
electronics

Article

Extensible Chatbot Architecture Using Metamodels of Natural
Language Understanding

Rade Matic 1,†, Milos Kabiljo 1,2,†, Miodrag Zivkovic 2,*,† and Milan Cabarkapa 3,*,†

����������
�������

Citation: Matic, R.; Kabiljo, M.;

Zivkovic, M.; Cabarkapa, M.

Extensible Chatbot Architecture

Using Metamodels of Natural

Language Understanding. Electronics

2021, 10, 2300. https://doi.org/

10.3390/electronics10182300

Academic Editors: Cataldo Musto

and George A. Papakostas

Received: 22 August 2021

Accepted: 16 September 2021

Published: 18 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department for Information Systems and Technologies, Belgrade Academy for Business and Arts
Applied Studies, Kraljice Marije 73, 11000 Belgrade, Serbia; rade.matic@bpa.edu.rs (R.M.);
milos.kabiljo@bpa.edu.rs (M.K.)

2 Faculty of Informatics and Computing, Singidunum University, Danijelova 32, 11000 Belgrade, Serbia
3 School of Electrical Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade, Serbia
* Correspondence: mzivkovic@singidunum.ac.rs (M.Z.); cabmilan@etf.bg.ac.rs (M.C.)
† These authors contributed equally to this work.

Abstract: In recent years, gradual improvements in communication and connectivity technologies have
enabled new technical possibilities for the adoption of chatbots across diverse sectors such as customer
services, trade, and marketing. The chatbot is a platform that uses natural language processing, a
subset of artificial intelligence, to find the right answer to all users’ questions and solve their problems.
Advanced chatbot architecture that is extensible, scalable, and supports different services for natural
language understanding (NLU) and communication channels for interactions of users has been
proposed. The paper describes overall chatbot architecture and provides corresponding metamodels
as well as rules for mapping between the proposed and two commonly used NLU metamodels. The
proposed architecture could be easily extended with new NLU services and communication channels.
Finally, two implementations of the proposed chatbot architecture are briefly demonstrated in the case
study of “ADA” and “COVID-19 Info Serbia”.

Keywords: chatbot; extensible architecture; metamodel; natural language understanding; framework;
COVID-19

1. Introduction

Social, Mobile, Analytics, Cloud, and Internet of Things (SMACIT) technologies and
advances in the field of artificial intelligence (AI) have fundamentally challenged the way
people are working, doing business, or communicating with each other. A typical example
of an AI system and one of the most elementary and widespread examples of intelligent
Human–Computer Interaction (HCI) is a chatbot [1]. The chatbot is a computer program
that simulates human conversation or chat, using or not using artificial intelligence, and
it participates in a dialog with a human using natural language [2]. Chatbots have many
advantages for users and developers, and their popularity is rising. Most implementations
are instantly available to users without needing installations. Chatbots can provide users
with quick and convenient support responding specifically to their questions, and this is
the reason why the most frequent motivation for chatbot use productivity, while other
motives are entertaining, is social factors, good and up-to-date information and contact
with novelty. Rather than creating a human-like smart machine application, it is about
creating effective digital assistants who can provide information, answer questions, discuss
a specific topic, or perform a task [3].

Today, a chatbot can perform many functions of mobile applications or websites, all
within conversation via communication applications, without requiring the user to install
or download new applications. Chatbots are now incorporated in popular digital assistants
such as Siri, Cortana, Alexa, Assistant, etc. There is no longer a need to download, install,
or open applications only for performing operations such as ordering a product. It is just
another aspect of an already-connected multitasking world.

Electronics 2021, 10, 2300. https://doi.org/10.3390/electronics10182300 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-4351-068X
https://orcid.org/0000-0002-2094-9649
https://doi.org/10.3390/electronics10182300
https://doi.org/10.3390/electronics10182300
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10182300
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10182300?type=check_update&version=1

Electronics 2021, 10, 2300 2 of 23

The use of chatbots evolved rapidly in numerous fields in recent years, including
customer services, e-commerce, marketing, supporting systems, education, healthcare,
cultural heritage, and entertainment. In all of these fields, chatbots have proven useful in
various contexts to automate tasks and improve the user experience. Additional predictions
say that by 2022, 80% of companies will use chatbots, and banks will be able to automate up
to 90% of their customer interaction with them [4]. The global chatbot market is projected
to reach 2 billion USD by 2024, growing at a CAGR (compound annual growth rate) of
29.7% [5].

A chatbot platform must have the following three parts that really add conversational
experience:

• Natural Language Processing (NLU): understanding user input and extracting rele-
vant information.

• Conversation flow: including managing the context of the conversation.
• Action Fulfilments: used to represent simple responses, as well as advanced features

such as database querying, Application Programming Interface (API) requests, or a
custom logic trigger.

The NLU is emphasized in this paper as the heart of every chatbot. Extensibility is the ca-
pacity of software architectures to glue external architectures (leaves) to their core structure,
creating a synergy between these dissimilar architectures [6]. In this paper, the advanced
extensible microservice chatbot architecture has been proposed, allowing easy switching
from one NLU provider to another (e.g., because of better support for the Serbian language
or due to cost issues). The proposed object-oriented framework called Weaver [7] is de-
signed to be agile to tackle an incredibly variable environment of modern communication
channels for interactions of users. The novelties of our approach are:

• The proposed chatbot architecture is extensible, supporting new natural language
understanding services and communication channels for user interactions. Thanks
to this, we resolve the independence of chatbot frameworks from all market vendors
dealing with natural language understanding and communication channels.

• The solution was implemented in two case studies on the Serbian language. As far as
we know, no one has dealt with the Serbian language using different NLUs.

• It relies on so-called metamodels as the main extensible mechanism in Weaver. For
this mechanism to succeed, we provide:

– A general NLU metamodel (model of a model).
– Metamodels for the two specific NLU services (Dialogflow and RASA).
– Corresponding metamodels as well as rules for a mapping between generic and

specific NLU metamodels.

Due to everything specified above, we think that extensible and scalable architecture is
required for natural language understanding that solves some of the problems defined
above. It is much easier to make metamodels of each NLU service and map them to our
general metamodel, and thus go beyond manual programming for each new NLU service.
Designers define all these metamodels and corresponding mapping rules in the database
at design time. Using mapping rules, we automatically create, maintain, and forward
objects with all the necessary data to the desired NLU metamodels (NLU services) or
communication metamodels (channels).

This paper is organized as follows. Section 2 brings motivation for this paper as well as
related work relevant to the topic. Section 3 presents the NLU support. In general, logical
architecture has been presented with the detailed specification of the components of the
proposed architecture. Metamodels and their mapping rules to ensure independence from
one NLU service are presented in Section 5. The details exposed on the NLU Metamodels
and corresponding mapping rules are explained with a specific example in Section 6.
Section 7 explains the use of the proposed framework in two case studies: ADA and
COVID-19 Info Serbia. Finally, the conclusion is derived in Section 8.

Electronics 2021, 10, 2300 3 of 23

2. Related Work and Motivation

The introduction of chatbot technology started in 1966 with the computer program
known as ELIZA [8]. ELIZA was able to mimic human conversation by trying to answer a
user question by matching scripted answers, i.e., by performing simple sample matching.
Developed by Joseph Weizenbaum in 1956 [9], it was designed to emulate a psychotherapist
and had a knowledge base in this domain. In 1995, the chatbot ALICE (Artificial Linguistic
Internet Computer Entity) was developed. ALICE relies on a simple pattern-matching algo-
rithm with the underlying intelligence based on the Artificial Intelligence Markup Language
(AIML) [10], which makes it possible for developers to define the building blocks of the chat-
bot knowledge [11]. In scientific literature, academic articles, and conference proceedings,
different aspects of chatbot technology and applications have been analyzed [12,13].

