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Abstract: From early design phases to final release, the reliability of modern embedded systems
against soft errors should be carefully considered. Several schemes have been proposed to protect
embedded systems against soft errors, but they are neither always functional nor robust, even with
expensive overhead in terms of hardware area, performance, and power consumption. Thus, system
designers need to estimate reliability quantitatively to apply appropriate protection techniques for
resource-constrained embedded systems. Vulnerability modeling based on lifetime analysis is one of
the most efficient ways to quantify system reliability against soft errors. However, lifetime analysis
can be inaccurate, mainly because it fails to comprehensively capture several system-level masking
effects. This study analyzes and characterizes microarchitecture-level and software-level masking
effects by developing an automated framework with exhaustive fault injections (i.e., soft errors)
based on a cycle-accurate gem5 simulator. We injected faults into a register file because errors in the
register file can easily be propagated to other components in a processor. We found that only 5% of
injected faults can cause system failures on an average over benchmarks, mainly from the MiBench
suite. Further analyses showed that 71% of soft errors are overwritten by write operations before
being used, and the CPU does not use 20% of soft errors at all after fault injections. The remainder
are also masked by several software-level masking effects, such as dynamically dead instructions,
compare and logical instructions that do not change the result, and incorrect control flows that do
not affect program outputs.

Keywords: soft error; reliability; masking

1. Introduction

Reliability against soft errors is becoming one of the most crucial design concerns in
modern embedded systems [1]. Soft errors are transient faults in semiconductor devices
caused by external radiation, such as alpha particles, thermal neutrons, cross-talk, and
cosmic rays [2]. The soft error rate is exponentially increasing, mainly because of the
reduction in chip size and supply voltage as technology scales [3]. Several techniques
have been presented in various layers to protect embedded systems against soft errors.
Because most protection techniques are based on redundancy methods, they should be
more complicated than unprotected architectures, that is, larger hardware areas, longer
execution times, or both. However, soft error protection techniques can be expensive or
ineffective and sometimes fail to protect systemss [4]. Thus, we need to quantify the system
reliability against soft errors in a quantitative and accurate manner to apply appropriate
protection for resource-constrained or hard real-time embedded systems.

To quantify system reliability against soft errors, accelerated radiation beam testing [5]
and exhaustive fault injection campaigns [6] have been used. Beam testing and fault
injections are the two most accurate methods for representing system reliability against
soft errors. However, they are not only expensive to perform but also challenging to
set up correctly. Vulnerability modeling is an alternative method to evaluate reliability
against soft errors [7] efficiently. Vulnerability estimation tools based on cycle-accurate
simulators [8,9] are much faster than beam testing or fault injection campaigns because they
can return vulnerability using only a single simulation. However, vulnerability estimation
can be inaccurate, mainly due to several existing masking effects, because it only considers
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microarchitecture-level behaviors and ignores software-level masking effects. To the best
of our knowledge, there have been no research works to analyze masking effects at the
system level.

In this study, we developed and implemented a system-level framework designed
to characterize soft error masking effects and analyze their distributions based on a cycle-
accurate gem5 simulator [10] by considering both microarchitecture-level and software-
level masking effects. We injected faults into the register file in an out-of-order processor for
comprehensive system-level masking effects. Because errors in register files can be quickly
and frequently propagated to other components [11], they can represent the fault injection
into all the microarchitectural components in the out-of-order processor [12]. Furthermore,
the register file is among the most sensitive components in a processor. The register file is
essential to modern processors, and it usually holds data for a long time before being used.

We injected faults (soft errors) into randomly chosen bits in the register file at a randomly
selected time during the execution time. Then, our framework determined whether an
injected fault induces system failures. Existing fault injection approaches [13,14] focus on the
failure rate, and they can return the number of injected faults that are eventually masked.
However, our framework provides not only the failure rate but also the distribution of the
masking effects from fault injection campaigns. Furthermore, if an inject fault does not
cause any system failures (i.e., an error is masked), our framework analyzes the masking
effect at the system level: (i) microarchitecture level and (ii) software level.

First, our framework analyzes the microarchitecture-level masking effects based on
the microarchitectural behaviors of the components. For example, if committed instructions
do not read the corrupted data due to soft errors in the register file, the corrupted data on
the register file do not cause system failure or result in incorrect output. Our framework
needs to trace microarchitecture-level behaviors (such as read and write operations) and
analyze their masking effects to decide whether committed instructions read corrupted
data. For instance, it is not vulnerable if write operations overwrite corrupted data before
they are read or used for program execution.

Second, we also need to analyze masking effects at the software level when corrupted
data is read by committed instructions but correct output. For instance, a compare instruc-
tion compares two source operands and sets the flag bits accordingly, but soft errors on
one source operand may not change flag bits or affect systems at all (e.g., CMP r0, 0x10
and r0 has been erroneous from 0x00 to 0x01). Because the compare instruction reads
the corrupted data in r0, the microarchitecture-level analysis determines this behavior as
vulnerable. However, it does not affect the program, and it is not vulnerable. Thus, it is
necessary to characterize and analyze them at the software level and accurately estimate
the system-level susceptibility to soft errors.

Interestingly, our experimental results revealed that only 5% of the injected faults on
the register file in an out-of-order processor cause system failures, such as segmentation
faults, infinite loops, or incorrect outputs from several benchmarks, but primarily from the
MiBench benchmark suite [15]. Thus, we need to analyze system-level masking effects to
understand why 95% of the injected faults do not cause system failures. First, our system-
level analysis framework traces microarchitectural behaviors, such as reads and writes and
instruction commitments, to answer whether committed instructions read corrupted data.
If not (e.g., corrupted data is overwritten or program execution does not use corrupted
data), they are not vulnerable and do not affect the program. Our framework has shown
that, interestingly, 91% of fault injections are masked on average over benchmarks because
committed instructions do not read them.

