Khan et al. used the CSI to track
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vital signs and remove any outliers from the gathered data [17]. Yuan et al. applied
the CSI to extract features for device-free human activity recognition in b5G wireless
communication [18]. Sharma et al. used the CSI to train convolutional neural networks and
classify human activities in different places [19]. The device-free system in [20] investigated
drivers’ activities as a multiclass classification problem leveraging the CSI of the WiFi
signals for better discrimination of in-vehicle activities. Reference [21] developed a human
activity recognition system via the CSI, and Reference [22] extracted various time and
frequency domain features via the system. Furthermore, Reference [23] recognized human
activities based on environment-independent fingerprints extracted from the CSI.

Reference [24] used 2.4 GHz bistatic passive radar to detect a moving human target
behind a wall and obtained the range and Doppler information. In [6], A. D. Singh et al.
studied the cochannel interference between WiFi and through-wall micro-Doppler radar
based on the features of indoor walking at a frequency of 2.462 GHz. Our previous
work [25] classified human activity via the PCA features of the short-time Fourier transform
time–frequency image of samples.

3. Methodology

This section includes three subsections. The first one introduces the time–frequency
methods used in this article. The second one displays the classification features extracted
from the image. The last one presents the framework of our approach.

3.1. Time-Frequency Methods

Due to the information that the reflected WiFi signal being too weak to obtain a
good classification performance, we applied the Choi-Williams distribution [9] image and
Margenau-Hill-Spectrogram distribution [10] image together for the feature extraction in
this article.

(1) The Choi-Williams distribution has the following expression:

CWx(t, f) = 2
∫∫ +∞

−∞

√
σ

4
√

π|τ|
e−

f 2σ

16τ2 x(t + f +
τ

2
)x∗(t + f− τ

2
)e−i2πτdfdt , (1)

where x denotes the input signal and t and f denote the vectors of the time instants and
normalized frequencies, respectively. σ denotes the standard deviation, i.e., the square root
of the variance.

(2) The Margenau-Hill-Spectrogram distribution has the following expression:

MHSx(t, f) = R{K−1
gh Fx(t, f; g)F∗x(t, f; h)} , (2)

Kgh =
∫

h(u)g∗(u)du , (3)

where Fx(·) denotes the short-time Fourier transform of x with the analysis window g.
Figures 1 and 2 show the time-frequency images of a WiFi signal based on these two

time–frequency analyses. The WiFi signal collected from the environment is illustrated
in the next section. The time-frequency images were produced by employing the Choi-
Williams transform and the Margenau-Hill-Spectrogram transform over the 256 frequency
bins of the IQ data accumulated over time. The Choi-Williams transform and the Margenau-
Hill-Spectrogram transform were executed via the functions tfrcw.m and tfrmhs.m of the
tftb toolbox [26] with a Hamming window over the length of the signal. The Hamming
window length was 57.
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Figure 1. This figure displays the Choi-Williams distribution time-frequency images of the measured
WiFi signal regarding (a) the marching-in-place exercise, (b) rope skipping, (c) arms rotating, and
(d) idle.
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Figure 2. This figure displays the Margenau-Hill-Spectrogram distribution time-frequency images of
the measured WiFi signal regarding (a) the marching-in-place exercise, (b) rope skipping, (c) arms
rotating, and (d) idle.
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3.2. Classification Features

In this article, we applied offset parameters and PCA parameters as the classifica-
tion features.

The offset parameters included the mean [27], standard deviation [28], variance [29],
skewness [30], kurtosis [31], and central moment [32]. The mean parameter measures the
central tendency of the signal probability distribution. The standard deviation is a measure
of the amount of variation or dispersion of the input signal. The variance, measuring how
far the signal spreads out from its average value, is the expectation of the squared deviation.
The kurtosis measures the “tailedness” of the signal probability distribution. The skewness
and central moment measure the asymmetry and moment of the probability distribution
of the signal about its mean, respectively. For convenience, the formula of the skewness,
kurtosis, and central moment can be written as follows:

skewness =
E(x− µ)3

σ3 , (4)

kurtosis =
E(x− µ)4

σ4 , (5)

moment = E(x− µ)k , (6)

where µ and σ denote the mean and the standard deviation of x, respectively, and k denotes
the order of the central moments.

Orthogonal linear PCA, which transforms the input signal into a new coordinate
system, is often used to process the spectral information by extracting its main features and
reducing the computational complexity [33,34]. The most significant variance, via some
scalar projection of the signal, lies on the first coordinate, i.e., the first principal component.
The second significant variance lies on the second coordinate, etc. Figure 3 shows the
first 60 PCA values of all the subfigures in Figures 1 and 2. In this article, the principal
components were calculated by the singular-value decomposition of the whole image or
image slices.
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Figure 3. This figure displays the first 60 PCA values of the subfigures in Figures 1 and 2.

3.3. Method Framework

Due to the data traffic jams in WiFi networks and the anisotropic wireless propagation
of WiFi devices, the reflected WiFi signals via the spectrum/signal analyzer are likely to
lose important information, resulting in weak classification performance. To solve this
problem, we propose an approach to human activity classification based on the Choi-
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Williams distribution and Margenau-Hill-Spectrogram distribution time–frequency images
with the offset features of the whole IQ signal, as shown in Figure 4.

