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Abstract: The transformation of time series into complex networks through visibility graphs is an
innovative way to study time-based events. In this work, we use visibility graphs to transform IOTA
and IoTeX price volatility time series into complex networks. Our aim is twofold: first, to better
understand the markets of the two most capitalised Internet of Things (IoT) platforms at the time of
writing. IOTA runs on a public directed acyclic graph (DAG) and IoTeX on a blockchain. Second,
to suggest how 5G can improve information security in these two key IoT platforms. The analysis
of the networks created by the natural and horizontal visibility graphs shows, first, that both IOTA
and IoTeX are still at their infancy in their development, with IoTex seemingly developing faster.
Second, both IoT tokens form communities in a hierarchical structure, and third, 5G can accelerate
their development. We use intentional risk management as a lever to understand the impact of 5G on
IOTA and IoTeX. Our results lead us to provide a set of design recommendations that contribute to
improving information security in future 5G-based IoT implementations.

Keywords: IoT; IOTA; IoTeX; blockchain; decentralised ledger; cryptocurrencies; complex networks;
visibility graph; powerlaw; data integrity; intentional risk; resilience

1. Introduction
1.1. Foundations of This Study: From Time Series to Complex Networks

In mathematics, a time series is a succession of events ordered by time. Time series
analysis aims to describe the statistical characteristics of the data. Time series forecasting
aims to use a model to predict future values [1]. Network science is a scientific discipline at
the crossroad of mathematics, statistics and physics [2]. It characterises systems composed
of a collection of nodes and edges between them. They constitute a network. The nodes
represent the members of the system and the edges certain relations or transfers between
them. When the number of nodes and edges is high, i.e., thousands to millions, these
systems create a complex network. Complex network analysis provides insights into how
these systems grow, evolve and interact with their members. It is possible to transform
a time series into a complex network thanks to an easy-to-implement algorithm, i.e., a
visibility graph [3]. This conversion facilitates the study of the system whose events create
a time series with the powerful analysis toolkit that complex network science provides.
In our case, we transform the time series created from the daily prices of the two most
capitalised Internet of Things (IoT) tokens into their corresponding complex networks.
These visibility networks help us understand how these two IoT platforms behave and
grow: IOTA and IoTeX, the former implemented on a directed acyclic graph (DAG) and
the latter on a blockchain. We apply our findings to a real life scenario, i.e., the deployment
of 5G mobile networks, and we use concepts stemming from intentional risk management
to suggest specific 5G design choices that can potentially improve the resilience against
intentional risk of both IoT platforms.
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1.2. The Value Proposition of 5G
1.2.1. Mobile Networks

Mobile networks answer the need human beings have to communicate remotely while
not being at home or anywhere close to a wireless local area network (LAN) access point
(Wi-Fi). Since their first release in 1980 [4] until now, a series of consecutive generations has
provided continuous technology improvements. Table 1 summarises data transmission
(Tx) speed, technologies and some details of each generation [5] (refer to [5–7] on protocol
acronyms used in Table 1):

1.2.2. 5G: Higher Speed and Lower Latency

Speeds displayed in Table 1 are only approximate. However, they show a continuous
drive towards providing customers with faster speed rates. The mobile network generation
that is currently being deployed is 5G, although there are still many GSM (2nd Generation)
networks in production with a switch-off date beyond 2024 [8]. The 3rd Generation
Partnership Project (3GPP) industry consortium [9] develops the communication protocol
specifications for 5G. Telecommunication providers have measured in real life a 5G data
transmission speed of 3 Gbps (3000 million bits per second) with a 3 milliseconds (ms) air
latency. More habitual figures are in the range of 500 Mbps and 30 ms latency (including
both air and edge server connection time gaps). As an example, the reaction time for the
human brain on an image perceived by the eye is around 10 ms [10]. 5G providers expect
to improve these figures in the coming years.

Table 1. Mobile networks history in generations.

Generation Tx Speed Technology Period Details

1 14.4 kbps Analog Tx 1970–1990 Voice only
2 up to 14.4 kbps CDMA/TDMA 1990–2000 Digital Tx, SMS, GSM Standard
2.5 20–170 kbps GPRS 2000–2003 First basic Internet browsing
2.75 up to 236 kbps EDGE 2003 ×3 GSM data capacity
3 144 kbps–3 Mbps UMTS, CDMA2000 2004–2005 First streamings
3.5 1–10 Mbps HSPA 2006–2010 Higher speed over UMTS
4 144 kbps–100 Mbps LTE 2010–2020 First streamings
5 1 Gbps 3GPP Standards 2021– Starting deployment

1.3. Internet of Things

The pervasiveness of Internet among human beings reaches already more than 50% of
the world population, i.e., almost 4 billion people [11]. A total of 90% of those Internet users
access it via mobile phones [12]. The connection of things with other things and people via
Internet, known as the Internet of Things (IoT), is also growing in economic importance
(USD 17 billion in 2021 [13]). The number of IoT connected devices reached the 20 billion
mark in 2018 [14]. The forecast is that this figure will reach USD 30 billion by 2030 [15].
An IoT device has at least one transducer (sensor or actuator) to interact directly with the
physical world and at least one network interface (e.g., 5G, Ethernet, Wi-Fi, Bluetooth)
to interface with the digital world [16]. They bridge the physical with the digital world.
Oracles play a similar role in distributed blockchains.

5G and Internet of Things

Already in 2016, the 3GPP consortium agreed to further develop IoT protocols like
NarrowBand Internet of Things (NB-IoT) and Long Term Evolution Machine Type Commu-
nication (LTE-M). 4G mobile networks already use them within the suite of standardised
low power, wide area (LPWA) technologies [17,18]. These two IoT protocols aim to meet
low-cost, low-current, wide coverage and high capacity requirements. 5G is also being
deployed in private networks, e.g., in industrial IoT [19]. Market analysts forecast a USD
3.6 trillion value generated in massive IoT developments up to 2035 [20].
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1.4. Blockchain

The publication of the seminal Bitcoin (BTC) paper in 2008 by the pseudonym Satoshi
Nakamoto [21] brought the spotlight on the blockchain, a distributed database that stores
records in blocks. Each block is permanently linked to the chain of blocks by cryptographic
means. The community accepts the longest chain of blocks. This technology provides data
integrity as validated blocks cannot be tampered with. It also provides transparency as the
chain of validated records is accessible to all participants and, finally, availability, as valida-
tors keep a copy of the blockchain [4]. Blockchain is a useful technology to register events
requiring integrity, transparency and availability such as financial transactions [22–25].

Blockchain for IoT

IoT networks can benefit from the blockchain technology to answer their integrity,
availability and, if required, transparency requirements [4,26]. The distributed nature of
blockchain is an optimal design component for IoT implementations. As of September
2021, the market capitalisation of four IoT projects based on blockchains or directed acyclic
graphs (DAG) exceeds USD 70 million: IOTA, IoTeX, MXC and Waltonchain [27]. In July
2021, their value surpassed USD 40 million.

