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Abstract: CdSe/ZnS quantum dots (QDs) have attracted great consideration from investigators owing
to their excellent photo-physical characteristics and application in quantum dot light-emitting diodes
(QD-LEDs). The CdSe/ZnS-based inverted QD-LEDs structure uses high-quality semiconductors elec-
tron transport layers (ETLs), a multilayered hole transporting layers (HTLs). In QD-LED, designing a
device structure with a minimum energy barrier between adjacent layers is very important to achieve
high efficiency. A high mobility polymer of poly (9,9-dioctylfluorene-co-N-(4-(3-methylpropyl))
diphenylamine (TFB) was doped with 4,4′-bis-(carbazole-9-yl) biphenyl (CBP) with deep energy level
to produce composite TFB:CBP holes to solve energy mismatch (HTL). In addition, we also improved
the QD-LED device structure by using zinc tin oxide (ZTO) as ETL to improve device efficiency.
The device turn-on voltage Vt (1 cd m−2) with ZTO ETL reduced from 2.4 V to 1.9 V significantly.
Furthermore, invert structure devices exhibit luminance of 4296 cd m−2, current-efficiency (CE) of
7.36 cd A−1, and external-quantum efficiency (EQE) of 3.97%. For the QD-LED based on ZTO, the
device efficiency is improved by 1.7 times.

Keywords: light-emitting diode; Zinc tin oxide; composite hole transport layer; CdSe/ZnS

1. Introduction

In recent years, Quantum dots (QDs) have attracted considerable attention as an active
material because of their excellent optoelectrical properties, such as broadband absorption,
bandgap turnability, narrow full-width half maximum (FWHM), high photoluminescence
(PL), inherent photo-physical stability, and their advanced optoelectronic application in QD
based light-emitting diodes (QD-LEDs) [1–5]. The CdSe/ZnS core–shell is a kind of QD-
LEDs that have a wide variety of applications because of their remarkable stability, solution-
processability, color tunability, and good efficiency [6,7]. However, there are still some
issues that need to be resolved, such as high turn-on (VT) voltage, low device efficiency in
the feasible brightness range, and surface trap-states of QDs, which are caused by ineffective
carrier injection in the emission layer and a deprived electron–hole balance inside the
structure [8–11]. In general for inverted CdSe/ZnS QD-LEDs, Fluorine-tin oxide (FTO)
coated glass has been used as a bottom substrate, zinc oxide nanoparticles (ZnO NPs) act
as electron transport layer (ETL), poly(3,4-ethylenedioxythiophene) polystyrene sulfonate
(PEDOT:PSS) acts as hole injection layer (HIL) [12,13], poly(9-vinlycarbazole) (PVK) [14]
and/or poly[N,Ni-bis(4-butylphenyl)-N,Nibisphenylbenzidine) (poly-TPD) [15,16] are
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used for hole transporting layer (HTL), CdSe/ZnS QD acts as light-emissive layer (EML),
and Au is deposited as top electrode [17,18].

Metal oxides such as zinc tin oxide (ZTO), titanium dioxide (TiO2), and zinc oxide
nanoparticles (ZnO NPs) have been utilized as ETLs to enhance electron injection and
charge balance in the QD EML [19,20]. In comparison to organic compounds, inorganic
compounds such as metal oxides have high thermal stability and resistance to oxygen
and moisture. Among several metal oxide ETL materials, solution-processed ZnO NPs
outperformed other vacuum-deposited metal oxides in QD-LEDs. There are still some
difficulties with solution-processed metal oxide ETLs; through the solution processing of
two consecutive layers, an intermix might develop, resulting in a leakage current inside
the structure [21,22].

Furthermore, the exciton quenching action may be caused by the hydroxyl bond (O-H)
generated during the solution process. As a result, ZTO has been investigated as an ETL
material for QD-LEDs to build an efficient inorganic ETL. ZTO’s nature as a compound-
based ZnO and SnO2 energy band characteristics have in-between values of ZnO and SnO2,
and these qualities might contribute to enhancements in ETL electron transport/injection
and hole blocking layer [21]. In contrast to the highest occupied molecular orbital (HOMO)
and lowest unoccupied molecular orbital (LUMO) energy levels of conventional conjugated
organic molecules or polymers (5.5 and 3 eV, respectively), QDs have a lower valence band
(VB) (6 to 7 eV) and conduction band (CB) (4 to 5 eV) energy levels [23–25]. Injecting holes
from the organic layer into QDs has a high potential energy barrier (greater than 1 eV),
but electrons can easily insert into QDs. As a result, the active charge transfer mechanism
is hampered, resulting in excessive charge injection. Unbalanced charge injection causes
undesirable auger recombination, such as leakage current and device heating, reducing
device performance [25].