Within the study of chatbot technologies, a special direction of interest is related to the
chatbot modeling framework. Frameworks of the existing chatbots provide specific chatbot
architectures and tools. Some are very simple, and others use web services’ massive
linguistic datasets, which have very precise models obtained owing to many years of
experience and vast amounts of data. The most popular ones include Dialogflow, RASA,
Microsoft Bot Framework, Botkit, Pandorabot, and WIT.ai. The chatbot framework has
been mostly accomplished by defining entities, intentions, and responses within a specific
platform, providing interface and great natural language understanding capacities. Authors
Mu and Sarkar [14] discuss some drawbacks of NLU and find that restricted natural
language systems might perform better than full natural language. According to this, the
proposed model in this paper is based on the closed domain.

A great study about kinds of chatbot architectures was written in [13]. In this and other
similar papers [3,15–25], no one explains how to overcome the problem of integration with
different NLU services or with different communication platforms. Several approaches
have been proposed to simplify the process of chatbot development and to improve their
response mechanism [15,26,27]. It is very difficult to integrate chatbot architecture with
other external services without manual coding, and designers with new communication
platforms or NLU services cannot easily extend it [15]. Most chatbot architectures just offer
an API to query the results of the intent and integrate with the NLU service. Similarly,
although each of them supports different communication channels, they usually do not
offer any extension options. Weaver is designed to solve these problems.

Xatkit [26] (formerly known as Jarvis [15]) and Conga [27] are partly similar works as
ours. They use a model-driven architecture (MDA) for developing chatbots. Although our
approaches and chatbot architectures are different from these two papers, they show real-
ization of the idea of developing chatbots that are independent of NLU services. However,
we do not use MDA to develop chatbots like them, but we use one of the basic concepts
of the MDA approach (models). To avoid vendor dependency, our chatbot architecture
consists of metamodels for NLU services, and they map to our general NLU metamodel-
making mapping rules. You will notice that we only use NLU, which is one part of Natural
Language Processing (NLP), and we have a different logic of the context usage and execu-
tion action. The metamodels of Xatkit and Conga are used for different purposes than ours,
because they include concepts such as context, action, platforms, etc. We use a simpler
technique to provide extensible NLU-independent chatbot architecture. In our work, all
the logic related to the context affecting the flow conversation or the execution of a certain
action is found in the components that will be explained in Section 4.2. However, except
for a detailed explanation of microservice chatbot architecture, the main contribution of
this paper is easy integration with NLU external services because these are probably the
most important parts of chatbot architecture that are difficult to implement on your own.
Therefore, it is good to use external services. However, this does not rule out the possibility
of creating our own NLU service. It can be integrated in the same easy way as shown
here in the paper without manual programming, thanks to metamodels and proposed
mapping rules.

Electronics 2021, 10, 2300 4 of 23

Xatkit introduces a multi-platform chatbot modeling framework using metamodels
and textual Domain Specific Language (DSL). This framework decouples the chatbot model-
ing part of the platform-specific aspects, increasing the reusability. DSL provides primitives
to design the user intentions, execution logic, and deployment platform. They currently
only support Dialogflow as an NLU service. Our implementation has shown independence
from Dialogflow and Rasa NLU services. In our approach, we have conditional branching,
and we support generic events (webhooks) that allow us to make a reactive chatbot that
can actively listen and respond. Our framework enhances extensibility and customizability
by providing explicit webhook methods and architecture elements that allow it to extend
its stable interface. Differently from us, their metamodel of the Intent Package contains a
collection context. On the other hand, we do not see on their metamodel how they annotate
entity roles and entity groupings. With entity roles, we can define entities with specific roles
in utterance. Entity groupings allow entities to be grouped together with a specific group
label defining different orders. Conga presents a model-driven solution for forward and
backward chatbot engineering, featuring a recommender system that assists in selecting the
most suitable chatbot development tools. It comprises a neutral metamodel and a DSL for
code generation and parsers for several chatbot platforms. The main and most important
difference is that our defined chatbots are executable by providing an execution engine.
Conga also does not support platform-specific concepts, such as buttons action. Although
their entire metamodel also lacks role and group elements, it is difficult to compare the
rest of the metamodel because the purposes of their metamodels are different from ours.
Although MDA has many advantages in software development, such development is often
limited by the kind of tool they use. Conga already has 15 generation tools. They are only
flexible in the parts of the framework covered by the used DSL. Using the metamodel
frameworks proposed in our model is extensible and adaptable enough to include new
NLU services and communication channels. Weaver provides interactive learning that
makes it easier for developers when it comes to developing conversational flows, but this
is out of the scope of this paper.

3. NLU Support

NLU is a subset of NLP and conversational AI. It helps computers to understand
human language by understanding, analyzing, and interpreting basic message or speech
parts. NLU is trained with natural user utterances tagged with entities and outspread with
the use of synonyms. The concept of utilizing the AI and human language to perform
the communication with machines is not new; however, researchers have underestimated
the complexity of human languages for years, even decades. Even nowadays, after recent
advances in AI and NLP, several studies have been conducted that show that users cannot be
tricked and they always will know that they are communicating with a computer rather than
another human being [28]. Recently, AI-driven chatbots have been employed for various
tasks from different application domains, such as medicine and self-diagnostics [29] and
university student service support [30,31].

In the first version of our Weaver platform, we chose Dialogflow as the NLU service.
When we saw some shortcomings, we introduced RASA as the most trustworthy open-
source NLU service in terms of confidence score [32]. After that, we realized the problem of
NLU dependency and then came up with the idea we have implemented in our architecture.
Dialogflow and RASA are two different NLU services with the same purpose. Every new
NLU service would be similarly applied in our overall proposed solution. We will explain
their differences and the reasons for choosing them as example for our architecture.

Both NLU services use ML-based NLU, and they are trained with natural user utter-
ances tagged with entities. Dialogflow has a validation, indicating that there is a specific
intent that needs more training data. It also has been provided with system entities such
as numerics, date, time etc. RASA, on the other hand, has a custom pipeline selection
based on the amount of training data. We can use the pre-trained model and using more
data, we can train from scratch by choosing a pipeline. RASA provides functionality to

Electronics 2021, 10, 2300 5 of 23

evaluate intents and entities. RASA also has a training data importer option to import
data in different formats and from different sources. In Dialogflow, we do not have the
option to import or use training data, but it accepts one line per utterance as training
data. Both platforms provide multi-language support. To support the Serbian language in
Dialogflow, we must add Google Translator to our architecture. RASA allows us to add
this support with the help of spaCy as inbuilt components. For languages which does not
have pre-trained word embeddings, RASA suggests a pipeline without the spaCy library.
Pre-trained word embeddings are helpful as they already encode linguistic knowledge. For
most used languages, it is a very helpful library because it can “understand” large volumes
of text used to build natural language understanding systems. Unfortunately, for Serbian,
there are no pre-trained word embeddings, and this is reason why we did not use the spaCy
library. To support Serbian, we used an adjustable NLU pipeline. The pipeline consists of
different components working sequentially to process user input into a structured output.
There are components for intent classification, for entity recognition, for tokenization, pre-
processing, etc. Each component processes an input and/or creates an output. The order
of the components is specified in a configuration file. We tried multiple configuration files
with the RASA test. To get the most out of our training data, we trained and evaluated our
model on different pipelines and different amounts of data. Repeating this process with
different percentages of training data, we tried to understand how each pipeline behaved
by increasing the amount of training data. The whole process was performed five times for
each specified configuration.

RASA is open source, where you can use it without any costs. RASA can be deployed
on-prem and on the cloud. Dialogflow stores and deploy models in Google cloud. RASA
has added Bidirectional Encoder Representation from Transformer into the pipeline, help-
ing to create better models. RASA also provides an additional advantage of adding your
own custom model into the pipeline for any task. Dialogflow is a great platform with good
models and pre-trained entities, but it does not support custom models. RASA also has
added support for Tensorboard 2, used to visualize training metrics. It helps to understand
if the model has been trained properly, and we can make changes to hyperparameters
based on the metrics to improve model.