1.5. Structure of the Paper

This paper is structured as follows. First, we introduce the foundations of our research
and summarise the opportunities that 5G brings to blockchain-based IoT implementations.
Second, we describe the current state-of-the-art with regard to 5G, IoT platforms and
blockchain. Third, we present complex network analysis and the proxy role of price
volatility. Fourth, we explain how visibility graphs bridge between time series and complex
network analysis, and we briefly refer to power law functions and to intentional risk. Fifth,
we share the methodology that we have followed to study IOTA and IoTeX price volatility,
its implementation and the corresponding results of the analysis. Sixth, we draw several
conclusions related to visibility graphs, IOTA and IoTeX markets and 5G using intentional
risk concepts. Seventh, we suggest design options for 5G to improve information security
in IOTA and IoTeX. Finally, we present our future work proposals.

2. Related Works
2.1. 5G Services and Their Economic Value

The International Telecommunication Union (ITU) Radio-communication sector de-
fines the minimum standards for 5G within three main services, i.e., enhanced Mobile
BroadBand (eMBB), massive Machine Type Communication (mMTC) and URLLC (Ultra
Reliable and Low Latency Communications) [4]. The most deployed service continues
to be eMBB [28], focused on improving data transmission rates for smartphone users.
Although in 2021 5G enabled smartphones already constitute 43% of new shipped units
worldwide [29], they still represent a tiny segment within the current deployed stock of
smartphones. The other two services, mMTC and URLLC, are yet in their infancy. The
economic value that 5G is expected to provide to the world economy is in the order of USD
12 trillion [30]. Table 2 introduces the technologies that 5G uses [4,31,32]:
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Table 2. Technologies used in 5G mobile networks.

Name Acronym Function

Network Slicing NS Virtual networks in parallel to answer different
speed and latency requirements.

Software-Defined Networking SDN Centralised programmatical network configuration.
It decouples forwarding and routing.

Multi-Access Edge Computing MEC Cloud computing at the network edge to tap into
data with local access conditions.

Network Function Virtualisation NFV Router as SW in off-the-shelf hardware. Key for
Network Slicing.

Millimeter Wave communications mmWC Higher data rates than microwaves. Key for band-
width increase.

Massive MIMO MIMO Wireless access technology. Multiple Input Multiple
Output enabled by mmWaves.

Device to device connectivity D2D User equipment (UE) communicates with UE. It
leads to micro clouds in base stations.

2.1.1. 5G as Optimal Communication Channel for IoT

5G mobile technology will enable new value chains in many economic sectors. Those
using machine-to-machine communications are among them [4]. 5G networks will provide
performance enhancements, a high degree of reliability and very low latency communica-
tions [33]. The IoT segment with the heaviest economic weight is Smart Home Technologies
with a projected market volume of USD 17 billion in 2021 [13]. Smart Home IoT devices
are mostly connected to the Internet via Wi-Fi connections with mobile as a redundant
backup communication channel. However, IoT devices in remote places and in places with
no Wi-Fi coverage make use of mobile links to exchange data with their edge and cloud
servers. The arrival of 5G, although at a later stage than, e.g., person-to-person mobile
communications [20], will bring better energy efficiency, reliability and performance.

2.2. Blockchain or Directed Acyclic Graph-Based IoT Platforms

The two most capitalised IoT implementations based on distributed databases, i.e.,
distributed ledgers, are IOTA and IoTeX [27]. IOTA’s market capitalisation in July 2021
reached values such as USD 1.93 and USD 2.42 billion and IoTeX USD 181 and 188 million.
In September 2021 they exceeded USD 4.3 billion and USD 633 million respectively [27].
We consider market capitalisation as a proxy for potential future economic value that these
two IoT platforms can produce in IoT projects aimed to solve specific business cases, e.g.,
in healthcare [34] and transportation [35]. A relevant set of those projects will be using 5G
mobile networks to allow for remote non-WiFi communications between sensors and edge
and cloud servers.

2.2.1. IOTA

Created in 2015, IOTA is by far the most capitalised IoT platform [27]. It is an inno-
vative solution based on a directed acyclic graph (DAG): Every participant launching a
transaction in IOTA needs to validate two prior transactions, replacing the need for blocks
and miners. It is a public, permissionless, open-source, and feeless distributed ledger.
It enables the exchange of value between humans and machines [26]. IOTA is currently
testing improvements to achieve a greater degree of decentralisation as it still requires the
participation of a coordinator to validate transactions [26]. Energy, industrial communi-
cations and mobility are some of the fields where there are IOTA-based projects [36]. The
IOTA token is tradeable since 2017.
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2.2.2. IoTeX

Created in 2017, IoTeX allows for the use of multiple blockchains. It claims that no
unique blockchain can satisfy all IoT requirements. The rootchain is a public permissionless
blockchain that uses a randomised delegated proof of stake (Roll-DPoS). There are different
permissioned and permissionless subchains according to their functionality [26,37]. Home
domotics [38] and mobile payments [39] are two areas with promising IoTeX projects. The
IoTex token started trading as an Ethereum-based token (ERC-20 IOTX token) in 2018.
Table 3 presents a quick introductory summary of both IoT platforms:

Table 3. IOTA and IoTeX.

IOTA IoTeX

Start year 2015 2017
Distributed Yes Yes
Ledger type DAG Blockchain
Public Yes Yes
Permissionless Yes Yes
Multiblockchain No Yes
Fees No Low

2.2.3. Blockchain as Additional Security Value in 5G-Enabled IoT Networks

Blockchain technology brings additional security properties to the very high data
transmission speed and the ultra low latency that 5G adds to IoT implementations, i.e.,
data integrity and non-repudiation [4,26,40]. Many blockchain-based IoT implementations
can benefit from a reliable and fast 5G network, such as the use of IOTA in electric vehicle
charging facilities [41] and IoTex in smart cities [42]. Nevertheless, a single blockchain im-
plementation with no additional tools to manage the complexity of an IoT implementation,
e.g., in edge and cloud computing, cannot provide all security requirements [26].

2.3. Complex Networks

Network analysis describes systems composed of many elements that interact with
each other. Their relations create a graph. Nodes, also called vertices, connect between
them via edges, also called links [2] (p. 2). The complexity appears when the number
of nodes and links is high, and we need advanced mathematical and statistical tools to
characterise those systems [43–45]. Complex network analysis is a useful tool to understand
non-linear interactions [46], some of them dynamic [47] (p. 177), between network nodes.
They provide a plausible behavioural model to real world examples such as social networks,
contagious diseases, transportation networks and crypto-token networks [48,49] (p. 179).
In our case, we use visibility graphs to transform the daily price volatility time series of
IOTA and IoTeX tokens into complex networks. The study of these networks helps us
understand IOTA and IoTeX markets and how 5G technology can have an impact on them.