However, high hole mobility HTLs such as poly(9,9-dioctylfluorene-co-N-(4-butyl
phenyl) diphenylamine) (TFB) [26,27] and 4,4í-bis(carbazole-9-yl) biphenyl (CBP) [28,29]
were investigated to increase the hole mobility and reduce the potential barrier between the
HTL and QD EML, resulting in improved overall device performance [15,30]. Furthermore,
it was shown that such composite HTLs could improve hole transport mobility and form
a stepwise energy level for hole injection in the device by combining the high mobilities
of TFB and the deep-lying HOMO level of CBP, which promotes charge carrier transport
balance, reduces multi HTLs into a single layer, and injects holes in QDs [31].

To enhance the device performance, we successfully designed and fabricated the
inverted QD-LED by using composite HTL TFB:CBP 4:1 [31] and solution-processed ZTO
as ETL. By using these strategies, the charge balance and interfacial interaction among
the transporting and active layers were effectively improved. By compiling these ideas,
the devices showed a low (VT) of 1.9 V and maximum luminance of 4296 cd m−2 at a
current efficiency (CE) of 7.36 cd A−1. We are confident that this structural optimization
has laid the groundwork for the design phase of hybrid QD-LEDs and the identification
of next-generation QD-LED-based display and lighting technologies that demand high
resolution and low production costs.

2. Materials and Methods
2.1. Synthesis

CdSe/ZnS core–shell QDs were synthesized according to the previously reported
method with minor modification [32–34]. Briefly, 2 mmol of Cadmium Oxide (CdO),
3 mmol zinc acetate, 6 mL Oleic acid (OA), and 25 mL octadecene (ODE) were mixed
into a 100 mL round flask, heated to 160 ◦C, filled N2 with vigorous stirring, degassed
and further heated to 280 ◦C to obtain the clear solution of Cd (OA)2 and Zn (Ac)2. At
280 ◦C, 0.4 mmol of selenium (Se), 4 mmol sulfur (S) powder dissolved together in 3 mL
Trioctylphospine (TOP) for 5 min at 100 ◦C, were injected rapidly into the reaction flask.
After injection was over, the temperature was maintained at 280 ◦C for 20 min. Then, 0.6 mL
dodecanthiol (DDT) was added dropwise at the rate of 1 mL min−1 for another 10 min.
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Finally, the mixture was cooled to room temperature to produce the red CdSe/ZnS QDs
using an ice bar. For purification, acetone and chloroform were added to the suspensions,
followed by centrifugation at 10,000 rpm for 10 min and dissolved in octane for further use.
ZnO NPs were synthesized according to the reported method [35,36]. ZTO was synthesized
according to the following reported articles after some modification [37]. ZnCl2 and SnCl2
were selected as the zinc and tin precursors. Ethanol was used due to its environmentally
friendly solvent. The ZnO precursor solution was prepared by dissolving 0.2 M (0.136 g)
ZnCl2 in ethanol. 0.2 M (0.225 g) SnCl2 was dissolved in ethanol and stirred at 60 ◦C to
form a SnO2 precursor solution. To form a ZTO precursor solution, we mixed ZnO and
SnO2 precursor solution at the molar ratio of 1:1. Before use, the precursor solution was
stirred for 2 h and filtered through a 0.22 µm nylon syringe filter.

2.2. Device Fabrication

First, detergent, deionized water, acetone, ethanol, and isopropyl alcohol were used
to clean Fluorine-doped Tin oxide (FTO) patterned glass in an ultrasonication bath for
15 min. The ZTO precursor solution as ETL spin-coated at 2000 r/min for 60 s and sintered
at 180 ◦C for 10 min. Then, CdSe/ZnS QD (10 mg mL−1 in octane) was spin-coated on the
deposited ZTO layer at 1500 r/min for 30 sec and sintered for 10 min at 120 ◦C. Afterward,
hybrid HTL (10 mg mL−1 in chlorobenzene) TFB:CBP = 4:1 was spin-coated on the QD
film at 2500 r/min for 40 sec and annealed at 120 ◦C for 15 min. In the end, Au (electrode)
was deposited by thermal deposition via a shadow mask. Our fabricated device has a
0.04 cm−2 emission zone.