If program execution reads corrupted data on the register file, we need to analyze
the masking effects at the software level, such as assembly/instruction level. Interestingly,
our experimental results show that almost 40% of the injected faults do not cause any
system failures, even though committed instructions read them. Therefore, our framework
compared outputs and execution traces (e.g., instructions, register data, and memory data)
between the original execution and corrupted execution with a fault injection campaign to
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analyze the masking effects at the software level. If their program outputs are identical,
execution traces are evaluated to investigate the masking effects at the software level.
Furthermore, we traced the propagation of soft errors to other registers and memory
components, and our framework analyzes the masking effects from propagated errors.

Our experimental results on several benchmarks show several interesting results
based on a software-level masking effect analysis. First off, more than half of the software-
level masking effects come from dynamically dead instructions, whose results are no
longer used nor affect system behaviors. Second, when injected faults were masked at the
software level, approximately 17% and 12% of soft errors induced corrupted operands in
comparison and logical instructions, respectively. However, the results of these instructions
were identical to those of the original execution without soft errors. Finally, approximately
16% of software-level masking effects take the incorrect branch, but they can still result in
the correct output with with slightly affected execution time (at most 2%).

The remainder of this paper is structured as follows. In Section 2, we introduce related
research on masking effects and reliability quantification at various layers. Next, the theo-
retical background of system-level masking effects is described in Section 3, and we explain
our masking effect analysis framework in Section 4. Then, our experimental observations
based on our framework are described in Section 5. Finally, Section 6 concludes this paper
and indicates directions for future research.

2. Related Works

Soft errors are becoming more crucial in the reliability of semiconductor devices with
technological advances, although soft errors are transient bit flips and nondestructive.
For instance, the flagship server of Sun Microsystems crashed because of cosmic ray
strikes on an L2 cache, and Sun suffered significant financial losses [16]. Furthermore,
a soft error can cause failures in safety-critical systems, such as automotive, aerospace,
public transportation, and healthcare systems. For instance, an embedded research group
proposed that sudden unintended acceleration of vehicles can occur because of single-bit
flips on engine control units [17]. Thus, several protection schemes have been proposed
to protect embedded processors, but they can incur overhead in terms of performance,
energy consumption, and hardware area. Therefore, we need to quantify the reliability of
embedded systems accurately, and vulnerability modeling is an effective method. However,
vulnerability estimation based on lifetime analysis should consider several masking effects
at various layers for accurate modeling.

2.1. Masking Effects at Different Layers

Soft errors are transient faults in semiconductor devices caused by external radiation,
such as energetic particles and cosmic rays [2]. Energetic particles strike the sensitive
region of the transistors, causing a single-event upset (SEU). However, not all SEUs result
in system failures owing to several masking effects, as shown in Figure 1. At the circuit
level, SEU is latched and activated as a soft error unless an upset is masked by the latching-
window masking (upset does not reach the latching-window time), electrical masking
(upset is not strong enough to reach the latching element), and logical masking (upset on
the input of a gate does not affect its output). At the microarchitectural level, latched soft
errors are propagated to the error in the microarchitectural components unless they are
masked by architectural masking. A soft error occurs on a microarchitectural component,
but they are overwritten or not used for execution. This erroneous variable causes a
failure at the software level, such as incorrect output or system crash, unless software-level
masking effects hide it. Examples of software-level masking effects include dynamic dead
code (for example, a code is executed, but it does not affect the program output) and data
value masking (for example, if variable A is multiplied by zero, then A does not matter). It
is challenging to capture and reflect all of these software-masking effects on vulnerability
estimation at the microarchitectural level.
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Figure 1. Masking effects, protection techniques, and vulnerability estimation from circuit-level to
software-level.

Several techniques have been proposed at the chip level to protect hardware against
soft errors. To reduce the soft error rate, Baumann [18] presented packaging and process
technologies that shield hardware from external radiation or modify the process. Polyimide
thin films or concrete are proven shields against soft errors caused by alpha particles and
cosmic rays. However, shielding techniques cannot protect the chip entirely against
external radiation. For example, a neutron can pass through five feet of concrete. Hardware
shielding techniques also incur significant overhead in terms of the hardware area and cost.
Electrical masking effects can mask particle strikes because of the attenuated pulse caused
by the electrical resistance in the circuit. In Reference [19], actively biased and isolated
transistors in the circuit were proposed to reduce transient faults. Circuit-level protection
can be applied to various hardware architectures, such as SRAM and combinational logic.
However, they require additional hardware costs for modifying circuit designs.

SEUs can also be masked by logical and latch-window (or temporal) masking effects
at the circuit level. Krishnaswamy et al. [20] proposed circuit modification for efficient
redundant techniques that increase the logical masking effects. SEUs can be masked by
latching-window masking effects when soft errors are not propagated owing to the required
setup and hold time. Lin et al. [21] proposed an SEU-hardened latch design to improve
hardware reliability by extending the setup time at the clock edge. However, circuit-level
protection techniques induce massive overheads in area and performance due to hardware
modifications at the hardware level.

Soft errors can be masked by architectural masking, for example, errors in microarchi-
tectural components in a processor that are overwritten or not used in the execution at the
microarchitectural level. Li et al. [22] proposed an early write-back policy to improve the
reliability of cache memory without the additional area cost. The early write-back policy
combines the performance efficiency of write-back with the high reliability of the write-
through policy by exploiting the least recently used (LRU) algorithm or dead-time based
approaches. In addition, Manoochehri et al. [23] proposed a correctable parity-protected
cache to correct soft errors using an error detection code instead of more expensive error-
correcting code. They corrected soft errors, including spatial multi-bit errors in the dirty
state using multi-dimensional parity code without severe overheads in terms of perfor-
mance and area.
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All the errors in program variables do not induce system failures owing to the software
masking effects. For instance, errors in multimedia data in multimedia applications can
degrade the quality of service, but they do not induce system failures. Partially detected
cache [24] has improved hardware reliability with comparable performance overheads.
They protect only failure-critical data, such as control variables, based on data profiling;
however, they do not protect multimedia data. Smart cache cleaning [25] detects specific
cache blocks at specific periods by applying the hardware-software hybrid methodology.
We can protect data efficiently using software-based or hybrid-based protective schemes
at the software level, but the decision of importance in data or instructions is a very
complex task.