2.4. Volatility as a Proxy Measure

The study of the relation between asset price volatility and asset trading volume is a
common proposal to study markets [50]. Similarly, in crypto-currencies, the correlation
coefficient between the volatility and volume is positive and statistically significant [51].
Yamak et al., studying bitcoin (BTC) from 2013 to 2019, found a bidirectional causal
relationship between price volatility and trading volume being the one from volume to
price volatility the strongest [51]. Equally, the number of addresses in BTC has a significant
impact on the BTC price with variations over time [52], i.e., crypto-token markets relate
to their networks. In Section 3, we explain how we study price volatility as a proxy to
understand both IOTA and IoTex cryptocurrency markets and, ultimately, their networks
and their link to a potential 5G deployment.
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2.5. Visibility Graphs

Lacasa et al. propose two fast computational methods to convert a time series into
a graph, the natural (in 2008, [3]) and the horizontal (in 2009, [53]) visibility graphs. The
resulting graphs inherit and display structural properties of the time series. Complex
network analysis helps identifying some of those properties [54]. Table 4 summarises the
links between time series and visibility graphs (VG) [3]:

Table 4. Correspondence between time series and complex networks.

Time Series Type Complex Network Type

Periodic Regular
Random Random (exponential degree function)
Fractal Scale-free (power law degree function)

Visibility Graph of Bitcoin

In 2019, Liu et al. perform a visibility graph analysis of Bitcoin (BTC), Ethereum
(ETH) and Litecoin (LTC) price volatility series to understand their markets [54]. They
confirm that the three VGs are scale-free and they display a hierarchical structure, i.e., they
cluster similarly at different levels. A power law behaviour in the function of the average
clustering coefficient of each node with a specific degree confirms that each community
clusters into sub-communities. These results, based on 5 years of daily prices (from April
2013 to May 2018), facilitate the construction of dynamic models of BTC, ETH and LTC
markets and, in general, of any rare item market. With only 5 years of daily data, results
for these three cryptocurrencies reproduce the price volatility series of the gold market
throughout hundreds of years.

2.6. Power Laws

When the right tail of a probability distribution still contains a considerable amount
of probability, its study is pivotal to understand that specific distribution. This is the case
for power law functions. Mathematically, they behave as Equation (1):

p(x) = σ
1
xα

. (1)

If α < 3, the standard deviation of the distribution is not defined. If α < 2, the mean of
the distribution is not defined. A scale-free, i.e., all values can occur, network has a power
law function as a degree distribution, at least asymptotically. The value of α for easy to
identify power law functions goes goes from 2 to 3. Alstott et al. in 2014 provided a Python
library to facilitate the study of the fit of empirical data with power law functions [55].
They use three typical functions to show potential power law fits, as Table 5 shows:

Table 5. Functions to study heavy-tailed distribution functions.

Function X Axis Y Axis

Probability density function (PDF) Variable x Probability p(X = x)
Cumulative distribution function (CDF) Variable x Probability p(X < x)
Complementary cumulative distribution (CCDF) Variable x Probability p(X ≥ x)

2.7. Intentional Risk

Traditional risk management deals with system failures and environmental disas-
ters [56]. Intentional risk management is a security innovation proposed by Chapela et al. [46].
They perform a complex network analysis on information systems using value, anonymity
and accessibility as the three key dimensions to manage attacks to the system by actors in
search of a benefit. They distinguish between static and dynamic risk. The former relates
to actors with access to the system and the latter to actors with no initial legitimate access
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to the system, i.e., with a maximum possible level of anonymity. We use for our analysis
the concept of dynamic risk of an element e presented in Equation (2):

Dynamic Riske = Valuee · Accessibilitye. (2)

We link the concept of value with the daily price of the tokens we study and the
concept of accessibility with the potential functionalities that 5G can provide to these IoT
networks, as we explain in Section 3.

3. Methodology and Implementation
3.1. A Complex Network from a Visibility Graph

The first future work path mentioned in [26] is the transformation of the time series
created by IOTA and IoTeX transactions, i.e., the value transacted at each point of time,
into complex networks using the visibility graph technique proposed by Lacasa et al. [3].
The ultimate objective is to further analyse both IoT implementations. The number of
transactions taking place in both networks since their inception render this proposal
unrealistic if we consider a time series indexed per second as a time unit. A look at the
IOTA explorer (Mainnet feed Section) [57] reveals time slots with several transactions, with
zero and non-zero value IOTA token transfers, per second. Equally, in IoTeX explorer (right
hand side column in its interface) [58], we see how there is a new block, including a handful
of actions with zero and non-zero IoTeX token transfers, every few seconds. Alternatively,
in this study, we analyse the visibility graphs created from IOTA and IoTeX tokens’ daily
price volatility information since day one of trading. Daily token price information is
accessible and regularly and accurately registered. It acts as a valid proxy to describe
how these two IoT markets behave. We analyse the complex network stemming from the
volatility visibility graphs. Our conclusions carry several implications for blockchain-based
IoT implementations using 5G mobile networks.

3.2. Price Volatility Data Collection

We base our analysis on daily maximum and minimum prices for both IOTA and
IoTeX tokens obtained from investing.com [59,60] (accessed on 24 July 2021). Investing.com
(accessed on 24 July 2021) is a stock market quote and financial news provider. We calculate
daily volatility values using Equation (3):

price volatility = ln
(

pricemax

pricemin

)
. (3)

Table 6 presents the data items we use in our analysis, i.e., 4 years of daily volatility
data for IOTA and 3 years of daily volatility data for IoTeX.

Table 6. Data points analysed in this study.

Token Data Items Frequency From To # Datapoints

IOTA Highest and lowest price Daily 14 June 2017 15 July 2021 1493
IoTeX Highest and lowest price Daily 20 June 2018 15 July 2021 1122

Figure 1 displays the lowest and highest daily price time series and the resulting price
volatility time series.

investing.com
Investing.com
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Figure 1. Daily price volatility data for IOTA and IoTeX. Subplots (a,b) display the daily volatility
time series for IOTA and IoTeX, respectively. Subplots (c,d) display their components: highest and
lowest prices in USD per day for IOTA and IoTeX.

3.3. Creation of the Natural Visibility Graph

Visibility_graph [61] is a Python module that implements the visibility graph proposed
by Lacasa et al. [3]. We run this code to create the complex network. As input, we deploy
the time series introduced in Section 3.2. The nodes correspond to each daily volatility
measure, and the edges link those nodes that are “visible” to each other.

3.4. Creation of the Horizontal Visibility Graph

Visibility_algorithms [62] is a Python piece of code that implements the original proposal
to create horizontal visibility graphs in Fortran 90/94 by Lacasa. Equally, we use as
input the volatility time series presented in Section 3.2. The nodes correspond to each
daily volatility measure, and the edges link those nodes that are “horizontally visible” to
each other.

Figure 2 shows the appearance of the natural visibility graph (VG) and the horizontal
visibility graph (HVG) for the 20 most recent days in our data collection.
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Figure 2. Visibility and horizontal visibility graphs for IOTA and IoTeX price volatility. Subplots
(a,b) display the visibility graph derived from the daily volatility time series for IOTA and IoTeX,
respectively (last 20 days of the dataset). Subplots (c,d) display the horizontal visibility graph derived
from the daily volatility time series for IOTA and IoTeX, respectively (last 20 days of the dataset).
The depiction of these graphs is the outcome of our own Python code.