Figure 4. This figure shows the structure of our method.

In our method, the first group of offset parameters was calculated directly by the
transformed IQ data. The second group was calculated via the spectrum of the time frame
with the maximum energy in both the Choi–Williams distribution and Margenau-Hill-
Spectrogram distribution time-frequency images, and the third one came from the time
frame spectrum with the second maximum energy of the images. Different unit images had
the same small scale, and the unit image was a subset of a spectrogram image. As shown
in Figures 1 and 2, the unit information is rich on several image slices instead of the
whole image. Hence, not only did we perform PCA to analyze the entire time–frequency
image, but we also performed PCA to analyze the image slice with rich unit information.
The central time frame selection of the image slice was the same as the time frame selection
of the spectrum for the offset parameters’ calculation.

4. Experimental Environment

In the experiment, the transmitter was an ASUS ROG GT-AX11000 tri-band WiFi
gaming router, and the receiver was a Tektronix RSA 306B spectrum/signal analyzer.
Moreover, the data recorder was a Thinkpad X1 with the Tektronix SignalVu-PC software.
The measurement data were collected in the corridor on the 10th floor of the Science and
Engineering Building A at Inner Mongolia Normal University, as shown in Figure 5.

Figure 5. This figure shows the experimental environment and the equipment in the data collection.
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The distance between the router and receiver antennas was 10 m, with the target
at the center. The heights of the router and receiver antennas were approximately 1 m,
with the same centroid height as the subject. The router was operated at 2.412 GHz, with an
instantaneous bandwidth of 20 MHz, satisfying the receiver antennas’ range (1.5–3.5 GHz).
The experimental data were collected from four categories of signals, including idle and
three different activities (the marching-in-place exercise, rope skipping, and arms rotating).
There were 3000 samples in every signal category, with 12,000 samples in total. The holdout
partition randomly selected the training and testing samples.

5. Results and Discussion

We applied six statistics (sensitivity, precision, F1-score, specificity, accuracy, and clas-
sification rate) to measure the classification performance in this section. Therein, the first
five statistics measured every activity result, and the classification rate was for the whole
performance. Assume that P and N denote the number of positive and negative samples,
respectively. TP and FP denote the number of true positives and false positives, respec-
tively. A true positive means an activity was labeled correctly, while a false positive means
a false alarm, i.e., another activity was labeled as the activity under test. Furthermore,
TN and FN denote the number of true negatives and false negatives, respectively. A true
negative is also known as a correct rejection, while a false negative is a missed detection.
These measures can be expressed as:

Sensitivity =
TP

TP + FN
, (7)

Precision =
TP
P

, (8)

F1 =
2TP

2TP + FP + FN
, (9)

Speci f icity =
TN

TN + FP
, (10)

Accuracy =
TP + TN

TP + FP + FN + TN
, (11)

Classi f icationRate = E(
TP

TP + FN
) , (12)

which yield
P = TP + FP , (13)

N = TN + FN . (14)

First, we assessed the performance using the measured WiFi signals of recognizing
different activities (the marching-in-place exercise, rope skipping, and arms rotating) and
the idle condition. Every category included 3000 samples; thereby, the total number of sam-
ples was 12,000, with the scatter plot given in Figure 6. As shown in Figure 4, the extracted
features in our method came from the time–frequency images, whose generation function
and parameters were the same as those in the last section. Ten groups of image slices with
ten PCA values each were used for the calculation. The time length of every image slice was
200 ms. Six kinds of machine-learning-based classifiers, including two kinds of K-nearest
neighbors (K = 3 or 5) [21,35], bagging [36], boosting [36,37], random forest (RF) [38,39],
and support vector machine (SVM) [21,22,40], were applied for the classification. Therein,
the ensemble type of the boosting classifier was AdaBoostM2. In addition, the kernel of
the SVM was a two-order polynomial function with the auto-kernel scale, whereas the box
constraint was set to one with true standardization. The holdout cross-validation partition
(p = 0.3) was used via selecting 70% (8400 samples) for learning features and the remaining
30% (3600 samples) for testing.
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Figure 6. This figure shows the scatter plot of the four categories of samples.

In Figure 7, the accuracies of all trials from the holdout partitions were the average
of 100 loops. The average accuracy of NN3, NN5, bagging, boosting, SVM, and RF was
68.95%, 69.43%, 89.82%, 80.54%, 94.12%, and 95.89% respectively.

NN3

NN5Bagging

Boosting

SVM RF

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Figure 7. This figure shows the average accuracy of the four categories of WiFi signals.

The sensitivity, precision, F1-score, specificity, and accuracy of the classifications
are shown in Figure 8. Compared to the other classifiers, using the RF classifier in our
method was likely to obtain the best performance in this scenario. The confusion matrix
of the classification via the RF classifier is given in Table 1, with the sensitivity, accuracy,
and specificity in Table 2.

Table 1. The confusion matrix of the classification via the RF.