4. Proposed Chatbot Architecture

The logical architecture of the proposed solution, called Weaver, is based on the reference
chatbot model proposed by the authors E. Adamopoulou and L. Moussiades [33]. This archi-
tecture can be used for developing a broad range of chatbots. It enables the understanding,
implementation, maintenance, and further development of a platform-independent chatbot.

In this paper, we describe our approach of building a chatbot based on AI. Generally,
there are two types of models prevailing in chatbot development based on AI [13]:

• Retrieval-Based Models: these use a repository of predefined responses or use some
type of heuristics to choose the adequate answer based on the inquiry and context.
They can provide more reliable and more grammatically accurate answers. They are
easier to teach as they require less information, but they are not able to respond to
questions beyond their knowledge base.

• Generation models: these do not rely on predefined answers. They generate new
responses from the start as they can respond to ambiguous questions. These chatbots
become smarter over time and they can learn from previous questions, responses,
and conversations. However, they are hard to train as they demand large amount
of data, and retrieval models often enjoy better control over response quality than
generative models.

Weaver use retrieval-based conversation. Our retrieval-based model uses NLU techniques
to predict the most accurate intent. After that, Weaver takes responses from a closed set of
responses using an output ranked list of possible answers. The NLU-independent chatbot
architecture is defined through three main parts: (1) a generic metamodel defining the
general concepts of NLU and their relationships, (2) a generic metamodel of specific NLU

Electronics 2021, 10, 2300 6 of 23

service (e.g., Dialogflow, RASA), and (3) a set of mapping rules which maps every concept
of specific NLU service to concept of generic metamodel. The Weaver platform just follows
these mapping rules and then executes the overall chatbot logic.

Here proposed, the conversational AI platform provides a set of analytical features
that assist in knowing the number of sessions, intents, number of users, returning users,
number of answered and unanswered questions, and the flow of questions. The Weaver
administration tool allows us to make chatbot scenarios on our own in easy steps, from
defining new scenarios to adding intention and definite answers. We realize efficiencies in
the development of chatbot architecture by exploiting the framework tools and modeling
facilities. The logical architecture and component structure of the implemented Weaver
BotFramework is given next, with detailed explanations of each component.

4.1. Architecture

The logical architecture of the model proposed in this paper is shown in Figure 1. As
can be seen, the architecture consists of four main building blocks:

• User.
• Communication platforms (channels) through which users communicate.
• Weaver—Conversational AI platform.
• External services among which NLU is the most important.

The chatbot platform involves BotFramework and two connectors: API messenger con-
nectors and External mapping connectors. Among other things, this platform also serves
for connection, construction, testing, and deployment of the intelligent chatbot. Com-
munication between the BotFramework and both connectors (messenger and external) is
performed via Hypertext Transfer Protocol Secure (HTTPS). The entire platform is based
on microservices. Validation and mapping of messages being received from a commu-
nication platform are performed in the API Messenger Connector. This aims to prepare
the message, which will be forwarded to the next component depending on the type of
message received from the messenger. Each communication platform has its own meta-
model and set of mapping rules which are defined in the database and are used by the
connector to fill the object with all necessary data, helping it to be independent from just
one communication platform.

Figure 1. The logical architecture of the proposed solution.

Electronics 2021, 10, 2300 7 of 23

The lifecycle of the message starts and finishes at the connector, since its role is to
receive the message and return the message from the chatbot to the channel from which the
message was sent. For the message to be received from the communication platform to our
system, we must configure the webhook method. We use the messenger connector for that
purpose, which contains the defined methods that accept callback by the communication
platform. Our messenger connector must first be subscribed to the messaging events of
the approved communication platform and set up a callback uniform resource locator
(URL). The chatbot platform will be able to receive webhooks sent from the communication
platforms. The first function of the connected component is to recognize where the message
was sent from, i.e., from which communication platform the event occurred, causing the
system to receive the message. This component recognizes it simply through the URL.
Based on the URL data, the component recognizes from which communication platform
the message was received and retrieves rules for validation and mapping of context that
arrived at the request. Based on the rules, the message validity is checked, i.e., whether
the message was sent by the communication platform to which we have subscribed or
not. If the message is valid, it can be forwarded to the mapping module. In this part,
the message is mapped into the object with which the BotFrameworks operates using
the metamodel and defined mapping rules. Messenger connectors must ensure proper
mapping of all message types for a particular communication platform. Objects forwarded
to the BotFramework also contain data of the communication platform and the user, so that
the message can be properly forwarded to the right user. The said mapping also works in
the opposite direction, i.e., when the BotFramework should return the message towards
a certain communication platform. Metamodels and mapping rules of communication
platforms are not part of this work; we want to focus on metamodels and mapping rules
of NLU services explained in Section 5. The BotFramework consists of many components
making this system scalable, and it supports most of the criteria for building a good
enterprise framework, suggested in [34]. This framework is the central and main part of
the architecture containing the entire logic for processing received messages, works with
contexts, chat flow, logical decision-making, integration with predefined scenarios and
responses, and various other required rules. It contains several important components such
as bot engine, bot designer, language processing, conversation engine, etc. Each received
message is processed separately and passes through a series of stages. Each user has their
own chat session (conversation) that keeps a record of all messages between users and
chatbot. All initiated, suspended, and completed instances of scenarios following their
definition of scenarios are also seen here. Therefore, each chat session represents one or
more scenario between users and chatbots that contains contexts affecting the current and
future chat flow. The bot engine is a complex component that constitutes the central part
of the BotFramework and it consists of several minor components that will be detailed in
Section 4.2.

External mapping connectors serve for connection with external services, such as
NLU services. These connectors also have separate predefined mapping rules for each
specific type and implementation. In addition to predefined connectors working with the
above-mentioned services, there are also custom connectors for external data necessary in
conversation, in which mappings can be changed depending on the need to successfully
realize any conversation. External mapping connectors also contain components that
expose services to other systems participating in the communication process with the user,
e.g., a contact center that could take over user conversation. The BotFramework can be
integrated with the existing contact center application with the help of the component
Message Distribution Connector. In the case of complex questions, the user is redirected
and chats with the operator from the corresponding contact center. The extensibility of
the proposed framework simplifies the integration of other useful external services. The
BotDesigner is a visual tool equipped with the Software Development Kit (SDK) for the
corresponding implementation platform. The SDK offers possibilities that facilitate chatbot–
user interactions. Using SDK, it is possible to directly teach the NLU to avoid dependency

Electronics 2021, 10, 2300 8 of 23

on the NLU interface of the vendor. In addition, BotDesigner enables the visual generation
of the scenario, i.e., its flow. The flow of conversation maps all potential directions in which
the discussion may develop, with many branches for all possibilities. The conversation
flow is responsible for predicting all possible input messages and chatbot reactions. This
helps users to quickly achieve their goals and to obtain information easier and give priority
to business needs. The BotDesigner is intuitive and easy to understand and use. All data
necessary for scenario flow management and context-based responses, identified intents,
and entities are in the Flow and Response Repository. This database is used for storing
all predefined scenarios with their actions and conditions, responses with the necessary
segmentation, conversations, users, and logs. It accommodates all settings related to
connectors, components, and general system settings. All metamodels and mapping rules
are also stored in this database.

4.2. The Component Structure of the Bot Engine

A detailed representation of the Bot engine is shown in Figure 2. It consists of a series
of components that are interconnected. The Core Engine (CE) is a separate component
that is the central part of this engine. The core engine is a component that manages other
components within the BotFramework. It must know the correct sequence of execution of
the action, track the execution of actions and errors, send notifications, etc. Depending on
the configuration, each action passes through debug and info log to follow the flow of such
a complex component.

Figure 2. Bot engine component diagram.