3.5. Complex Network Analysis of the IOTA and IoTeX VG and HVG

Once we have these four complex networks at our disposal, i.e., the VGs and HVGs
for both IOTA and IoTeX price volatilities, first, we obtain the degree for each node using
the Python module networkx [63] and the basic network features, i.e., number of nodes and
edges, number of isolated elements and self loops, average density and transitivity using
the Python module metaknowledge [64]. Second, we proceed to measure the heterogeneity
of the networks by plotting their degree functions and comparing them with potential
power law fits using two methods:

3.5.1. Curve_Fit

First, we use the traditional curve_fit Python module from scipy.optimize [65]. It uses
non-linear least squares to fit a function, in our case a power law, to the degree function of
our IOTA and IoTeX volatility visibility graph-based complex network.

3.5.2. Power Law Fit Using the Powerlaw Module by Alstott et al.

Second, we assess the fit of the mentioned degree functions to a power law using
the powerlaw Python module developed by Alstott et al. [55] and explained in Section 2.6.



Electronics 2021, 10, 2282 10 of 20

Following [55], we plot the probability density function (PDF) and the complementary cu-
mulative distribution function (CCDF) for each of the four degree functions in our analysis.

3.6. Average of Clustering Coefficients per Degree and Fit

Inspired by [54], we study the linking possibility between neighbouring nodes by
calculating the clustering coefficient of every node in these four networks. We plot the
average of the clustering coefficients per degree. After that, we assess their fit with a power
law function with the curve_fit Python module.

3.7. Communities in the Network

Understanding the community structure of a network contributes to describing the
heterogeneity of a network. We complete our study by calculating the number and location
of communities in the analysed IOTA and IoTeX networks. We use the community API
for community detection in networkx [66]. An alternative will be the use of the cylovain
code [67]. We run both pieces of code, and the resulting number of communities are very
similar (see Table 7):

Table 7. Community searching Python modules.

Module Name Implemented Algorithm IOTA Communities (VG and HVG) IoTeX Communities (VG and HVG)

Community API Louvain 19 and 29 15 and 23
Cylouvain Louvain 18 and 30 15 and 23

3.8. Link with Intentional Risk and Application to 5G

First, the results we obtain in terms of how close degree functions and average
clustering coefficients per degree are to a power law provide insights on the heterogeneity
of the network stemming from the daily price volatility visibility graph. We link our results
with the two dimensions that compose dynamic risk, i.e., value and accessibility. Second,
the arrival of 5G to both IoT platforms can play an important role in increasing their
accessibility and in broadening the services that both IOTA and IoTeX can provide, e.g., in
terms of lower-cost, lower-energy, wider coverage and higher capacity. Table 8 summarises
the steps followed in our methodology, their main objective and the tools we use:

Table 8. Summary of the methodology with steps, objectives and tools.

Step Main Objective Tools Used

1 Download daily maximum and minimum prices from investing.com web browser
2 Production of daily price volatility time series logarithm
3 Creation of natural visibility graphs for IOTA and IoTeX visibility_graph
4 Creation of horizontal visibility graphs for IOTA and IoTeX visibility_algorithms
5 Basic characterisation of the 4 networks (VG and HVG in IOTA and IoTeX) metaknowledge
6 Production of the degree functions for the 4 networks networkx
7 Power law fit for degree functions curve_fit
8 Power law fit for degree functions (as proposed by Alstott) powerlaw
9 Average of clustering coefficients per degree (as in [54]) networkx
10 Power law fit for average clustering (as in [54]) curve_fit
11 Identification of communities community_api
12 Link with dynamic risk (as defined by [46]) literature review
13 Strategy to use 5G for IoT literature review



Electronics 2021, 10, 2282 11 of 20

4. Analysis and Results
4.1. The Visibility Graph Creates Four Networks

We apply the visibility graph and horizontal visibility graph algorithms to the IOTA and
IoTeX daily price volatility series and we obtain four complex networks: IOTA VG, IoTeX
VG, IOTA HVG and IoTex HVG. The metaknowledge module provides a first approximation
to the properties of these four networks (see Table 9):

Table 9. Initial description of the visibility graph-based networks.

Network Nodes Edges Isolates Self Loops Density Transitivity

IOTA VG 1493 5715 0 0 0.005 0.300
IoTeX VG 1122 4472 0 0 0.007 0.312
IOTA HVG 1493 2969 0 0 0.003 0.344
IoTeX HVG 1122 2225 0 0 0.004 0.354

The VG networks have a higher number of edges and, consequently, still low but
higher values of density than HVGs. The four networks have a very low density and a
low transitivity.

4.2. Power Law Fit Using Curve_Fit

Figure 3 shows the power law fits we obtain using curve_fit. We see how the fit for the
IoTeX VG network provides a value of α = 2.61 in accordance with Equation (1), hinting
at the existence of a scale-free network. The IOTA VG, with an α = 1.93 does not reach a
value of two. When we focus on the HVG, we see an α = 2.03 and 2.01 for IOTA and IoTeX
networks, respectively. We can even talk of incipient scale-free networks in both HVG
cases. We highlight as well how in the four subplots the power law fit has a maximum
degree from which there is no power law fit.
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Figure 3. Number of nodes for each degree in the networks stemming from the visibility and
horizontal visibility graphs for IOTA and IoTeX price volatility. Subplots (a,b) display the degree of
the network stemming from the visibility graph and the best power law fit that the function curve_fit
provides together with the corresponding best α and σ. Subplots (c,d) display the degree of the
network stemming from the horizontal visibility graph and the best power law fit that the function
curve_fit provides and the corresponding best α and σ.

4.3. Power Law Fit Using the Powerlaw Module by Alstott

We use a second, more stringent, technique to assess the power law fit of the degrees in
both the visibility graph and horizontal visibility graph networks: the Python module by Alstott
powerlaw [55]. Figure 4 shows both the empirical and the fit probability density function
(PDF) and the complementary cumulative distribution (CCDF) for the four networks. We
identify a good fit with the power law CCDF for the four networks. However, the PDF fit
can only be partially observed in the IoTeX VG. All four values of α are well below two. In
the remaining three networks, i.e., IOTA VG and IOTA and IoTeX HVG, the power law fits
we obtain are quite limited in the range of degrees for IOTA VG and extremely limited for
both HVGs.
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Figure 4. Both empirical and fit probability density functions (PDF) and complementary cumulative
distribution functions (CCDF) using the powerlaw module by Alstott et al. [55].

4.4. Communities Formation Criteria within the Networks

We calculate the average of clustering coefficients per degree [54] with our own Python
code. We plot this curve and fit it to a power law using curve_fit. We use the same scale as
the degree function, although, here, the y axis’ range is one order of magnitude smaller.
Figure 5 reveals that the power law fit is greater than in the previous cases when we plotted
the degree. This means that communities at different levels are formed according to an
identical law showing a fractal behaviour, i.e., a hierarchical network [54]. The values of α
are very close to 2 for both HVGs, where we identify an initial scale-free behaviour and
around 1.85 for the VGs. In this case, we do not plot this fit using the powerlaw module by
Alstott since the fit we observe with curve_fit shows a less heavy-tailed distribution than in
the degree graphs.
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Figure 5. Best power law fit using curve_fit with the average of clustering coefficients per degree for
(a) IOTA VG, (b) IoTeX VG, (c) IOTA HVG and (d) IoTeX HVG.