2.3. Device Characterization

Field emission electron microscopy (FESEM, Quanta 200, FEI: Hillsboro, OR, USA) is
used to measure the thickness of the layer. Smartlab-3 diffractometer was used to obtain
the X-ray diffraction (XRD) results. FEI Tecnai-G20 was used to take tunneling electron
microscope (TEM) and the high-resolution (HR) TEM images. UV-vis spectrophotome-
ter (UV-1780, SHIMADZU) was used to measure the absorption of the samples. EDIN-
BURGH(FS5) system used to measure photoluminance (PL) and quantum yield (QY).
KEITHLEY 2400 and Spectrascan (PR 670) instruments were used to optimize the opto-
electronic properties of the QLED device. The optimizations were carried out under an
ambient atmosphere.

3. Results and Discussion

Figure 1a (inset), represents high-resolution transmission electron microscopy (HRTEM)
and TEM images of CdSe/ZnS QDs with a particle size of 10 nm, a spherical shape, and ho-
mogenous size distribution. Figure 1a displays a distinct lattice structure with a d-spacing
of 0.4 nm, which is consistent with the literature and indicates strong crystallinity in the
synthesized QDs [38]. The X-ray diffraction (XRD) pattern in Figure 1b indicates that
the diffraction peaks (111), (221), and (311) belong to the cubic phase of the synthesized
CdSe/ZnS QDs [39]. The UV-vis-absorption and PL spectra of the fabricated QDs (in
solution) are shown in Figure 1c. The absorption and luminescence peaks of quantum dots
are monitored at 630 nm and 620 nm, corresponding to red light emission. The full width
at half peak (FWHM) is 30 nm, and the calculated PLYQ of QDs dots (in solution) is 80%
and 31% (film state), respectively.
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Figure 1. Characteristics of CdSe/ZnS core–shell QDs; (a) HRTEM and TEM images; (b) XRD pattern; and (c) UV−vis
absorption and PL spectra.

Roughness and morphology strongly affect the suitable interface contact and efficient
charge flow through the interfaces. Atomic force microscopy (AFM) height images of ZTO
films on plane ITO substrate were taken and shown in Figure 2a (Figure 2b showed a three-
dimensional surface topography image). The prepared ZTO film represents roughness on
route mean square (RMS) 7.01 nm at 180 ◦C. The small RMS value of ZTO (film state) can
describe the tiny grain size and flatter surface, which could passivate the surface defects,
reduce the contact resistance, and improve the morphology of active layers. All of the above
can be defined as reducing the fabricated device’s leakage current and principal for better
device performance. The XRD patterns are also illustrated of ZTO film in Figure 2c. Only
one peak showed on the ZTO phase, indicating that the fabricated ETL has an amorphous
rather than crystalline structure. However, XRD exhibits a single peak at 32.5◦, which
means that precursors slightly impact the ZTO film’s crystallinity in preparation conditions
because the preparation method can control crystallinity. Therefore, the ZTO film shows
an amorphous structure [40].
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The surface morphology of the ZTO with different layers is examined on plane ITO
taken by SEM as shown in Figure 3a,b. A single layer of ZTO shows huge pinholes that
cause the leakage current and increase the structure’s heat, affecting the performance of the
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entire layers’ interfaces. To overcome these issues, two layers of ZTO exhibit pinhole-free
surface, which improved the performance of the QD-LED.
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Figure 3. Scanning Electron microscopy (SEM) images; (a) one layer of ZTO; (b) two layers of ZTO.