Marching-in-Place Rope Skipping Arms Rotating Idle

Marching-in-place 834 55 2 8
Rope skipping 93 738 58 11
Arms rotating 2 40 857 2

Idle 6 18 1 875



Electronics 2021, 10, 2368 9 of 13

Table 2. The sensitivity, precision, F1-score, specificity and accuracy of the classification via the RF.

Marching-in-Place Rope Skipping Arms Rotating Idle

Sensitivity 92.65% 82.00% 95.22% 97.25%
Precision 89.24% 86.71% 93.40% 97.61%
F1-Score 90.91% 84.28% 94.30% 97.42%

Specificity 96.27% 95.81% 97.76% 99.20%
Accuracy 95.37% 92.35% 97.12% 98.71%
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Figure 8. These figures display the sensitivity, precision, F1-score, specificity, and accuracy of (a) the
marching-in-place exercise, (b) rope skipping, (c) arms rotating, and (d) idle WiFi signals.

To evaluate the effect of the number of image slices on the classification performance,
we calculated the classification performance under different numbers of image slices.
The method and parameter setting of the feature extraction and classifiers were the same
as those of the last evaluation. As Figure 9 shows, with the increase of the slice number,
the classification rate improved. When the image slice number was equal to zero, i.e., all the
features came from the whole signal or image without the high-quality features from the
image slice with rich unit information, the performance decreased. In this figure, the clas-
sification rates were 25.86% (NN3), 26.29%(NN5), 46.26% (boosting), 74.72% (bagging),
84.21% (SVM), and 85.77% (RF) without the image slice features. When the image slice
number was equal to 10, the classification rates were 37.90% (NN3), 38.86% (NN5), 61.08%
(boosting), 79.64% (bagging), 88.25% (SVM), and 91.78%(RF), respectively. The classifi-
cation rate of the boosting classifier was boosted by 14.82%, and that of the RF classifier
improved by 6.01%. Due to the classification rate of the RF classifier being higher than
the classification performance of the others, the details of the classification performance of
the RF classifier are analyzed in Figure 10. In this figure, the average precision, average
F1-score, average specificity, and average accuracy of the four categories of WiFi signals in
our method were likely to reach 91.74%, 91.73%, 97.26%, and 95.89%, respectively.
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Figure 9. This figure demonstrates the classification rate of the four categories of WiFi signals based
on the various image slice numbers via different classifiers.
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Figure 10. These figures illustrate the comparison of the classification (a) sensitivity, (b) precision,
(c) F1-score, (d) specificity, and (e) accuracy of the four categories of WiFi signals by the RF classifier
with or without the slice features.

To evaluate the effect of the number of images or image slices on the classification
performance, we calculated the classification performance under different numbers of
image slices. The image slice number was set to 10, and the other parameter settings were
the same as those of the last evaluation. The results are shown in Figure 11. In this figure,
the PCA values negatively affected the classification performance via the boosting classifier
while positively affecting the classification performance via the other classifiers. Moreover,
the classification performances of the RF classifier were higher than those of the other
classifiers. There was a 2.77% improvement of the classification rates between no PCA
features (89.01%) and 10 PCA features per image or image slice via the RF classifier.
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Figure 11. This figure demonstrates the function of the PCA number per image or image slice and
the classification rate of the four categories of WiFi signals under the condition of various classifiers.

6. Conclusions

In this article, a novel approach that applied the features from the IQ data and the
time–frequency images to classify human activities automatically and accurately was
proposed. The two images were from the time–frequency transform of the Choi–Williams
distribution and the Margenau–Hill spectrogram distribution. There were two categories of
features in the presented strategy, i.e., the offset parameters and the PCA values. The offset
parameters, with the mean, standard deviation, variance, skewness, kurtosis, and central
moments included, were calculated by the IQ data and several spectra with maximum
energy values in the time domain. The PCA values were calculated by the whole images
and several image slices on them with rich unit information.

The proposed algorithm was validated on the experimental data. Our method was
shown to be more robust to varying image slices or PCA numbers over the measured
dataset, including three activities (the marching-in-place exercise, rope skipping, and
arms rotating) and the idle signal. Experimentally, our method with the RF classifier
surpassed the methods with alternative classifiers on the classification performance and
finally obtained a 91.78% average sensitivity, 91.74% average precision, 91.73% average F1-
score, 97.26% average specificity, and 95.89% average accuracy. Moreover, the classification
results showed that with the increase of slice number and PCA number, the classification
rates of our method with the RF classifier improved by 6.01% and 2.77%, respectively.

In future work, we can consider the denoising method of the WiFi signal and the
method of the physical feature extraction. Under the conditions of a complex and com-
plicated environment, various WiFi signals have mutual interference when using similar
channels, and thus, the received signals are accompanied by noise. Suppressing the noise
to obtain the denoising signal is likely to affect the classification performance positively.
Moreover, the features of our method were offset parameters and PCA values, which
means they had nothing to do with the physical features of the activities. If we need to
map the features and activities together, we need to consider the problem of the physical
features’ extraction.
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Abbreviations
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