4.5. Communities Identified in the IOTA and IoTeX Networks

We obtain the existing communities in these networks using Community API [66], a
Python module that implements the Louvain algorithm [68]. We identify a number of
communities, as Table 7 shows. The presence of a community of nodes in a visibility graph
is inherent to its creation. Community participant nodes tend to cluster together with a
small value of the average shortest path along the timeline [54].

Figure 7 provides both volatility information as subplots in Figure 1 plus community
information along IOTA and IoTeX timelines.

5. Conclusions
5.1. Visibility Graphs Are a Helpful Tool to Leverage Time Series with Network Analysis

This study confirms the usefulness of the proposal by Lacasa et al. [3] to transform
time series into complex networks using visibility graphs. It is a novel way to incorporate
the time dimension as an object of study within a complex network. Visibility graphs, as
also confirmed by Liu et al. [54], preserve useful information present in the time series onto
the resulting complex network.
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5.2. IOTA and IoTeX Markets Are Still at Their Infancy in Terms of Development—IoTex Appears
to Develop Faster

The number of data points studied in these networks is reduced. The history of both
IoT tokens is still short. The density and transitivity figures obtained in Section 4.1 confirm
this point. Similar VGs in Bitcoin, Ethereum and Litecoin [54] display stronger powerlaw
fits. Their time series are 5 years long compared to the 4 and 3 year-long time series history
for IOTA and IoTeX, respectively. IoTex VG, although one year younger than IOTA, seems
to display a slightly better power law fit than IOTA. Figure 4 confirms this point. This
could hint a faster path to maturity for IoTeX. In terms of HVG, given that the number of
edges is more limited, we do not draw conclusions on maturity based on Figures 3 and 4.

5.3. IOTA and IoTeX Visibility Networks form Communities in a Hierarchical Structure

Figure 5 confirms power law fits when we plot the average of clustering coefficients
per degree in the four visibility networks, i.e., IOTA VG and HVG and IoTeX VG and HVG.
This leads to a hierarchical structure, similar to the findings proposed by Liu et al. in the
case of Bitcoin, Ethereum and Litecoin [54]. This means that the creation of communities of
nodes, as Figures 6 and 7 display, follow an identical law at different levels of time sampling.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Communities in price volatility VG and HVG

(a) IOTA VG
 19 communities

(b) IOTA HVG
 29 communities

(c) IoTeX VG
 15 communities

(d) IoTeX HVG
 23 communities

Figure 6. Communities identified by the networkx module community API in (a) IOTA VG, (b) IoTeX
VG, (c) IOTA HVG and (d) IoTeX HVG throughout the timeline in network graph format.
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Figure 7. Communities identified by the networkx module community API in IOTA, (a,c), and Io-
TeX, (b,d). Graphs (a,b) use a coloured-coded continuous line and graphs (c,d) a coloured-coded
scattered plot.

5.4. 5G Can Accelerate IOTA and IoTeX Development

The move into production of 5G mobile networks, with the added value explained in
Section 2.1.1, will trigger the further rollout of multiple IoT implementations and increase
their adoption rates. As IOTA and IoTeX are the two most capitalised platforms [27], both
are optimally positioned to become worldwide references in IoT deployments.

5.5. Intentional Risk: A Lever to Understand the Impact of 5G on IOTA and IoTeX

Within intentional risk, dynamic risk measures the impact of anonymous actors on
information systems [46]. Value and accessibility are the two components of dynamic risk.
The use of 5G in IoT platforms such as IoTeX and IOTA can increase their dynamic risk
and, consequently:

(a) The value at stake in the respective networks.
(b) The accessibility of the participants.

We suggest several strategies to mitigate the growth of these two dimensions:

(a) Distribute the new value generated across all platform participants. This will require
a reduction of highly connected nodes, i.e., hubs that have a tendency to accumulate
value. However, this strategy is not aligned with typical power law degree functions
identified in IOTA and IoTeX. High-value hubs seem to remain and even grow in more
mature crypto-networks (e.g., BTC and ETH [26]). We therefore recommend to:
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(b) Improve accessibility controls, especially to those nodes holding high value. An
effective identity and access management (IAM) system, as mentioned in [26], is a
potential improvement path.

(c) Apply a multi-layered IAM system at different levels of scale considering the hierar-
chical structure observed in IOTA and IoTeX communities.

5.6. 5G Can Improve Information Security in IOTA and IoTeX

Considering the findings of our study and our prior conclusions, we state that 5G is
well positioned to contribute to the security of IOTA and IoTeX platforms. The three main
5G services, i.e., enhanced Mobile BroadBand (eMBB), massive Machine Type Communica-
tion (mMTC) and URLLC (Ultra Reliable and Low Latency Communications) can:

(a) Enable faster communications between IoT nodes so that high-value nodes can dis-
tribute their wealth more securely and quickly.

(b) Allow for the implementation of more comprehensive, more fine-grained and faster
identity and access management systems that would serve IOTA and IoTeX nodes.

(c) Apply these 5G improvements not only at the edge level to tackle communications
with IoT nodes but also between edge and cloud servers participating in the IoT
platform, also known as “fog computing” or “fog networking”, as it is the case in
IoTeX [26]. This would mean that IoTeX could have the potential to quickly reap
benefits from 5G given its edge and cloud design.

We use app.diagrams.net in Figure 8 to summarise in an infographic the main points of
this study.

Figure 8. Infographic summary of “Visibility graph analysis of IOTA and IoTeX price series: An
intentional risk-based strategy to use 5G for IoT”.
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6. Future Work

We suggest three paths for further research related to the role IOTA and IoTeX plat-
forms will play in the IoT arena:

(a) Contribute to the creation of public DAG and blockchain explorers with more ad-
vanced functionalities than the currently available ones for IOTA, thetangle.org [69],
and IoTeX, IoTeXscan.io [58] (both accessed on 30 July 2021). As an example, the
extraction of the transactions happening in real-time from the current explorers so that
they can be easily analysed is still challenging. We would also like to contribute to an
academic study focused on the standardisation of blockchain explorer functionalities
and on the creation of the corresponding code modules that would implement them.

(b) Once our first future work point is accomplished, we would like to perform a study
similar to this one based on IOTA and IoTeX transaction data, i.e., creating the visibility
graph from the transaction time series. We would complement this analysis with a
time series clustering proposal that combines multiplex networks and time series
attributes [1].

(c) Finally, we would like to perform a similar volatility-based visibility graph analysis on
other crypto-tokens such as the three currently most capitalised ones [70], i.e., Bitcoin,
ETH and USDT with their entire price time series history.

Author Contributions: Conceptualization, A.P., M.R. and R.C. methodology, A.P., M.R. and R.C.;
software, A.P.; validation, A.P., M.R. and R.C.; formal analysis, A.P., M.R. and R.C.; investigation,
A.P.; resources, A.P., M.R. and R.C.; data curation, A.P.; writing—original draft preparation, A.P.;
writing—review and editing, A.P., M.R. and R.C.; visualization, A.P.; supervision, M.R. and R.C.;
project administration, M.R. and R.C.; funding acquisition, M.R. and R.C. All authors have read and
agreed to the published version of the manuscript.