In the component Message queue, attention is paid to the sequence of messages arriving
at the channel and their release to processing. All messages entering and exiting the Bot
engine are monitored in the log system using this component. Each chat session has its life

Electronics 2021, 10, 2300 9 of 23

cycle that follows at least one definition of a scenario created via BotDesigner. When the
user initiates a scenario, the Chat Session component creates one instance of the scenario for
that user. It has the possibility to offer recognized contexts from the previous conversation
as the context for current conversation (context filling) and has the option to recognize
whether the user wanted to switch any context value used in the previous conversation
(context switching). The user can change the language in which it addresses the chatbot
at any moment, and the component Language Processor is responsible for understanding
the changing language. If it is necessary, this component must ensure the best possible
translation into the adequate language so that the AI-NLP-NLU component can process
the text. Based on intent and context, the task of the Conversation engine is to decide
which scenario it should process and whether it is a new scenario or a continuation of
an existing scenario. The processing of context performed by the Context Processor is
also performed here. Workflow mechanisms have been incorporated into the suggested
framework. Workflow engine has the task of taking care of every scenario that follows its
scenario definition, i.e., the sequence of action of the ongoing scenario instance. Each action
has contexts, which are supposed to be met for it to be executed. In addition, each action
has the option of built-in or custom validation for validating the user entry and skipping
the processing of the AI-NLP-NLU component. An example of this is when an action in
some scenarios requires a number, email, and telephone that can be validated skipping the
components for translation and AI-NLP-NLU. The Answer Handler component has the task
of providing adequate answers for actions within the scenario. Answers can be of different
types: text, picture, URL, location, i.e., union of types defined by the communication
platform. Multiple responses of the same or different types may be defined for a certain
action in the proper sequence in which they will be delivered. The Responder component
prepares the message for sending back to the messenger connector to forward it to the
user. Since the connector is presented as a microservice, this component addresses the
connector through Hypertext Transfer Protocol (HTTP) RESTful service and forwards the
prepared message. Many components in a bot framework rely on storage and database
access. For example, the conversation engine needs to know about scenario definitions
and their instances. The chat session handles all users and their communications. It is
also very important to remember all messages, entities, and intents. All metamodels and
corresponding mapping rules are also important and need to be stored in the database.
The task of the BotDBRepository component is responsible for all necessary interfaces for
communication with the database.

NLU have challenging problems that demand significant expertise. This is one of the
reasons why companies frequently choose not to build their own solution but use other
service platforms. Microsoft LUIS.ai [35], Facebook Wit.ai [36], Google Dialogflow [37],
RASA [38] and IBM Watson [39] are some of the many popular NLU service platforms.
They accept natural language and return structured data (data divided into a simple
and organized format for simple processing, e.g., JSON—JavaScript Object Notation).
These companies have turned many years of experience into platforms that provide good
solutions to smaller or larger companies for machine learning. Our architecture precisely
supports this approach via our AI-NLP-NLU component. An utterance comes to enter
this component so that the user intent could be sent to processing and detected with all
necessary parameters. Each external NLU service has its own rules and mappings applied
when creating requests towards service and response serialization. All these mappings
are set up when adding services for NLU. The main task of the component is to forward
the detected intents and entities from the external services in the proper form understood
by the Bot engine so that it can continue with the process. It has the possibility to have
N services that will be in single/multi-mode, i.e., active/passive mode, that can help in
better intent detection. If there are two NLU services in the multi-mode, the processing
request is forwarded in parallel to both services. Two responses are taken into consideration
and the response which best meets the set criteria continues the processing. One of the
main roles of this component is intent and entity detection. In addition to this role, this

Electronics 2021, 10, 2300 10 of 23

component has other roles administered in the tool for administration of the external NLU
service. Each NLU service has its own metamodel and mapping rules, which are used
by the AI-NLP-NLU component to fill the object with all necessary data and help to be
independent from just one vendor of NLU services.

5. NLU Metamodels and Corresponding Mapping Rules

NLU is a Natural Language Understanding engine classifying utterance by intents
and extracting relevant information from utterances called entities. The main role of NLU
is to try to understand the user input and the intent of the conversation and extract entities
that are needed to perform a user action or business logic. We can think of NLU services
as a set of high-level APIs for building our own language parser using existing NLU and
Machine Learning libraries. To be independent from just one NLU external service, we
develop our own NLU metamodel, called the DORIUS metamodel, excerpt shown in
Figure 3. The main reason for developing our own metamodel version is to allow easier
correspondences between concepts of two very popular NLU services (Dialogflow and
RASA). We show how our NLU metamodel is mapped to metamodels of Dialogflow and
RASA. The defined mappings must follow rules and constraints, which are defined by the
mapping metamodel [40]. The excerpt of Dialogflow and RASA metamodels are shown in
Figures 4 and 5. These are also original metamodels developed by the authors of this paper.
The versions of Dialogflow and RASA we use in our approach to develop metamodels
are officially described in [37,38]. All these metamodels and corresponding mapping rules
are defined in the database at design time. The designer enters training data into NLU
concepts of DORIUS metamodel for each utterance. NLU training data consists of example
user utterances categorized by intent. When the clients of the chatbot decide which NLU
services they want to use, the corresponding NLU metamodel is automatically loaded from
the DORIUS metamodel. Using mapping rules, we automatically create, maintain, and
forward objects with all the necessary training data to the corresponding NLU metamodels.
After that, training data for the learning chatbot is released. The results of these actions are
NLU services which are trained with natural user utterances tagged with entities. During
the runtime, NLU services parse the text (utterance) based on machine learning techniques,
compares, and checks for a match. NLU services return intent and entities back to the
AI-NLP-NLU component with the percentage of accuracy of understanding the intention.
As we have already said, the platform ensures that multiple NLU services can be used, but
the Core Engine component chooses the one that has a higher probability of accuracy. Using
these metamodels proposed in our approach, it is also easy to include new NLU services.
All you need is to create a metamodel and the appropriate mapping rules to the DORIUS
metamodel, which will automatically extend the choice of NLU services. Furthermore, the
DORIUS metamodel can help the old chatbot to switch to another NLU service. Assuming
that there is a chatbot that only uses the Dialogflow service, using the DORIUS metamodel
it is possible to easily switch the chatbot from Dialogflow to RASA service and vice versa.
In this usage, the DORIUS concepts are loaded from Dialogflow metamodel using mapping
rules, and then its concepts are mapped to the RASA metamodel.

Electronics 2021, 10, 2300 11 of 23

Figure 3. DORIUS metamodel.

The DORIUS NLU Concept represents the most abstract concept in the NLU data
model. It is specialized using NLU concepts that are more concrete:

• Intent categorizes a user intention in one conversation. An intent is a group of utter-
ances with similar meaning. Intent refers to the goal the customer has in mind when
typing in a question or comment. Attribute IntentID represents a unique identifier
of intent. Attribute Name is the name of intent. For example, if the Intent Name is
ProfessorConsultation, the IntentID could be Guid123.

• EntityType represents a type of entity. Attribute Name can be systemic or custom. For
example, EntityType can be custom.

• Entity represents the entity entry for an associated EntityType. The Entity can be a
systemic or custom EntityType. Entities are annotated in training examples with the
name of the entity. Entities are a mechanism for identifying and extracting useful
data from natural-language inputs. While intents allow understanding the motivation
behind a particular user input, entities are structured pieces of information that can
be extracted from an utterance. In addition to the entity name, we can annotate an
entity with values and synonyms. TeacherName can be an example of the Entity that
is a custom EntityType. EntityID could be 3en-22t.

• EntityValue represents the primary value associated with entity entry. The Entity can
have one or more Value. For example, if the entity is TeacherName, the EntityValue
could be: Rade Matić, Miloš Kabiljo, etc.

• EntitySynonym represents a synonym for EntityValue. You can use synonyms when
there are multiple ways users are referring to the same thing. EntityValue can have
one or more EntitySynonym. For example, if the EntityValue is Rade Matić, the
EntitySynonym could be: R.M., Radetom Matićem, Radu Matiću.

• Utterance is an example (training) phrase for what users might type or say. For each
intent, we can have many utterances. When a user message looks like (corresponds
to) one of these utterances, NLU matches the intent. Examples of utterances could be:

Electronics 2021, 10, 2300 12 of 23

– When does Professor Rade Matić have a consultation? (serb. Kada profesor Rade
Matić ima konsultacije)?