2.2. Reliability Quantification at Different Layers

Seifert et al. presented the timing vulnerability factor (TVF) for a circuit environment
where sequential elements are typically placed [26]. The particle strikes do not appear
as soft errors on architectures because of electrical, logical, and latch-window masking
effects. For example, assume that the latch accepts the data during half of the lifetime.
The corrupted data at the circuit level will be masked by up to 50%. Such a circuit-
level vulnerability factor is related to the raw-device fault rate, so it is challenging to
consider the characteristics of each microarchitectural component. In addition, TVF does
not consider the architectural masking effects because it is unaware of the behaviors of
microarchitectural components. Thus, it is too conservative in expressing the vulnerability
of each microarchitectural component.

Mukherjee et al. [7] proposed the architectural vulnerability factor (AVF) to estimate
the reliability of each microarchitectural component accurately. AVF means the probability
that a state change (soft errors or transient bit flips) in the device leads to an architecturally
visible error. AVF analysis traces the architecturally correct execution (ACE) bits, which
induce system failures if they change, and they estimate the resident time of ACE bits in
microarchitectural components. Thus, its estimation was faster than that of the register-
transfer level analysis models, but it was still inaccurate to analyze the reliability. Moreover,
it is too conservative in estimating the reliability of microarchitectural components because
it defines unconfirmed data that affect the final output. Further, architectural vulnerability
estimation excludes the software-level masking effects to overestimate the reliability of
each microarchitectural component.

Sridharan et al. proposed a software-level vulnerability, program vulnerability factor
(PVF) [27]. PVF can be quickly estimated from the assembly code compared to the conven-
tional vulnerability estimation, and it can be a good predictor for determining the AVF of
hardware components. The instruction vulnerability factor (IVF) [28] evaluates the number
of faults in all the instructions that affect the final program output. However, PVF and
IVF are unaware of the hardware architectures because they are only based on software or
assembly level analysis.

2.3. Fault Injection Approaches

Reliability quantification based on lifetime analysis can be inaccurate owing to system-
level masking effects; thus, several fault injection approaches have been presented for
accurate reliability qualification, as shown in Table 1. They injected faults into microarchi-
tectural components in a processor to determine whether the injected faults caused system
failures. The failure rate is defined as the number of faults that induce system failures
divided by the number of fault injections. For instance, if 300 errors caused system failures
of 1000 fault injections, the failure rate was 30% (=300/1000).
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Table 1. Various fault injection approaches.

Type Pros Cons

Exhaustive fault injection [29] Provide high accuracy Need many numbers of fault
injections

Pseudorandom fault
injection [30] Provide moderate accuracy Still need lots of numbers of

fault injections

Statistical fault injection [31] Need a small number of
fault injections Provide low accuracy

Because exhaustive fault injection campaigns are time-consuming tasks, a pseudo-
random and statistical fault injection campaign has been proposed to reduce the number
of fault injections [30,31], as shown in Table 1. We assume that we need to extract the
failure rate of the register file in a processor. The size of the register file in this processor
is 500 bits, and the total execution time is 400 cycles. In this case, we must inject 200,000
(=500 × 400) faults if all possible instances are to be performed [29]. However, it is al-
most impossible to consider all possible cases from the temporal and spatial domains.
Instead, randomly selected fault injections can represent exhaustive fault injections based
on probabilistic theory.

Fault injection schemes can accurately provide the failure rate, but they do not explain
why the injected faults are masked. For instance, if the failure rate of a component is 30%,
approximately 70% of the injected faults are masked. However, existing fault injection
frameworks [13,14] only trace whether injected faults induce system failures. In this study,
we characterized system-level masking effects to analyze not only how many faults are
masked but also why faults are masked.

3. Classification When Soft Errors Occur

Figure 2 shows the classification model when a soft error corrupts the data in the
microstructural components. Existing fault injection schemes [13,14] only consider whether
soft errors induce failures. On the other hand, our framework analyzes system-level
masking effects both at the microarchitecture-level and at the software level because not all
the faults in microarchitectural components cause system failures. Microarchitecture-level
analysis determines whether corrupted data is used or read for program execution. The
software-level analysis traces software-level behaviors to analyze masking effects when
corrupted data is read but still results in the correct output.

Figure 2. Classification when soft error occurs in microarchitectural components.

As shown in Figure 2, corrupted data in microarchitectural components can be masked
at the microarchitectural level if committed instructions do not read corrupted data. Fur-
thermore, soft errors do not affect the program execution when corrupted data is not
used, overwritten, or used by mispredicted instructions (i.e., uncommitted/squashed
instructions) in the out-of-order execution. These masking effects can be analyzed by
tracing microarchitectural behaviors, such as reads and writes of each microarchitectural
component and instruction commitment.

If committed instructions read corrupted data, it is necessary to check whether they
cause a system crash. If the system halts (i.e., segmentation faults or system crashes) or
program loops forever (i.e., infinite loop), we define these instances as system failures. If
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the program returns output without system failures, we must compare the output with
the original one. If their outputs are different, they are also defined as failures (i.e., silent
data corruption). Even though committed instructions read corrupted data, they can still
produce the correct output because of several software-level masking effects.

Soft errors do not induce failures if dynamically dead instructions read corrupted data
caused by soft errors. Dynamically dead instruction is an instruction whose result is no
longer used or affects system behaviors [32]. Statically dead instructions can be excluded
from the assembly code at compile-time, but dynamically dead instructions cannot be
determined before execution. For instance, instructions in the loop can be executed many
times, and only a part of the instructions can be dynamically dead based on the context.
Thus, we need to trace whether other instructions use corrupted results of instructions by
analyzing the data flow of a program.