Funding: Regino Criado and Miguel Romance have been partially supported by projects PGC2018-
101625-B-I00 (Spanish Science and Innovation Ministry, AEI/FEDER, UE) and M1967 (URJC Grant).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Iglesias, P.S.; Moral-Rubio, S.; Criado, R. A new approach to combine multiplex networks and time series attributes: Building

intrusion detection systems (IDS) in cybersecurity. Chaos Solitons Fractals 2021, 150, 111143. [CrossRef]
2. Newman, M.E.J. The Structure and Function of Complex Networks. Siam Rev. 2003, 45, 167–257. [CrossRef]
3. Lacasa, L.; Luque, B.; Ballesteros, F.; Luque, J.; Nuño, J.C. From time series to complex networks: The visibility graph. Proc. Natl.

Acad. Sci. USA 2008, 105, 4972–4975. [CrossRef] [PubMed]
4. Hewa, T.M.; Kalla, A.; Nag, A.; Ylianttila, M.E.; Liyanage, M. Blockchain for 5G and IoT: Opportunities and Challenges. In

Proceedings of the 2020 IEEE Eighth International Conference on Communications and Networking (ComNet), Hammamet,
Tunisia, 27–30 October 2020; pp. 1–8. [CrossRef]

5. Meraj, M.; Kumar, S. Evolution of mobile wireless technology from 0G to 5G. Int. J. Comput. Sci. Inf. Technol. 2015, 6, 2545–2551.
6. LTE Encyclopedia. Acronyms. Available online: https://sites.google.com/site/lteencyclopedia/lte-acronyms (accessed on 22

July 2021).
7. Qualcomm. What Is 5G. Available online: https://www.qualcomm.com/5g/what-is-5g (accessed on 22 July 2021).
8. GSM Phase out Calendar. Available online: https://www.emnify.com/en/resources/global-2g-phase-out (accessed on

22 July 2021).
9. 3GPP. 3rd Generation Partnership Project (3GPP). Available online: https://www.3gpp.org/ (accessed on 22 July 2021).
10. Telekom. 5G Real Time Speed. Available online: https://www.telekom.com/en/company/details/5g-speed-is-data-

transmission-in-real-time-544498 (accessed on 22 July 2021).
11. Statista. Internet Usage Worldwide—Statistics & Facts. Available online: https://www.statista.com/topics/1145/internet-usage-

worldwide/ (accessed on 22 July 2021).
12. Statista. Mobile Internet Usage Worldwide—Statistics & Facts. Available online: https://www.statista.com/topics/779/mobile-

internet/ (accessed on 22 July 2021).
13. Statista. Internet of Things. Revenue by Segment. Available online: https://www.statista.com/outlook/tmo/internet-of-things/

worldwide (accessed on 22 July 2021).

thetangle.org
IoTeXscan.io
http://doi.org/10.1016/j.chaos.2021.111143
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1073/pnas.0709247105
http://www.ncbi.nlm.nih.gov/pubmed/18362361
http://dx.doi.org/10.1109/ComNet47917.2020.9306082
https://sites.google.com/site/lteencyclopedia/lte-acronyms
https://www.qualcomm.com/5g/what-is-5g
https://www.emnify.com/en/resources/global-2g-phase-out
https://www.3gpp.org/
https://www.telekom.com/en/company/details/5g-speed-is-data-transmission-in-real-time-544498
https://www.telekom.com/en/company/details/5g-speed-is-data-transmission-in-real-time-544498
https://www.statista.com/topics/1145/internet-usage-worldwide/
https://www.statista.com/topics/1145/internet-usage-worldwide/
https://www.statista.com/topics/779/mobile-internet/
https://www.statista.com/topics/779/mobile-internet/
https://www.statista.com/outlook/tmo/internet-of-things/worldwide
https://www.statista.com/outlook/tmo/internet-of-things/worldwide


Electronics 2021, 10, 2282 19 of 20

14. Sallaba, M.; Siegel, D.; Becker, S. Deloitte Blockchain Institute. IoT Powered by Blockchain. How Blockchains Facilitate the
Application of Digital Twins in IoT. May 2018. Available online: https://www2.deloitte.com/content/dam/Deloitte/de/
Documents/Innovation/IoT-powered-by-Blockchain-Deloitte.pdf (accessed on 22 July 2021).

15. Statista. Number of Internet of Things (IoT) Connected Devices Worldwide in 2018, 2025 and 2030. Available online: https:
//www.statista.com/statistics/802690/worldwide-connected-devices-by-access-technology/ (accessed on 22 July 2021).

16. NIST. Creating a Profile Using the IoT Core Baseline and Non-Technical Baseline. NIST Interagency or Internal Report 8259C.
December 2020. Available online: https://doi.org/10.6028/NIST.IR.8259C-draft (accessed on 22 July 2021).

17. Ericsson. IoT Protocols in 5G. Available online: https://www.ericsson.com/en/reports-and-papers/nb-iot-and-lte-m-in-the-
context-of-5g-industry-white-paper (accessed on 22 July 2021).

18. 3GPP. 3rd Generation Partnership Project (3GPP). Decisions on IoT Protocols. Available online: https://www.3gpp.org/news-
events/1805-iot_r14 (accessed on 22 July 2021).

19. Qualcomm. Private Industrial Networks Offer Key Benefits for Industrial IoT. Available online: https://www.qualcomm.com/
research/5g/5g-industrial-iot (accessed on 23 July 2021).

20. Qualcomm. The $12 Trillion Opportunity Ahead. Available online: https://www.qualcomm.com/media/documents/files/
fierce-wireless-ebrief-5g-release-16.pdf (accessed on 22 July 2021).

21. Nakamoto, S.; Bitcoin: A Peer-to-Peer Electronic Cash System. Nakamotoinstitute.org, October 2008. Available online: https:
//bitcoin.org/bitcoin.pdf (accessed on 21 July 2021).

22. Christian, C.; Joshua, S.G. Some Simple Economics of the Blockchain, Working Paper 22952, National Bureau of Economic
Research, December 2016. Available online: https://www.nber.org/papers/w22952 (accessed on 22 July 2021).

23. ECB. “Distributed Ledger Technology”, In Focus, Issue 1, European Central Bank. 2016. Available online: https://bit.ly/3fHcOYS
(accessed on 22 May 2021).

24. ESMA. “The Distributed Ledger Technology Applied to Securities Markets”, Report ESMA50-1121423017-285, Discussion Paper,
European Securities and Markets Authority, 7 February 2017. Available online: https://bit.ly/344omjI (accessed on 22 July 2021).

25. Pinna, A.; Ruttenberg, W. “Distributed Ledger Technologies in Securities Post trading: Revolution or Evolution”, ECB Occasional
Paper Series 172, European Central Bank, 20 April 2016. Available online: https://bit.ly/3oHEMaY (accessed on 22 July 2021).