– When can I consult with Professor Rade Matić (serb. Kad mogu da se konsultujem
sa profesorom Radetom Matićem)?

– When can I visit professor R.M. (serb. Kad mogu da dod̄em kod profesora R.M.)?

• UtteranceEntityValue represents entity value in one or more utterances. Utterance can
have zero or more values of entity. Attribute start and end positions are important
because this is how the model knows which characters to extract and use to train
the model. PartText represents the ordered list of utterance parts. The PartText is
concatenated to form the utterance. With RoleName we can define entities with
specific roles in an utterance. GroupName allows entities to be grouped together with
a specific group label. The group label can be used to define different orders. For
example, in the utterance: “When does Professor Rade Matić have a consultation”, the
entity value Rade Matić is PartText that starts at position 20 and ends at position 30.

• Culture provides the possibility of multi-language support. Utterances related to an
intent can be defined for each language individually as well as the entities used within
them. Each culture can have its own set of utterances and entities.

The Dialogflow metamodel is shown in Figure 4. NLU Concept is further specialized
into concepts that are more concrete:

• Intent.
• Kind.
• EntityType.
• Entity.
• Synonym.
• TrainingPhrase.
• Part.

Figure 4. Dialogflow metamodel.

The mapping between DORIUS NLU and Dialogflow NLU concepts is determined by
the following rules:

• Dialogflow2DORIUS rule: Each Dialogflow model maps to a DORIUS model.
• I.N-I.ID rule: Each Intent.Name maps to Intent.IntentID.

Electronics 2021, 10, 2300 13 of 23

• I.DN-I.N rule: Each Intent.DisplayName maps to Intent.Name.
• K.N-ET.N rule: Each Kind.Name maps to EntityType.Name.
• ET.N-E.ID rule: Each EntityType.Name maps to Entity.EntityID.
• ET.DN-E.N: Each EntityType.DisplayName maps to Entity.Name.
• E.V-EV.V rule: Each Entity.Value maps to EntityValue.Value.
• S.V-ES.V rule: Each Synonym.Value maps to EntitySynonym.Value.
• TP.N-U.N rule: Each TrainingPhrase.Name maps to Utterance.Name.
• P.T-UEV.PT rule: Each Part.Text maps to UtteranceEntityValue.PartText.
• P.A-UEV.RN rule: Each Part.Alias maps to UtteranceEntityValue.RoleName.

Figure 5. RASA metamodel.

The Mapping metamodel, shown in Figure 6, defines allowed correspondences between
Dialogflow NLU concepts and DORIUS NLU concepts based on the rules. A mapping be-
tween two concrete Dialogflow and DORIUS models is represented by Dialogflow2DORIUS
class, which encompasses all correspondences between concrete elements of the Dialogflow
and DORIUS models made using the mapping rules. The class NLUElement represents
an instance of such correspondences. For each mapping rule, there are appropriate sub-
classes of NLUElement, which are named after the rule. As is obvious from the metamodel,
mappings between concepts of Dialogflow model and DORIUS model are unique and
non-ambiguous.

The excerpt of the RASA metamodel with the most abstract RASA NLU concept is
shown in Figure 5. It is specialized using more concrete NLU concepts:

• Intent.
• Entity.
• EntitySynonym.
• Example.
• EntityExample.
• LookupTable.
• LookupTableItem.

Electronics 2021, 10, 2300 14 of 23

Figure 6. Dialogflow—DORIUS Mapping metamodel.

The mapping between RASA NLU and DORIUS NLU concepts is determined by the
following rules:

• RASA2DORIUS rule: Each RASA model maps to a DORIUS model.
• I.N-I.ID rule: Each Intent.Name maps to Intent.IntentID.
• I.N-I.N rule: Each Intent.Name maps to Intent.Name.
• E.N-E.N rule: Each Entity.Name maps to Entity.EntityID.
• LT.N-E.N rule: Each LookupTable.Name maps to Entity.EntityID.
• LTI.V-EV.V rule: Each LookupTableItem.Value maps to EntityValue.Value.
• S.V-ES.V rule: Each Synonym.Value maps to EntitySynonym.Value.
• E.N-U.N rule: Each Example.Name maps to Utterance.Name.
• EE.VS-EV.V rule: Each EntityExample.ValueSynonym maps to EntityValue.Value.
• EE.Start-UEV.Start rule: Each EntityExample.Start maps to UtteranceEntityValue.Start.
• EE.End-UEV.End rule: Each EntityExample.End maps to UtteranceEntityValue.End.
• EE.RN-UEV.RN rule: Each EntityExample.RoleName maps to UtteranceEntityValue.

RoleName.
• EE.GN-UEV.GN rule: Each EntityExample.GroupName maps to UtteranceEntity-

Value.GroupName.

The Mapping metamodel, shown in Figure 7, defines allowed correspondences be-
tween RASA NLU concepts and DORIUS NLU concepts based on the rules. A mapping
between two concrete RASA and DORIUS models is represented by RASA2DORIUS class,
which encompasses all correspondences between concrete elements of the RASA and
DORIUS models made using the mapping rules. The class NLUElement represents an
instance of such correspondences. For each mapping rule, there are appropriate subclasses
of NLUElement, which are named after the rule. The same as in the previous mapping

Electronics 2021, 10, 2300 15 of 23

metamodel, mappings between concepts of the RASA model and DORIUS model are
unique and non-ambiguous.

Figure 7. RASA—DORIUS Mapping metamodel.

6. Example of Mapping Model

A part of the corresponding mapping model between the Dialogflow model and
the DORIUS model is given in the object diagram in Figure 8. The Dialogflow model
package contains instances of the Dialogflow metamodel from Figure 4, while the package
DORIUS model contains instances of the DORIUS metamodel from Figure 3. The Package
Mapping model contains instances of the corresponding mapping rules by which concepts
of the Dialogflow are mapped from the concept of the DORIUS. For example, intent i1
(ProfessorConsultation) is mapped from corresponding intent of the same name using
the I.DN-I.N rule. Kind k1 is mapped from et1:EntityType of the same name using the
K.N-ET.N rule. On the other hand, attribute Name (3en-22t) of et1:EntityType, is mapped
from attribute EntityID (3en-22t) of e1:Entity by rule ET.N-E.ID. Furthermore, attribute
DisplayName (TeacherName) of et1:EntityType, is mapped from attribute Name (Teach-
erName) of e1:Entity by rule ET.DN-E.N. Thus, entities e1 (Rade Matić) and e2 (Miloš
Kabiljo) are mapped from corresponding entity values ev1 and ev2 of the same value using
the E.V-E.VV rule. Furthermore, synonyms s1 (R.M.) and s2 (Radu Matiću) are mapped
to corresponding entity synonyms es1 and es2 of the same value using the S.V-E.SV rule.
Training phrases tp1 and tp2 are mapped from corresponding utterances u1 and u2 of
the same name using the TP.N-U.N rule. Attribute Text of p1:Part is mapped from at-

Electronics 2021, 10, 2300 16 of 23

tribute PartText of uev1:UtteranceEntityValue by rule P.T-UEV.RN. UtteranceEntityValue
represents entity value in one or more utterances. For example, in the utterance: “When
does Professor Rade Matić have a consultation?”, entity value Rade Matić is PartText. An
example of a mapping model with only one NLU metamodel is given here. A similar
example of mapping can be shown for the RASA metamodel, but due to work limitations,
the details of mapping are not part of this work.

Figure 8. A part of mapping model between Dialogflow and DORIUS model.

7. Two Case Studies and Their Implementations

Some experiences in the implementation of the described chatbot architecture exist in
two case studies. The first one is an ADA chatbot of Belgrade Business and Art Academy
of Applied Studies and the second is “COVID-19 Info Serbia”. In the conditions of the
COVID-19 pandemic and due to the closure of the education system, Belgrade Business
and Arts Academy of Applied Studies [41] is required to switch to the online delivery
of interaction with their students and educational content [42]. To improve, modernize,

Electronics 2021, 10, 2300 17 of 23

and digitalize education services, the Academy developed an ADA (Academic Digital
Assistant) [43] chatbot using the Weaver platform to provide its students with improved
service and necessary information during their studies, as shown in Figure 9.