In Figure 3, instruction A (STORE r1, 0x100) stores data contained in r1 into the
memory 0x100. If data contained in r1 is changed to 0x11 from 0x10 due to soft errors,
memory 0x100 will also contain the corrupted data (0x11). However, corrupted in r1
is overwritten by instruction B (MOV r1, r2), and the corrupted memory 0x100 is also
overwritten by instruction C (STORE r3, 0x100). Memory 0x100 is updated by instruction A
(STORE r1, 0x100), but the memory data is overwritten by instruction C (STORE lr, 0x100)
before being used or read for program execution. Thus, it does not affect the program
if soft error corrupts the data in r1 at instruction A (STORE r1, 0x100) since the result of
instruction A is not used (overwritten).

A: STORE r1, 0x100
@ r1: 0x11 (original: 0x10)
@ 0x100: 0x11 (original: 0x10)
B: MOV r1, r2
@ Register 1 (r1) is overwritten by r2
C: STORE r3, 0x100
@ Memory data 0x100 is overwritten by r3

Figure 3. Exemplary scenario to show software-level masking effects from dynamically dead instructions.

Second, instructions can return correct results even when they read corrupted data.
These software-level masking effects can occur in logical instructions (such as logical AND
and OR instructions) and compare instructions. If one of the source bits of logical AND
instruction is zero, the result is always zero, regardless of the source bit. On the other
hand, logical OR instruction always returns one if the source bit of the instruction is one.
The result of the comparison instructions can also be correct even if one of the source
registers is corrupted. Assume that an instruction compares the data between the two
registers, and they have different values. Even though register data is corrupted by soft
errors, the values in the two registers can still be different. If a source register of instruction
is damaged, we need to trace whether the results of these instructions are different from
the original execution.

We have captured and simplified the masking effect at the logical AND instruction
from our preliminary experiments. In Figure 4a, a logical AND instruction (AND r1, r2,
r3) stores the result of logical AND between data in r2 and r3 into r1 register. In addition,
source registers r2 and r3 store 0x00 and 0x01, respectively. Assume that data contained in
r2 is corrupted, and it is changed to 0x10 from 0x00. Fault in data contained in r2 is not
propagated to the destination register (r1) since the result of corrupted AND instruction
(0x10 AND 0x01) and that of the original one (0x00 AND 0x01) are still identical (0x00). If
one of the source bits of logical AND instruction is zero, the result is always zero regardless
of another source bit. On the other hand, logical OR instruction always returns one if a
source bit of the instruction is one.
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(a) Masking effects by logical AND instructions (b) Masking effects by compare instructions

Figure 4. Software-level masking effects analysis from logical and compare instructions.

The following software-level masking effect can occur due to compare instructions,
as shown in Figure 4b. Although compare instructions read corrupted data, the result of
compare instructions can still be the same. We have found a set of instructions to show
the masking effect with compare instructions from our preliminary experiments. In this
example, a compare instruction (CMP r1, 0x00) compares the data in r1 and immediate
value zero (0x00). Assume that r1 contains 0x01 originally, and it is changed to 0x11 due to
soft errors. In case of original execution, data in r1 (0x01) is greater than zero (0x00). Even
though soft error corrupts data contained in r1 to 0x11 from 0x01, data in r1 (0x11) is still
greater than zero (0x00). Thus, the result of compare instruction (flag bits) can still be the
same as compared to that of original execution, and soft errors do not affect the application
at all.

Lastly, incorrectly taken branches due to soft errors can still result in the correct
output [33]. Wang et al. proposed that approximately 40% of dynamic branches are
outcome tolerant, which means that a program can return the correct outputs even though
it requires additional instructions due to the incorrect branch. The execution time can be
slightly increased or decreased compared to the original execution because control flow
violations execute different instructions. Thus, we need to consider two factors from the
control flow of a program for software-level masking effects: (i) control flow is correct or
not compared to the original execution, and (ii) if an incorrect branch is taken, it affects the
final program outputs.

4. Proposed Masking Effects Analysis Framework
4.1. Fault and Failure Model

To characterize system-level masking effects and analyze their distributions, we
implemented an automated framework based on fault injection campaigns, as shown in
Figure 5. We have performed fault injection campaigns to mimic soft errors in the register
file on ARM architecture with gem5 [10] system-call emulation mode. In this work, we
have used single-bit flip models instead of multiple-bit soft errors for brevity’s sake. The
rate of multiple-bit transient faults is increasing with the aggressive technology scaling.
However, the rate of multiple-bit error is almost negligible as compared to single-bit errors.
For example, the single-bit flip is 100 × more frequent than multiple-bit soft errors [34].

Figure 5. System-level masking effect analysis framework based on exhaustive fault injection campaigns.

Note that we have used system-level gem5 simulator since we can track the detailed
behavior of microarchitectural components and software instructions. Therefore, we can
track the error propagation of transient faults from hardware and software perspectives.
However, it is challenging to capture the detailed behavior of hardware and software by
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using real hardware. The spatial and temporal domains of the fault injection campaign are
randomly chosen from the entire physical integer register and execution time, respectively.

After the randomly selected fault is injected into the register file, our framework
traces the microarchitectural behaviors of the microarchitectural components. If committed
instructions do not read corrupted data, this fault does not affect the program because they
are not used for the program execution, as shown in Figure 2. If committed instructions
read corrupted data, we need to trace whether a system crash occurs. If a system crash
occurs (e.g., segmentation faults, page table faults, etc.), it is defined as a failure (system
crash). It is also defined as a failure if the execution time of the fault-injected execution is
more than double the original execution time (i.e., infinite loop). If a program returns the
output without a system crash, our framework compares the output with the original one.
If their outputs are different, it is also defined as a failure (silent data corruption). If the
outputs are still identical to the original one within the deadline, we need to analyze the
masking effects at the software level.

4.2. Error Propagation Model

Data structures, RCD (registers that contain corrupted data) and MCD (memory
which includes corrupted data), have been exploited to analyze masking effects at the
software level, as shown in Figure 5. We traced memory by using MCD and register data
by RCD because corrupted data in the register can be propagated to the memory. RCD and
MCD store indexes (register number or memory address) contain corrupted data and their
original for register and memory, respectively. Note that (index, data) represents the index
and original data in RCD and MCD, respectively. The following error propagation model
updates the RCD and MCD during corrupted execution.