The inverted QD-LED with hybrid HTL and solution-processed ETL was fabricated,
as shown in Figure 4a,b using the following structure; FTO/ZTO (45 nm)/CdSe-ZnS
(40 nm)/TFB:CBP (50 nm)/Au (100 nm). To better charge insertion into EML, increase
stability, and understand the working principle, composite HTL, and ZTO ETL were
used. With an electron affinity of 4.0 eV and an ionization potential of ~7.2 eV, the ZTO
layer allows more efficient electron transport from the FTO into QD, which acts to limit
holes inside QD owing to their valance band offset at QD/ZTO interfaces, resulting in
excellent charge recombination. Zn-Sn-O (ZTO) is kind of an n-type oxide material that
combines ZnO and SnO2. Alternatively, composite HTL due to deep valance band, high
hole mobility, and complex structure helps electron injection into QD. We fabricated an
inverted QD-LED for a reference device with the following structure; ITO/ZnO/CdSe-
ZnS/PVK/Poly-TPD/Au.
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The current density–voltage (J–V) characteristics of the QD-LED are shown in Figure 5a.
QD-LED inverted structure with good efficiency was obtained with ZTO based ETL of
the designed device as compared to the reference device. Reduced J of QD-LED devices
through ZTO indicates better charge carrier injection from the ETL to the CdSe/ZnS QDs.
Figure 5b demonstrates that the ZTO-based LED has a slightly higher luminance than that
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of the LED with the reference device. In reference and as-designed devices, the turn-on
voltage VT (1 cd m−2) is 2.4 V and 1.9 V, respectively, which proves an efficient injection
and balanced structure in ZTO-based QD-LED. The maximum brightness of the inverted
structure device is 4296 CD m−2 at 5 V (ZTO ETL) and 3146 CD m−2 at 7.5 V (ZnO ETL).
A 1.7-factor enhancement in luminance was demonstrated due to the charge-balanced
structure and stability of the designed inverted QD-LED. The as-designed device showed
a significant increase in external quantum efficiency (EQE), as illustrated in Figure 5c.
For inverted QD-LED devices, the EQE with ZTO and ZnO is 3.97% and 2.91%, respec-
tively. The improvement in EQE ZTO-based QD-LED indicates the minimized leakage
current. An incredible enhancement in current efficiency (CE) of 7.36 cd A−1 is found,
as shown in Figure 5d, which is indicated to improve the charge balance and affect the
device’s performance. The performance of QD-LEDs as designed and reference devices is
summarized in Table 1.
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Table 1. Comparisons of the characteristics of the reference device and as-designed device.

Device No. Structure VT(V) Lmax (cd m−2) EQE (%)

Reference device FTO/ZnO/CdSe-ZnS/PVK/Poly-
TBD/Au 2.4 3146 2.91

As-designed device FTO/ZTO/CdSe-
ZnS/TFB:CBP/Au 1.9 4296 3.97
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To confirm the effect of the carrier injection on charge transport, hybrid hole-only
devices (HOD) and electron-only devices (EOD) were fabricated, and their J-V characteris-
tics were measured as shown in Figure 6a They show well-balanced charge injection into
QDs and equally, electron–hole recombination occurs and improves device performance.
Without any encapsulation, the device’s stability was optimized in natural conditions at
60% humidity.
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toelectronic devices such as photodetectors, field-effect transistors, and solar cells. In ad-
dition, the thorough investigation expands the potential for improving device stability 
and efficiency in real-world applications. 
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Figure 6. (a) HODs and EODs comparisons; (b) comparison of the EL spectrum of an as-designed
device with the PL spectrum of the QDs in film state.

The PL of the QD (in film state) and the EL of the as-designed device are compared in
Figure 6b. Because of the Stark effect and/or the Forster resonance energy transfer, the PL
peak is blue-shifted from the EL peak.

4. Conclusions

In summary, we used CdSe/ZnS QDs to build inverted QD-LED devices with ZTO
ETL and hybrid HTL. A composite layer of TFB polymer and the small molecule CBP
was shown to be an excellent HTL for producing brilliant and efficient QD-LEDs. Taking
advantage of TFB’s high mobility and deep-seated HOMO CBP level, TFB:CBP composite
HTL may increase hole handling ability and reduce the energy barrier for injecting holes
into the device. The L-V analysis confirms that LED with ZTO ETL demonstrates a 1.7-
fold improvement compared to the reference LED. The QD-LED device with ZTO ETL
showed a good luminance of 4296 cd m−2, a current efficiency of 7.36 cd A−1, and an
EQE of 3.97%. The proposed inverted QD-LED has a lower turn-on voltage (Vt) than the
reference device, owing to better energy level matching and carrier injection into the QD
emission layer. As a result, QD-LED devices will show benefits and new opportunities for
optoelectronic devices such as photodetectors, field-effect transistors, and solar cells. In
addition, the thorough investigation expands the potential for improving device stability
and efficiency in real-world applications.
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