Figure 9. ADA (Academic Digital assistant) chatbot, implemented in the Belgrade Business and Arts
Academy of Applied Studies.

ADA is currently using two NLU external services: RASA and Dialogflow. Thanks
to the solution proposed here, it was easy to switch from one NLU service to another.
Testing was performed in three phases. The first phase involved internal testing of the
intents due to the specifics of the Serbian language. We confirmed the shortcomings of
Dialogflow from the paper [32] and switched to RASA. The second phase of testing was
carried out in a controlled environment with a group of 50 students using RASA. We told
these students what the ADA knows, but we did not tell them how to ask. The goal was
to achieve 75% accuracy. Students entered the appropriate utterances, but we obtained
an average accuracy of recognizing intents around 55%. Our learning model was not as
good as we expected, but utterances that the ADA did not recognize helped us to boost
training. The model became much richer with new utterances. The third and final phase of
testing involved all students of an IT major at the Academy. They provided us with many
utterances that we constantly added to the training until we managed to get the ADA to
answer 85% of the questions. Issues that were outside of the learned model were excluded

Electronics 2021, 10, 2300 18 of 23

from training and confidence score because some utterance was out of the scope for this
part of the test. To get the most out of our training data, we trained and evaluated our
model on different pipelines and different amounts of training data. To support Serbian,
we did not use the spaCy library. The same recommendation is made for other languages
that do not have support in spaCy. For English and other more popular languages, spaCy
is very useful to include. Regardless of which language we use, it is very important to
get the most out of training data. We had to train and evaluate our model on different
pipelines and different amounts of training data.

A snapshot of one scenario definition and NLU validation is shown in Figures 10 and 11,
respectively. Figure 10 shows how the administrator can choose which NLU service to use.
Figure 11 shows the NLU validation of utterances for the two intents asked by the students,
as well as their confidence core on the RASA NLU service. Using the NLU validation it is
possible to directly teach the NLU service to avoid dependency on the NLU interface of
the vendor.

Figure 10. Bot Designer.

Figure 11. NLU Validation.

Electronics 2021, 10, 2300 19 of 23

ADA helps prospective students learn more about the Academy. ADA is trained
to provide students with the highest quality educational service with a wide range of
information about the teachers, classrooms, curriculum, literature, working hours, library,
subjects, notifications, education content, lecture schedule, and price list in an easy-to-use,
conversational manner. Students ask ADA for various information such as: the total cost of
tuition, which documents are required for enrolment in the new school year, the schedule of
lectures, or the date of admission of a particular professor, as shown in Figure 9. ADA also
can perform some processes such as exam registration or cancellation, change of teacher on
the exam, reset password, or buy a book. In the analyzed months, the interest of students
was in accordance with the school calendar, that is, in January, the month of taking the
exams, students were most interested in when the teacher teaches, examines, or holds
exercises in a certain subject, as shown in Table 1. In February, the month of enrolment in
the new school year, at the top of the list of inquiries was information related to the cost of
tuition and the type of documents required for enrolment, as shown in Table 2. When both
Tables 1 and 2 are considered, it is also possible to observe the significant increase in the
total amount of inquiries.

Table 1. Statistics of student inquiries in January 2021.

The Most Frequently Asked Questions with no. of Conversations

Which professor teaches and examines a particular subject 178
The amount of any tuition fee 176

What is the schedule of lectures 140
When lectures start in a given semester 137
When does the student enrolment begin 134

Table 2. Statistics of student inquiries in February 2021.

The Most Frequently Asked Questions with no. of Conversations

Required documentation for enrolment for a specific school year 513
The amount of any tuition fee 472

In which cabinet and at what time professor holds consultations 470
Location, working hours, books offered in the Academy’s script shop 459

Budget ranking information 298

Thanks to this, we managed to get almost 60% of students to use ADA as their primary
communication channel with the Academy. It also provides links to additional resources for
those who wish to learn more about the Academy. The ADA chatbot project is the first such
project in the Balkans in the field of education that provides time saving, easier and better
communication, and faster and more efficient implementation of educational services.
Chatbot technology has the potential to significantly influence the way students experience
educational institutions and the way they interact with them. The aim of the platform, in
addition to being available to many students for all necessary information related to the
Academy, is to obtain official information without waiting, as well as to relieve contact
center personnel and teachers, allowing them to pay attention to more creative tasks. The
Chatbot is freely available and launches in Serbian via Viber and FB messenger.

Because the Serbian language is very difficult, a very large training set with various
utterances was needed for the model to be as efficient as possible. In addition to utterances,
we take care of the entities, their values, as well as their synonyms due to the complexity
of the Serbian language, which can be a problem during the recognition of intent. ADA,
unlike COVID-19, has a lot of entities that have the same value but different meanings. In
that case, we use the concept of entity role so that the same entity in a sentence can have
two meanings. An example of this entity is “management”, which can be the name of
subject in one study program and the name of another study program. Table 3 presents the

Electronics 2021, 10, 2300 20 of 23

number of intents, utterances, entities to make ADA and COVID-19 functional in Serbian.
These numbers are growing because we are constantly working on learning and improving
the model.

Table 3. The number of intents, utterances, entities to make ADA and COVID-19 functional in Serbian.

ADA COVID-19

Intent 202 107
Utterance 7549 3770

Entity 20 10
Entity values 525 120

Entity synonyms 3524 150

To facilitate the process of efficient and timely information dissemination, a proposed
solution is participating in developing “COVID-19 Info Serbia” [44]. This includes a
wide range information about coronavirus and its symptoms. It also provides links to
additional resources for those who wish to learn more about the disease. The chatbot is
freely available and launches in Serbian and English via Viber [45]. “COVID-19 Info Serbia”
is a beta version chatbot developed on the Weaver platform. This is a retrieval-based model
connected with NLU, which is classified into closed domains and it provides easier and
quicker information regarding the COVID-19 virus epidemic in Serbia [46]. The Virtual
Assistant answers all potential citizen questions regarding COVID-19 without waiting,
and it is available 24/7 at the official website of the government related to the COVID-19
virus situation. The “COVID-19 Info Serbia” chatbot has the potential to create individual
learning experiences about COVID-19. The chatbot responds with official answers to
most common questions of citizens regarding COVID-19, including details on the state of
emergency, local emergency numbers, symptoms, the latest Ministry of Health updates,
and other useful information. It also helps reduce the pressure on healthcare hotlines and
keeping the phone lines open for people who really need to speak to a doctor. “COVID-19
Info Serbia” is obviously a simplification of what a chatbot could do. It can be improved
and updated easily by teaching the chatbot to provide rich experiences, but this mostly
depends on the trainers of the chatbot.

COVID-19 had accelerated testing due to short deadlines and a pandemic situation. This
chatbot is therefore different because it has simple scenarios and there are also button-based
scenarios. The pilot production started very quickly, where a lot of citizens participated,
who strengthened the training with various issues and expanded the domain of model
knowledge. We also implemented a scenario that provides an opportunity for citizens to
register for vaccination. About 30,000 citizens applied for vaccination in the first round via
the COVID-19 chatbot. This chatbot currently has about 300,000 subscribers on the Viber
channel, and the success rate for correct answers was 80%.

The Weaver platform is built on trained NLU engines, but each chatbot that has been
built has a different set of conversation designs and solves different industry problems.
To achieve the best outcome, we need a decent amount of good quality data. Under the
condition to provide the best conversation flow, the platform will be able to work at its best.

8. Conclusions

Driven by the promise of intelligent digital assistants that will always be at disposal
for fast and consistent resolution of client requests, chatbots are becoming increasingly
useful. One of the main goals was to make an agile and extensible chatbot architecture to
handle a highly variable environment of modern platforms and emerging technologies.
The advantages offered by proposed chatbot architecture are the following:

• It is extensible, supporting new natural language understanding and communication
channels for user interactions.