We modeled error propagation according to various types of instructions. We analyzed
the error spread of non-memory instructions, such as data movement between registers
(MOV) and ALU instructions. If non-memory instructions read corrupted data, errors can
be propagated to the destination register. Assume that there is an addition instruction
(ADD r1, r2, r3), and r2 and r3 contain 0x01 and 0x02, respectively. Without soft errors, data
contained in r3 should become 0x03 as a result of the addition instruction. If data contained
in r2 is corrupted and changed to 0x00 from 0x01 because of soft errors, [(r2, 0x01)] is
stored in RCD. After executing the ADD instruction, data in the destination register (r3)
are changed to 0x02 from 0x03 due to error propagation. In this example, RCD is updated
to [(r2, 0x01), (r3, 0x03)].

We also modeled the error propagation of memory instructions, such as store and load.
For the error propagation of a store instruction (STORE r2, 0x100), r2 originally contained
0x01 in the previous example. Memory address 0x100 should store 0x01 if there are no
soft errors. In this example, RCD contains [(r2, 0x01), (r3, 0x03)], which means that r2 has
corrupted data. After executing the store instruction, memory 0x100 also stores corrupted
data (0x00) from corrupted data contained in r2, and RCD and MCD stores [(r2, 0x01),
(r3, 0x03)] and [(0x100, 0x01)], respectively. Thus, the MCD should be updated by store
instructions when they read corrupted data.

If corrupted memory data is read by the load instructions, errors can be propagated
to the destination register. A load instruction (LOAD r1, 0x100) reads data from memory
0x100, and it makes data contained in r1 into 0x01 without soft errors. However, data
in memory 0x100 stores corrupted data (0x00) since MCD stores [(0x100, 0x01)]. In this
example, data contained in r1 is corrupted and changed to 0x00 because of the corrupted
data in memory 0x100. After executing the load instructions, RCD and MCD become [(r1,
0x01), (r2, 0x01), (r3, 0x03)] and [(0x100, 0x01)], respectively. After executing these three
instructions, errors in r2 are propagated to other registers (r1 and r3) and memory (0x100).

To analyze the masking effects at the software level, we execute an instruction again
with the original data and compare their results if the instruction has source registers
that are included in the RCD (shaded), as shown in Figure 5. For instance, a logical OR
instruction (OR r1, r2, r3) stores the result of the logical OR between data in r2 and r3 into
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r1. Assume that data contained in r2 is corrupted and changed to 0x11 from the original
data 0x10, and RCD stores [(r2, 0x10)]. Another source register, r3, stores 0x01. Our error
propagation model considers that errors in data contained in r2 can be propagated to the
destination register (r1) because the logical OR instruction (non-memory instruction) reads
corrupted data in r2.

Because a source register (r2) of the instruction is included in the RCD, we execute
the instruction again with the original data in the RCD. In the case of corrupted execution,
data contained in r1 becomes 0x11 (0x11 OR 0x01) because r2 and r3 store 0x11 and 0x01,
respectively. Our framework changes data contained in r2 to 0x10 by loading the original
data from RCD, [(r2, 0x10)], and data contained in r1 becomes 0x11 (0x10 OR 0x01) for the
original execution. Our framework compares the results if two versions (corrupted and
original) of execution are performed. In this example, the results of corrupted and original
executions are exactly the same (0x11). Thus, the destination register of instruction (r1)
is not updated into the RCD. Our software-level analysis determines that r1 is masked
by logical OR instruction even though the instruction reads corrupted data from r2. Note
that the results of the logical instructions may not be masked. Assume that data contained
in r2 was changed to 0x00 from 0x10. In this case, data in the destination register (r1)
becomes 0x01 (0x00 OR 0x01) as the result of corrupted execution. Because the result of
the corrupted execution (0x01) is different from that of the original execution (0x11), our
framework updates RCD to [(r2, 0x10), (r1, 0x11)].

Further, our data structure can also determine whether soft errors are read by dynami-
cally dead instructions. In the previous example, we hold RCD as [(r2, 0x10), (r1, 0x11)],
which means that r2 and r1 contain incorrect values as compared to the original execution.
Assume that the next instructions to access r1 are the data transfer instructions (MOV r1,
r4). In this example, the corrupted value in r1 is overwritten because r4 does not contain
corrupted data. This means that r1 is masked by dynamically dead instructions because the
result (r1) of previous OR instruction (OR r1, r2, r3) is overwritten by another instruction
before being used.

5. Experimental Observations
5.1. Experimental Setup

We chose six benchmarks, namely matrix multiplication (matmul), stringsearch, susan,
jpeg, bitcount, and sha, mainly from the MiBench benchmark suite [15], for representing
various characteristics of applications. First off, we have used matrix multiplication as the
reference benchmark since it has no specific characteristics compared to other applications.
Secondly, the benchmark stringsearch and sha can represent the sensitivity of control-
intensive applications. This is because the benchmark stringsearch is a control-intensive
application. On the other hand, the benchmark sha has a small number (just 6%) of
the branch instruction. Lastly, the benchmark susan and jpeg are used as multimedia
applications, such as encoding/decoding and vision techniques.

For a single set of experiments, we have injected single-bit faults into randomly
chosen bits in the register file at a randomly chosen time during the execution time for
each benchmark. Furthermore, we have performed this fault injection 1000 times for each
benchmark. Therefore, we have performed 6000 fault injection campaigns since we have a
total of six benchmarks. Randomly chosen 1000 faults can represent the population with
99% confidence level and 5% error margin based on probability theory [31].

In order to find the appropriate number of faults empirically, we injected faults into a
benchmark string search from 1 to 1000 by incrementing one fault, as shown in Figure 6. In
Figure 6, X-axis represents the number of injected faults, and Y-axis represents the failure
rate, which is the number of failures divided by the number of injected faults. The failure
rate varies within just 1% for the benchmark stringsearch after 300 fault injections, which
means that 1000 fault injections can represent the entire design space.
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Figure 6. After 300 fault injections, failure rate varies within 1% for a benchmark stringsearch.