• It relies on metamodels as the main extensible mechanism. For this we provide:

Electronics 2021, 10, 2300 21 of 23

– General NLU metamodel.
– Metamodels for the two specific NLU services (Dialogflow and RASA).
– Corresponding metamodels as well as rules for a mapping between generic and

specific NLU metamodels.

• It is tailorable and customizable, referring to the ability of the architecture to be managed
and customized by a modeler.

• It is inherently scalable by means of microservices.
• The solution was implemented in two case studies on the Serbian language.
• It provides a mature runtime functionality within the domain of chatbots.
• It provides a workflow representing detailed and dynamic business processes (scenar-

ios) that are concerned with the step-by-step sequence of activities used to complete
the intents.

In this paper, we show software architectures that can be expanded, adapted, managed,
and customized to meet future changes and chatbot technologies. Platform independence
is closely related to the concern for open APIs and support for distributed objects. We
have presented the advanced architecture of the chatbot framework built on microservices,
i.e., API service architecture. We also presented a solution for creating a chatbot that is
independent of one external NLU service. Lessons learned from both cases proved that
Web API was a good choice among other things because:

• The service is based on the HTTP protocol-enabling RESTful service and JSON objects.
• It can be hosted within the application or IIS (Internet Information Services).
• It can be used by any client who understands JSON or extensible markup language (XML).
• It has a simple architecture.

When developing and designing chatbot architecture, we use several techniques for scal-
ability. Thanks to microservices, our architecture can replace a component with more
powerful and faster ones as requirements grow and technology develops. The chatbot
platform does not care about the front end of communication platforms. Maintenance is
easier because the front end is maintained by the communication service. For the first phase,
we only use the local cache to accelerate request retrieval. We use index tables to solve
a quick search. We regulate concurrent requests and handle many of them. We perform
queries asynchronously and queue them. Asynchronous processing removes some of the
bottlenecks that affect performance. We increase the scalability choosing Angular as one of
the modern frameworks for single page application enhancing the overall performance.
The user interface for NLU learning is defined in one place, regardless of different NLU
external services. Scenario definitions are also defined in one place regardless of different
communication platforms. Switching from one to more NLU or introducing new NLU is
very easy to accomplish in a couple of clicks due to the metamodels and low coupling of
the basic parts of the architecture. This reduces the learning curve for the user and helps in
better understanding of user message. The solution was implemented in two case studies:
“ADA” and “COVID-19 Info Serbia”. ADA Chatbot is a platform that uses NLU to find the
right answer to all student questions and solve their problems. In that way, the satisfaction
of students increases, and they achieve a better interaction with the Academy using more
than one communication platform and NLU services. COVID-19 has accelerated the need
for chatbot solutions. Chatbots may not be the solution to all student problems, but it is a
powerful tool that can increase the efficiency of the Academy and support the realization
of the educational process. After the pandemic, the use of chatbots for information and
education applications will continue to grow. What says the most about the success of
this implementation is that the Academy dedicated the whole brand image campaign to
ADA. To better inform the citizens of Serbia about COVID-19, the Government of Serbia
has launched a chatbot. The goal of “COVID-19 Info Serbia” is to reach as many people as
possible with reliable health information using AI-powered contact center messaging [47].
The proposed platform covers general scenarios and topics related to the virus, and focuses
on information on symptoms, prevention measures, important phones, current data, and

Electronics 2021, 10, 2300 22 of 23

decisions of the Government of the Republic of Serbia. However, this training procedure
requires more patience, time, and domain knowledge. There is always a need for human
intervention, even where chatbots are deployed. This research work can be continued in
the direction of full automation and extension of our prototype with new possibilities. For
instance, an automatic extraction of user sentiment from communication could be added.
We need to create a distributed cache to provide the data piece distribution throughout
all the nodes. The support service should then be enabled for voice messages and addi-
tional performance measurements to identify bottlenecks, using evaluation techniques
such as [17,18]. The authors claim that the proposed chatbot architecture presented in this
paper is an excellent starting point for these research directions.

Author Contributions: Conceptualization, R.M. and M.K.; methodology, M.Z. and M.C.; software,
R.M. and M.K.; validation, R.M., M.Z. and M.C.; formal analysis, M.K. and R.M.; investigation, R.M.
and M.K.; resources, R.M., M.K., M.Z. and M.C.; writing—original draft preparation, R.M. and M.K.;
writing—review and editing, M.Z. and M.C.; visualization, R.M.; supervision, R.M. and M.K.; project
administration, R.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bansal, H.; Khan, R. A review paper on human computer interaction. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2018, 8, 53. [CrossRef]
2. Dale, R. The return of the chatbots. Nat. Lang. Eng. 2016, 22, 811–817. [CrossRef]
3. Smutny, P.; Schreiberova, P. Chatbots for learning: A review of educational chatbots for the Facebook Messenger. Comput. Educ.

2020, 151, 103862. [CrossRef]
4. Chatbot Report 2019: Global Trends and Analysis|by BRAIN [BRN.AI] CODE FOR EQUITY|Chatbots Magazine. Available

online: https://chatbotsmagazine.com/chatbot-report-2019-global-trends-and-analysis-a487afec05b (accessed on 5 June 2021).
5. Chatbot Market Size, Share|Industry Trends and Analysis by 2027. Available online: https://www.alliedmarketresearch.com/

chatbot-market (accessed on 5 June 2021).
6. Fayad, M.E.; Hamza, H.S.; Sanchez, H.A. Towards scalable and adaptable software architectures. In Proceedings of the IRI-2005

IEEE International Conference on Information Reuse and Integration, Las Vegas, NV, USA, 15–17 August 2005; pp. 102–107.
7. Weaver. Available online: https://weaverbot.ai/ (accessed on 5 June 2021).
8. Weizenbaum, J. ELIZA—A computer program for the study of natural language communication between man and machine.

Commun. ACM 1966, 9, 36–45. [CrossRef]
9. Weizenbaum, J. Eliza—A computer program for the study of natural language communication between man and machine.

Commun. ACM 1983, 26, 23–28. [CrossRef]
10. Marietto, M.D.G.B.; de Aguiar, R.V.; Barbosa, G.D.O.; Botelho, W.T.; Pimentel, E.; França, R.D.S.; da Silva, V.L. Artificial

intelligence markup language: A brief tutorial. arXiv 2013, arXiv:1307.3091.
11. Wallace, R.S. The anatomy of ALICE. In Parsing the Turing Test; Springer: Dordrecht, The Netherlands, 2009; pp. 181–210.
12. Rodríguez Cardona, D.; Werth, O.; Schönborn, S.; Breitner, M.H. A mixed methods analysis of the adoption and diffusion of

Chatbot Technology in the German insurance sector. In Proceedings of the AMCIS, Cancun, Mexico, 15–17 August 2019.
13. Adamopoulou, E.; Moussiades, L. Chatbots: History, technology, and applications. Mach. Learn. Appl. 2020, 2, 100006.
14. Mu, J.; Sarkar, A. Do we need natural language? Exploring restricted language interfaces for complex domains. In Proceedings

of the Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019;
pp. 1–6.

15. Daniel, G.; Cabot, J.; Deruelle, L.; Derras, M. Multi-platform chatbot modeling and deployment with the Jarvis framework. In
Proceedings of the International Conference on Advanced Information Systems Engineering, Rome, Italy, 3–7 June 2019; Springer:
Basel, Switzerland, 2019; pp. 177–193.