5.2. Overall Results from Our Masking Analysis Framework

Figure 7 shows the experimental results based on our system-level masking effect
analysis framework. Only 5% of soft errors induce system failures, such as infinite loops,
system crashes, or incorrect outputs, as shown in Figure 7a. As shown in Figure 7b,
approximately 40% of failures are wrong outputs compared to the original ones. For
multimedia applications, incorrect outputs can be tolerated if they degrade the quality of
the services. For instance, a single-bit flip results in a false output image for a benchmark
jpeg, but the difference between the original and faulty images is invisible to the naked eye,
as shown in Figure 8. If fault injection campaigns incur system crashes (51%), protection
techniques are needed to detect or correct corrupted data to avoid system crashes. In the
case of 9% of failures, it loops forever because the loop index values are corrupted due to
soft errors.

(a) About 95% of injected faults do not affect programs since they are masked at the
system-level, such as microarchitecture and software.

(b) Just 5% of injected faults induce system failures, and system crash, incorrect output,
and infinite loop take up 51%, 40%, and 9%, respectively.

(c) Even though corrupted data is used, they can result in the correct output. About 84%
of them do not affect the program execution since they are read by dynamically dead,
compare, and logical instructions. In addition, about 16% of them take the incorrect branch,
but they return the correct output.

Figure 7. We have injected faults into register file for our set of benchmarks. Interestingly, about 97%
of injected faults do not cause failures due to several system-level masking effects.
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(a) Original output (Size: 9810 bytes) (b) Corrupted output (Size: 9819 bytes)

Figure 8. We have injected faults for a benchmark jpeg. Even though faults change the size of the
output image, the visual difference between the original and fault image is almost invisible.

As shown in Figure 7a, 91% of the soft errors are masked because committed instruc-
tions at the microarchitecture level do not read them. First, 20% of soft errors in register
files were not used until the end of the applications. Therefore, it does not change the
program execution if there are soft errors in unused registers. Our preliminary experiments
showed that approximately 47% of physical registers are not used at all in our benchmark
suites. Second, 71% of corrupted data in microarchitectural components can be overwritten
by write operations before corrupted data is read or used. For our benchmark suites, 25%
of register behaviors are write operations. Third, soft errors in the register file can be
masked because of the squashed (i.e., speculative) instructions. Note that not all dynamic
instructions are committed in the out-of-order processor due to speculative execution, such
as branch prediction.

We analyzed the masking effects at the software level if corrupted data were read by
committed instructions, as shown in Figure 7c. Note that a single-bit flip can be masked by
several masking effects at the software level. For instance, faults are propagated to another
register by data movement instruction, and corrupted data in different registers are masked
by compare and logical instructions receptively. More than half of the instances (55%) were
masked on average because only dynamically dead instructions read them. Furthermore,
17% and 12% of them are masked by comparison and logical instructions on an average,
respectively, because corrupted input data do not change the result of these instructions.
Finally, 16% of the instances take the incorrect branch compared to the original fault-free
execution, but they can still return the correct outputs. If the wrong branch that does not
affect the program output is taken, their execution time varies within 0.18%, on average,
compared to the original execution time (at most 2% change for a benchmark stringsearch).

5.3. Detailed Analysis for Software-Level Masking Effects

Figure 9 shows software-level masking effects when committed instructions read
corrupted data for our benchmark. As shown in Figure 6, dynamically dead instructions
take up most masking effects at the software level for benchmarks, except for susan.
Multimedia benchmarks, such as jpeg and susan, have more compare instructions (i.e.,
conditional statements in C code) than other types of benchmarks due to encoding and edge
detection algorithms. Benchmark bitcount, sha, and susan have many logical instructions
(especially logical AND statements (&) or logical OR statements (|) in their C codes) in
order to count the number of bits of an integer, and they can be masked at the software level.
Interestingly, the jpeg and sha benchmarks do not have masking effects from incorrect
branch instructions. This is because incorrect branch instructions lead to system failures
rather than being masked. For instance, the benchmark sha results in an incorrect output
(i.e., silent data corruptions) if an incorrect control flow is taken. The benchmark sha is
a secure hash algorithm, and the output can be easily corrupted if the program flow is
changed owing to the avalanche effect.
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Figure 9. Software-level masking effects for each benchmark when corrupted data is read by commit-
ted instructions.

5.4. Further Analysis for Other Hardware Components

Our last set of experiments is fault injection into all the microarchitectural components,
such as register file, rename map, fetch queue, decode queue, rename queue, I2E (issue
to execute) queue, IEW (issue/execute/write-back) queue, instruction queue, reorder
buffer, load/store queue for a benchmark, and stringsearch. Figure 10 shows that fault
injections into the register file can represent the entire out-of-order processor. In the case of
fault injection campaigns to the register file, 93.70% of the injected faults can be masked
because the committed instructions do not read them. On the other hand, 91.79% of the
injected faults are hidden for the same reason in the case of fault injection into all the
microarchitectural components on average. In the case of the register file and all the
components, 3.80% and 3.95% of instances did not cause failures, respectively, although
committed instructions read corrupted data. Because the difference in distribution between
fault injections into the register file and all the components is smaller than 2%, we analyzed
system-level masking effects by exhaustive fault injection into the register file.

Figure 10. Fault injection campaigns into all the microarchitectural components (Benchmark: stringsearch).

6. Conclusions

Embedded systems suffer from soft errors owing to their tiny feature size and aggres-
sive dynamic voltage and frequency scaling. Several techniques have been proposed to
protect embedded processors against soft errors. However, protection techniques against
soft errors are not always practical or robust. Thus, we need to quantify the reliability
of the system in finding and choosing appropriate protections. Because exhaustive fault
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injection campaigns and radiation beam testing are too expensive to perform, vulnerability
estimation techniques based on cycle-accurate simulators have been proposed. However,
vulnerability modeling can be inaccurate owing to several system-level masking effects.
Thus, we have characterized the system-level masking effect and have implemented an
automated framework to analyze their distribution by exhaustive fault injection campaigns
on the register file. In addition, we have examined the microarchitectural behaviors of
the register file and found that almost 93% of errors are masked because corrupted data
is not read. To analyze software-level masking effects when corrupted data is read by
program execution, we also investigated the masking effects at the software level. Based
on the software-level analysis, we found that 80% of instances do not change the program
at all because faults are injected into dynamically dead, compare, and logical instructions.
Approximately 20% of software-level masking effects take the incorrect branch but still
produce the correct output by varying the execution time slightly.

We will perform the masking analysis for real hardware devices by exploiting beam
testing. Even though the soft error rate is increasing exponentially, a soft error is still a rare
event. For example, even though we have tested high-energy neutrons, it still needs more
than 500 h to represent 57,000 years in normal execution [35]. Further, even though we
have injected radiation-induced faults into hardware devices, it is hard to analyze masking
effects since we cannot determine types of soft errors, such as the number of bits and
locality of errors. Our future work will also include system-level masking effect analysis
for all microarchitectural components in a processor. Thus, our framework will support
the comprehensive masking analysis based on various platforms.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Narayanan, V.; Xie, Y. Reliability Concerns in Embedded System Designs. Computer 2006, 39, 118–120. [CrossRef]
2. Seifert, N.; Gill, B.; Jahinuzzaman, S.; Basile, J.; Ambrose, V.; Shi, Q.; Allmon, R.; Bramnik, A. Soft Error Susceptibilities of 22 nm

Tri-Gate Devices. IEEE Trans. Nucl. Sci. (TNS) 2012, 59, 2666–2673. [CrossRef]
3. Baumann, R. The impact of technology scaling on soft error rate performance and limits to the efficacy of error correction.

In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 8–11 December 2002;
pp. 329–332.

4. Ko, Y.; Jeyapaul, R.; Kim, Y.; Lee, K.; Shrivastava, A. Guidelines to Design Parity Protected Write-back L1 Data Cache.
In Proceedings of the ACM/EDAC/IEEE Design Automation Conference, San Francisco, CA, USA, 8–12 June 2015; pp. 1–6.

5. Ziegler, J.F.; Muhlfeld, H.P.; Montrose, C.J.; Curtis, H.W.; O’Gorman, T.J.; Ross, J.M. Accelerated Testing for Cosmic Soft-error
Rate. IBM J. Res. Dev. 1996, 40, 51–72. [CrossRef]

6. Hsueh, M.C.; Tsai, T.K.; Iyer, R.K. Fault injection techniques and tools. Computer 1997, 30, 75–82. [CrossRef]
7. Mukherjee, S.S.; Weaver, C.T.; Emer, J.; Reinhardt, S.K.; Austin, T. Measuring Architectural Vulnerability Factors. IEEE Micro

2003, 23, 70–75. [CrossRef]
8. Li, X.; Adve, S.V.; Bose, P.; Rivers, J.A. SoftArch: An architecture-level tool for modeling and analyzing soft errors. In Proceedings

of the IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Yokohama, Japan, 28 June–1 July 2005;
pp. 496–505.

9. Fu, X.; Li, T.; Fortes, J. Sim-SODA: A unified framework for architectural level software reliability analysis. In Proceedings of
the International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems
(PMBS), Boston, MA, USA, 18 June 2006.

10. Binkert, N.; Beckmann, B.; Black, G.; Reinhardt, S.K.; Saidi, A.; Basu, A.; Hestness, J.; Hower, D.R.; Krishna, T.; Sardashti, S.; et al.
The gem5 Simulator. ACM SIGARCH Comput. Archit. News 2011, 39, 1–7. [CrossRef]

11. Feng, S.; Gupta, S.; Ansari, A.; Mahlke, S. Shoestring: Probabilistic Soft Error Reliability on the Cheap. In Proceedings of the ACM
International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), Pittsburgh,
PA, USA, 13–17 March 2010.

12. Montesinos, P.; Liu, W.; Torrellas, J. Shield: Cost-effective soft-error protection for register files. In Proceedings of the
IBM TJ Watson Conference on Interaction between Architecture, Circuits and Compilers (PAC), Yorktown Heights, NY, USA,
October 2006.

13. Kaliorakis, M.; Tselonis, S.; Chatzidimitriou, A.; Gizopoulos, D. Accelerated microarchitectural Fault Injection-based reliability
assessment. In Proceedings of the IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFTS), Amherst, MA, USA, 12–14 October 2015; pp. 47–52. [CrossRef]

http://doi.org/10.1109/MC.2006.31
http://dx.doi.org/10.1109/TNS.2012.2218128
http://dx.doi.org/10.1147/rd.401.0051
http://dx.doi.org/10.1109/2.585157
http://dx.doi.org/10.1109/MM.2003.1261389
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1109/DFT.2015.7315134


Electronics 2021, 10, 2286 15 of 15

14. Mirkhani, S.; Cho, H.; Mitra, S.; Abraham, J.A. Rethinking error injection for effective resilience. In Proceedings of the Asia and
South Pacific Design Automation Conference (ASP-DAC), Singapore, 20–23 January 2014; pp. 390–393. [CrossRef]

15. Guthaus, M.R.; Ringenberg, J.S.; Ernst, D.; Austin, T.M.; Mudge, T.; Brown, R.B. MiBench: A Free, Commercially Representative
Embedded Benchmark Suite. In Proceedings of the IEEE International Symposium on Workload Characterization (IISWC),
Austin, TX, USA, 2 December 2001.

16. Lyons, D. SUN screen. Forbes 2000, 166, 68–70.
17. Junko, Y. Toyota Case: Single Bit Flip That Killed. EE Times, 25 October 2013.
18. Baumann, R.C. Radiation-induced soft errors in advanced semiconductor technologies. IEEE Trans. Device Mater. Reliab. 2005,

5, 305–316. [CrossRef]
19. Baze, M.P.; Buchner, S.P.; McMorrow, D. A digital CMOS design technique for SEU hardening. IEEE Trans. Nucl. Sci. 2000,

47, 2603–2608. [CrossRef]
20. Krishnaswamy, S.; Plaza, S.M.; Markov, I.L.; Hayes, J.P. Enhancing Design Robustness with Reliability-aware Resynthesis and

Logic Simulation. In Proceedings of the IEEE International Conference on Computer-aided Design (ICCAD), San Jose, CA, USA,
4–8 November 2007; pp. 149–154.