16. Abdul-Kader, S.A.; Woods, J. Survey on chatbot design techniques in speech conversation systems. Int. J. Adv. Comput. Sci. Appl.
2015, 6. [CrossRef]

17. Radziwill, N.M.; Benton, M.C. Evaluating quality of chatbots and intelligent conversational agents. arXiv 2017, arXiv:1704.04579.
18. Pereira, J.; Díaz, O. A quality analysis of facebook messenger’s most popular chatbots. In Proceedings of the 33rd Annual ACM

Symposium on Applied Computing, Pau, France, 9–13 April 2018; pp. 2144–2150.
19. Nimavat, K.; Champaneria, T. Chatbots: An overview. Types, architecture, tools and future possibilities. Int. J. Sci. Res. Dev. 2017,

5, 1019–1024.
20. Jwala, K.; Sirisha, G.; Raju, G.P. Developing a Chatbot using Machine Learning. Int. J. Recent Technol. Eng. (IJRTE) 2019, 8, 89–92.
21. Swanson, K.; Yu, L.; Fox, C.; Wohlwend, J.; Lei, T. Building a production model for retrieval-based Chatbots. arXiv 2019,

arXiv:1906.03209.

http://doi.org/10.23956/ijarcsse.v8i4.630
http://dx.doi.org/10.1017/S1351324916000243
http://dx.doi.org/10.1016/j.compedu.2020.103862
https://chatbotsmagazine.com/chatbot-report-2019-global-trends-and-analysis-a487afec05b
https://www.alliedmarketresearch.com/chatbot-market
https://www.alliedmarketresearch.com/chatbot-market
https://weaverbot.ai/
http://dx.doi.org/10.1145/365153.365168
http://dx.doi.org/10.1145/357980.357991
http://dx.doi.org/10.14569/IJACSA.2015.060712

Electronics 2021, 10, 2300 23 of 23

22. Peng, Z.; Ma, X. A survey on construction and enhancement methods in service chatbots design. CCF Trans. Pervasive Comput.
Interact. 2019, 1, 204–223. [CrossRef]

23. Hussain, S.; Sianaki, O.A.; Ababneh, N. A survey on conversational agents/chatbots classification and design techniques. In
Proceedings of the Workshops of the International Conference on Advanced Information Networking and Applications, Matsue,
Japan, 27–29 March 2019; Springer: Basel, Switzerland, 2019; pp. 946–956.

24. Khan, R. Standardized architecture for conversational agents aka chatbots. Int. J. Comput. Trends Technol. 2017, 50, 114–121.
[CrossRef]

25. Motger, Q.; Franch, X.; Marco, J. Conversational Agents in Software Engineering: Survey, Taxonomy and Challenges. arXiv 2021,
arXiv:2106.10901.

26. Daniel, G.; Cabot, J.; Deruelle, L.; Derras, M. Xatkit: A multimodal low-code chatbot development framework. IEEE Access 2020,
8, 15332–15346. [CrossRef]

27. Pérez-Soler, S.; Guerra, E.; de Lara, J. Model-driven chatbot development. In Proceedings of the International Conference on
Conceptual Modeling, Vienna, Austria, 3–6 November 2020; Springer: Basel, Switzerland, 2020; pp. 207–222.

28. Hill, J.; Ford, W.R.; Farreras, I.G. Real conversations with artificial intelligence: A comparison between human–human online
conversations and human–chatbot conversations. Comput. Hum. Behav. 2015, 49, 245–250. [CrossRef]

29. Divya, S.; Indumathi, V.; Ishwarya, S.; Priyasankari, M.; Devi, S.K. A self-diagnosis medical chatbot using artificial intelligence. J.
Web Dev. Web Des. 2018, 3, 1–7.

30. Petrovic, A.; Zivkovic, M.; Bacanin, N. Singibot-A Student Services Chatbot. In Proceedings of the Sinteza 2020-International
Scientific Conference on Information Technology and Data Related Research, Belgrade, Serbia, 17 October 2020; Singidunum
University: Belgrade, Serbia, 2020; pp. 318–323.

31. Ranoliya, B.R.; Raghuwanshi, N.; Singh, S. Chatbot for university related FAQs. In Proceedings of the 2017 International
Conference on Advances in Computing, Communications and Informatics (ICACCI), Udupi, India, 13–16 September 2017;
pp. 1525–1530.

32. Abdellatif, A.; Badran, K.; Costa, D.; Shihab, E. A Comparison of Natural Language Understanding Platforms for Chatbots in
Software Engineering. IEEE Trans. Softw. Eng. 2021. [CrossRef]

33. Adamopoulou, E.; Moussiades, L. An overview of chatbot technology. In Proceedings of the IFIP International Conference
on Artificial Intelligence Applications and Innovations, Halkidiki, Greece, 5–7 June 2020; Springer: Basel, Switzerland, 2020;
pp. 373–383.

34. Fayad, M.E.; Hamu, D.S.; Brugali, D. Enterprise frameworks characteristics, criteria, and challenges. Commun. ACM 2000, 43,
39–46. [CrossRef]

35. LUIS (Language Understanding)—Cognitive Services—Microsoft. Available online: https://www.luis.ai/ (accessed on 5 July 2021).
36. Wit.ai. Available online: https://wit.ai/ (accessed on 5 July 2021).
37. Dialogflow, Natural Language Understanding Platform. Available online: https://cloud.google.com/dialogflow/docs/ (accessed

on 5 June 2021).
38. Open Source Conversational AI|Rasa. Available online: https://rasa.com/ (accessed on 5 June 2021).
39. IBM Watson|IBM. Available online: https://www.ibm.com/watson (accessed on 5 July 2021).
40. Nešković, S.; Matić, R. Context modeling based on feature models expressed as views on ontologies via mappings. Comput. Sci.

Inf. Syst. 2015, 12, 961–977. [CrossRef]
41. BAPUSS—Beogradska Akademija Poslovnih i Umetničkih Strukovnih Studija. Available online: https://www.bpa.edu.rs/

(accessed on 5 July 2021).
42. Kabiljo, M.; Vidas-Bubanja, M.; Matić, R.; Zivković, M. Education system in the republic of serbia under COVID-19 conditions:

Chatbot-acadimic digital assistant of the belgrade business and arts academy of applied studies. Knowl. Int. J. 2020, 43, 25–30.
43. ADA Chatbot. Available online: https://chatbot.bpa.edu.rs/en/index.html (accessed on 5 July 2021).
44. Ministarstvo Zdravlja Republike Srbije—COVID-19. Available online: https://covid19.rs/homepage-english/ (accessed on

5 July 2021).
45. COVID-19 Info Srbija on Viber. Available online: https://chats.viber.com/covid19info (accessed on 5 July 2021).
46. COVID-19 Info Serbia|Saga—New Frontier Group. Available online: https://saga.rs/news/COVID-19-info-serbia/?lang=en

(accessed on 5 July 2021).
47. Nguyen, T.T.; Nguyen, Q.V.H.; Nguyen, D.T.; Hsu, E.B.; Yang, S.; Eklund, P. Artificial intelligence in the battle against coronavirus

(COVID-19): A survey and future research directions. arXiv 2020, arXiv:2008.07343.

http://dx.doi.org/10.1007/s42486-019-00012-3
http://dx.doi.org/10.14445/22312803/IJCTT-V50P120
http://dx.doi.org/10.1109/ACCESS.2020.2966919
http://dx.doi.org/10.1016/j.chb.2015.02.026
http://dx.doi.org/10.1109/TSE.2021.3078384
http://dx.doi.org/10.1145/352183.352200
https://www.luis.ai/
https://wit.ai/
https://cloud.google.com/dialogflow/docs/
https://rasa.com/
https://www.ibm.com/watson
http://dx.doi.org/10.2298/CSIS141031035N
https://www.bpa.edu.rs/
https://chatbot.bpa.edu.rs/en/index.html
https://covid19.rs/homepage-english/
https://chats.viber.com/covid19info
https://saga.rs/news/COVID-19-info-serbia/?lang=en

	Introduction
	Related Work and Motivation
	NLU Support
	Proposed Chatbot Architecture
	Architecture
	The Component Structure of the Bot Engine

	NLU Metamodels and Corresponding Mapping Rules
	Example of Mapping Model
	Two Case Studies and Their Implementations
	Conclusions
	References