21. Lin, S.; Kim, Y.B.; Lombardi, F. Design and Performance Evaluation of Radiation Hardened Latches for Nanoscale CMOS. IEEE
Trans. Very Large Scale Integr. Syst. 2011, 19, 1315–1319. [CrossRef]

22. Li, L.; Degalahal, V.; Vijaykrishnan, N.; Kandemir, M.; Irwin, M.J. Soft Error and Energy Consumption Interactions: A Data Cache
Perspective. In Proceedings of the ACM International Symposium on Low Power Electronics and Design (ISLPED), Newport
Beach, CA, USA, 9–11 August 2004; pp. 132–137.

23. Manoochehri, M.; Annavaram, M.; Dubois, M. CPPC: Correctable Parity Protected Cache. In Proceedings of the International
Symposium on Computer Architecture (ISCA), San Jose, CA, USA, 4–8 June 2011; pp. 223–234.

24. Lee, K.; Shrivastava, A.; Issenin, I.; Dutt, N.; Venkatasubramanian, N. Mitigating Soft Error Failures for Multimedia Applications
by Selective Data Protection. In Proceedings of the International Conference on Compilers, Architecture and Synthesis for
Embedded Systems (CASES), Seoul, Korea, 22–25 October 2006; pp. 411–420.

25. Jeyapaul, R.; Shrivastava, A. Smart cache cleaning: Energy efficient vulnerability reduction in embedded processors. In
Proceedings of the International Conference on Compilers, Architectures and Synthesis for Embedded System, Taipei, Taiwan,
9–14 October 2011; pp. 105–114.

26. Seifert, N.; Tam, N. Timing vulnerability factors of sequentials. IEEE Trans. Device Mater. Reliab. 2004, 4, 516–522. [CrossRef]
27. Sridharan, V.; Kaeli, D.R. Quantifying Software Vulnerability. In Proceedings of the Workshop on Radiation Effects and Fault

Tolerance in Nanometer Technologies (WRET), Ischia, Italy, 5–7 May 2008; pp. 323–328.
28. Borodin, D.; Juurlink, B.H. Protective Redundancy Overhead Reduction Using Instruction Vulnerability Factor. In Proceedings of

the ACM International Conference on Computing Frontiers (CF), Bertinoro, Italy, 17–19 May 2010.
29. Goncalves, F.; Santos, M.; Teixeira, I.; Teixeira, J. Self-checking and fault tolerance quality assessment using fault sampling.

In Proceedings of the 17th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, 2002. DFT 2002.
Proceedings, Vancouver, BC, Canada, 6–8 November 2002; pp. 216–224. [CrossRef]

30. Sari, A.; Psarakis, M. A fault injection platform for the analysis of soft error effects in FPGA soft processors. In Proceedings of the
IEEE 19th International Symposium on Design and Diagnostics of Electronic Circuits Systems (DDECS), Kosice, Slovakia, 20–22
April 2016; pp. 1–6. [CrossRef]

31. Leveugle, R.; Calvez, A.; Maistri, P.; Vanhauwaert, P. Statistical fault injection: Quantified error and confidence. In Proceedings of
the Design, Automation and Test in Europe Conference (DATE), Dresden, Germany, 8–12 March 2009.

32. Mukherjee, S.S.; Emer, J.; Reinhardt, S.K. The soft error problem: An architectural perspective. In Proceedings of the IEEE
Symposium on High Performance Computer Architecture (HPCA), San Francisco, CA, USA, 12–16 February 2005; pp. 243–247.

33. Wang, N.; Fertig, M.; Patel, S. Y-branches: When you come to a fork in the road, take it. In Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques (PACT), New Orleans, LA, USA, 27 September–1 October 2003;
pp. 56–66.

34. Lee, K.; Shrivastava, A.; Kim, M.; Dutt, N.; Venkatasubramanian, N. Mitigating the Impact of Hardware Defects on Multimedia
Applications: A Cross-Layer Approach. In Proceedings of the 16th ACM International Conference on Multimedia, MM ’08,
Vancouver, BC, Canada, 26–31 October 2008; Association for Computing Machinery: New York, NY, USA, 2008; pp. 319–328.
[CrossRef]

35. Oliveira, D.; Pilla, L.; DeBardeleben, N.; Blanchard, S.; Quinn, H.; Koren, I.; Navaux, P.; Rech, P. Experimental and Analytical
Study of Xeon Phi Reliability. In Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’17, Denver, CO, USA, 12–17 November 2017; Association for Computing Machinery: New York, NY,
USA, 2017. [CrossRef]

http://dx.doi.org/10.1109/ASPDAC.2014.6742922
http://dx.doi.org/10.1109/TDMR.2005.853449
http://dx.doi.org/10.1109/23.903815
http://dx.doi.org/10.1109/TVLSI.2010.2047954
http://dx.doi.org/10.1109/TDMR.2004.831993
http://dx.doi.org/10.1109/DFTVS.2002.1173518
http://dx.doi.org/10.1109/DDECS.2016.7482459
http://dx.doi.org/10.1145/1459359.1459402
http://dx.doi.org/10.1145/3126908.3126960

	Introduction
	Related Works
	Masking Effects at Different Layers
	Reliability Quantification at Different Layers
	Fault Injection Approaches

	Classification When Soft Errors Occur
	Proposed Masking Effects Analysis Framework
	Fault and Failure Model
	Error Propagation Model

	Experimental Observations
	Experimental Setup
	Overall Results from Our Masking Analysis Framework
	Detailed Analysis for Software-Level Masking Effects
	Further Analysis for Other Hardware Components

	Conclusions
	References