26. Partida, A.; Criado, R.; Romance, M. Identity and Access Management Resilience against Intentional Risk for Blockchain-Based
IOT Platforms. Electronics 2021, 10, 378. [CrossRef]

27. IOT Crypto Coin Market Value. Available online: https://cryptoslate.com/cryptos/iot/ (accessed on 22 July 2021).
28. Arm. Managing the Future of Cellular. Available online: https://www.arm.com/-/media/global/solutions/infrastructure/

managing-the-future-of-cellular.pdf (accessed on 23 July 2021).
29. Statista. Forecast 5G-Enabled Smartphone Shipments as Share of Total Smartphone Shipments Worldwide from 2019 to

2023. Available online: https://www.statista.com/statistics/1027246/5g-smartphone-shipment-share-worldwide/ (accessed on
23 July 2021).

30. IHS Economics. The 5G Economy: How 5G Technology Will Contribute to the Global Economy. Available online: https:
//cdn.ihs.com/www/pdf/IHS-Technology-5G-Economic-Impact-Study.pdf (accessed on 23 July 2021).

31. Bogale, T.E.; Wang, X.; Le, L.B. mmWave communication enabling techniques for 5G wireless systems: A link level perspective.
In MmWave Massive MIMO; Academic Press: Cambridge, MA, USA, 2017; pp. 195–225.

32. Shen, X. Device-to-device communication in 5G cellular networks. IEEE Netw. 2015, 29, 2–3. [CrossRef]
33. Khurpade, J.M.; Rao, D.; Sanghavi, P.D. A Survey on IOT and 5G Network. In Proceedings of the 2018 International Conference

on Smart City and Emerging Technology (ICSCET), Mumbai, India, 5 January 2018; pp. 1–3.
34. Fatokun, T.; Nag, A.; Sharma, S. Towards a Blockchain Assisted Patient Owned System for Electronic Health Records. Electronics

2021, 10, 580. [CrossRef]
35. Sun, H.; Hua, S.; Zhou, E.; Pi, B.; Sun, J.; Yamashita, K. Using Ethereum blockchain in Internet of Things: A solution for electric

vehicle battery refueling. In International Conference on Blockchain; Springer: Cham, Switzerland, 2018; pp. 3–17.
36. IOTA Corporate Site. Explore IOTA Industries. Available online: https://www.iota.org/solutions/industries (accessed on

28 July 2021).
37. IoTex Team and Introduction Portal. Available online: https://iotex.io/ (accessed on 28 July 2021).
38. Fan, X.; Zhong, Z.; Chai, Q.; Guo, D. Ucam: A User-Centric, Blockchain-Based and End-to-End Secure Home IP Camera System.

In Security and Privacy in Communication Networks; Park, N., Sun, K., Foresti, S., Butler, K., Saxena, N., Eds.; Lecture Notes of the
Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Springer: Cham, Switzerland, 2020;
Volume 336.

39. Xu, L.; Chen, L.; Gao, Z.; Carranco, L.; Fan, X.; Shah, N.; Diallo, N.; Shi, W. Supporting Blockchain-Based Cryptocurrency Mobile
Payment With Smart Devices. IEEE Consum. Electron. Mag. 2020, 9, 26–33. [CrossRef]

40. Mistry, I.; Tanwar, S.; Tyagi, S.; Kumar, N. Blockchain for 5G-enabled IoT for industrial automation: A systematic review, solutions,
and challenges. Mech. Syst. Signal Process. 2020, 135, 106382. [CrossRef]

41. Florea, B.C.; Taralunga, D.D. Blockchain IoT for smart electric vehicles battery management. Sustainability 2020, 12, 3984.
[CrossRef]

42. Tekeoglu, A.; Ahmed, N. TangoChain: A Lightweight Distributed Ledger for Internet of Things Devices in Smart Cities. In
Proceedings of the 2019 IEEE International Smart Cities Conference (ISC2), Casablanca, Morocco, 14–17 October 2019; pp. 18–21.

https://www2.deloitte.com/content/dam/Deloitte/de/Documents/Innovation/IoT-powered-by-Blockchain-Deloitte.pdf
https://www2.deloitte.com/content/dam/Deloitte/de/Documents/Innovation/IoT-powered-by-Blockchain-Deloitte.pdf
https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-technology/
https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-technology/
https://doi.org/10.6028/NIST.IR.8259C-draft
https://www.ericsson.com/en/reports-and-papers/nb-iot-and-lte-m-in-the-context-of-5g-industry-white-paper
https://www.ericsson.com/en/reports-and-papers/nb-iot-and-lte-m-in-the-context-of-5g-industry-white-paper
https://www.3gpp.org/news-events/1805-iot_r14
https://www.3gpp.org/news-events/1805-iot_r14
https://www.qualcomm.com/research/5g/5g-industrial-iot
https://www.qualcomm.com/research/5g/5g-industrial-iot
https://www.qualcomm.com/media/documents/files/fierce-wireless-ebrief-5g-release-16.pdf
https://www.qualcomm.com/media/documents/files/fierce-wireless-ebrief-5g-release-16.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://www.nber.org/papers/w22952
https://bit.ly/3fHcOYS
https://bit.ly/344omjI
https://bit.ly/3oHEMaY
http://dx.doi.org/10.3390/electronics10040378
https://cryptoslate.com/cryptos/iot/
https://www.arm.com/-/media/global/solutions/infrastructure/managing-the-future-of-cellular.pdf
https://www.arm.com/-/media/global/solutions/infrastructure/managing-the-future-of-cellular.pdf
https://www.statista.com/statistics/1027246/5g-smartphone-shipment-share-worldwide/
https://cdn.ihs.com/www/pdf/IHS-Technology-5G-Economic-Impact-Study.pdf
https://cdn.ihs.com/www/pdf/IHS-Technology-5G-Economic-Impact-Study.pdf
http://dx.doi.org/10.1109/MNET.2015.7064895
http://dx.doi.org/10.3390/electronics10050580
https://www.iota.org/solutions/industries
https://iotex.io/
http://dx.doi.org/10.1109/MCE.2019.2953734
http://dx.doi.org/10.1016/j.ymssp.2019.106382
http://dx.doi.org/10.3390/su12103984


Electronics 2021, 10, 2282 20 of 20

43. Newman, M.E.J. The Connected World. 2011-09-15. Santa Fe Institute. Available online: https://www.youtube.com/watch?v=
yAtsm5xkb5c (accessed on 21 December 2021).

44. Newman, M.E.J. Using Networks To Make Predictions. 2011-09-15. Santa Fe Institute. Available online: https://www.youtube.
com/watch?v=rwA-y-XwjuU (accessed on 21 December 2021).

45. Newman, M.E.J. What Networks Can Tell Us About the World. 2011-09-15. Santa Fe Institute. Available online: https:
//www.youtube.com/watch?v=lETt7IcDWLI (accessed on 21 December 2021).

46. Chapela, V.; Criado, R.; Moral, M.; Romance, R. Intentional Risk Management through Complex Networks Analysis; Springer:
Berlin/Heidelberg, Germany, 2015.

47. Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D. Complex Networks: Structure and Dynamics. Phys. Rep. 2006,
175–308. [CrossRef]

48. Boccaletti, S.; Buldú, J.; Criado, R.; Flores, J.; Latora, V.; Pello, J.; Romance, M. Multiscale Vulnerability of Complex Networks.
Chaos Interdiscip. J. Nonlinear Sci. 2007, 175–308. [CrossRef] [PubMed]

49. Guo, D.; Dong, J.; Wang, K. Graph structure and statistical properties of Ethereum transaction relationships. Inf. Sci. 2019, 492,
58–71. [CrossRef]

50. Ali, A.H.; Hassan, A.; Nasir, A.M. The relationship between trading volume, volatility and stock market returns: A test of mixed
distribution hypothesis for a pre-and post crisis on Kuala Lumpur Stock Exchange. Invest. Manag. Financ. Innov. 2005, 2, 146–158.

51. Yamak, N.; Yamak, R.; Samut, S. Causal relationship between bitcoin price volatility and trading volume: Rolling window
approach. Financ. Stud. 2019, 23, 6–20.

52. Guizani, S.; Nafti, I.K. The Determinants of Bitcoin Price Volatility: An Investigation with ARDL Model. Procedia Comput. Sci.
2019, 164, 233–238. [CrossRef]

53. Luque, B.; Lacasa, L.; Ballesteros, F.; Luque, J. Horizontal visibility graphs: Exact results for random time series. Phys. Rev. E 2009,
80, 046103. [CrossRef] [PubMed]

54. Liu, K.; Weng, T.; Gu, C.; Yang, H. Visibility graph analysis of Bitcoin price series. Phys. A Stat. Mech. Its Appl. 2020, 538, 122952.
[CrossRef]

55. Alstott, J.; Bullmore, E.; Plenz, D. Powerlaw: A Python Package for Analysis of Heavy-Tailed Distributions. PLoS ONE 2014,
9, e85777. [CrossRef]

56. Andina, D.; Partida, A. IT Security Management: IT Securiteers—Setting Up an IT Security Function; Lecture Notes in Electrical
Engineering; Springer: Berlin/Heidelberg, Germany, 2010.

57. IOTA Blockchain Explorer. Available online: https://explorer.iota.org/mainnet (accessed on 30 July 2021).
58. IoTeX Blockchain Explorer. Available online: https://iotexscan.io/ (accessed on 29 July 2021).
59. Investing.com IOTA Index (IOT/USD). IOT Crypto Coin Market Value. Available online: https://www.investing.com/indices/

investing.com-iota-usd-historical-data (accessed on 24 July 2021).
60. Investing.com IoTeX Index (IOTX/USD). IoTeX Crypto Coin Market Value. Available online: https://www.investing.com/

indices/investing.com-iotx-usd-historical-data (accessed on 24 July 2021).
61. Visibility-Graph 0.4.1 by Rodrigo Garcia. 2 February 2021. Available online: https://pypi.org/project/visibility-graph/ (accessed

on 29 July 2021).
62. Visibility_Algorithms.py by Delia Fano Yela. December 2018. Available online: https://github.com/delialia/bst/blob/master/

visibility_algorithms.py (accessed on 29 July 2021).
63. Networkx 2.6.2. Network Analysis in Python. Last Release in 2021. Available online: https://networkx.org/ (accessed on

30 July 2021).
64. Metaknowledge 3.4.1. Computational Research in Network Analysis. NetLab. University of Waterloo. 2020. Available online:

https://pypi.org/project/metaknowledge/ (accessed on 30 July 2021).
65. Scipy.Optimize.Curve_Fit. Available online: https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.

html (accessed on 29 July 2021).
66. Community API. This Package Implements Community Detection. Package Name Is Community but Refer to Python-Louvain

on Pypi. 2008. Available online: https://python-louvain.readthedocs.io/en/latest/api.html (accessed on 29 July 2021).
67. Cylouvain: Cython Louvain. Cylouvain is a Python Module that Provides a Fast Implementation of the Classic Louvain Algorithm

for Node Clustering in Graph. 2018. Available online: https://github.com/ahollocou/cylouvain (accessed on 29 July 2021).
68. Que, X.; Checconi, F.; Petrini, F.; Gunnels, J.A. Scalable community detection with the Louvain algorithm. In Proceedings of the

2015 IEEE International Parallel and Distributed Processing Symposium, Hyderabad, India, 25–29 May 2015; pp. 28–37.
69. IOTA Tangle Explorer. Available online: https://thetangle.org/ (accessed on 30 July 2021).
70. Coinmarketcap. Cryptocurrencies Market Capitalisation in Real Time. Available online: https://coinmarketcap.com/all/views/

all/ (accessed on 31 July 2021).

https://www.youtube.com/watch?v=yAtsm5xkb5c
https://www.youtube.com/watch?v=yAtsm5xkb5c
https://www.youtube.com/watch?v=rwA-y-XwjuU
https://www.youtube.com/watch?v=rwA-y-XwjuU
https://www.youtube.com/watch?v=lETt7IcDWLI
https://www.youtube.com/watch?v=lETt7IcDWLI
http://dx.doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1063/1.2801687
http://www.ncbi.nlm.nih.gov/pubmed/18163774
http://dx.doi.org/10.1016/j.ins.2019.04.013
http://dx.doi.org/10.1016/j.procs.2019.12.177
http://dx.doi.org/10.1103/PhysRevE.80.046103
http://www.ncbi.nlm.nih.gov/pubmed/19905386
http://dx.doi.org/10.1016/j.physa.2019.122952
http://dx.doi.org/10.1371/journal.pone.0085777
https://explorer.iota.org/mainnet
https://iotexscan.io/
https://www.investing.com/indices/investing.com-iota-usd-historical-data
https://www.investing.com/indices/investing.com-iota-usd-historical-data
https://www.investing.com/indices/investing.com-iotx-usd-historical-data
https://www.investing.com/indices/investing.com-iotx-usd-historical-data
https://pypi.org/project/visibility-graph/
https://github.com/delialia/bst/blob/master/visibility_algorithms.py
https://github.com/delialia/bst/blob/master/visibility_algorithms.py
https://networkx.org/
https://pypi.org/project/metaknowledge/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://python-louvain.readthedocs.io/en/latest/api.html
https://github.com/ahollocou/cylouvain
https://thetangle.org/
https://coinmarketcap.com/all/views/all/
https://coinmarketcap.com/all/views/all/

	Introduction
	Foundations of This Study: From Time Series to Complex Networks
	The Value Proposition of 5G
	Mobile Networks
	5G: Higher Speed and Lower Latency

	Internet of Things
	Blockchain
	Structure of the Paper

	Related Works
	5G Services and Their Economic Value
	5G as Optimal Communication Channel for IoT

	Blockchain or Directed Acyclic Graph-Based IoT Platforms
	IOTA
	IoTeX
	Blockchain as Additional Security Value in 5G-Enabled IoT Networks

	Complex Networks
	Volatility as a Proxy Measure
	Visibility Graphs
	Power Laws
	Intentional Risk

	Methodology and Implementation
	A Complex Network from a Visibility Graph
	Price Volatility Data Collection
	Creation of the Natural Visibility Graph
	Creation of the Horizontal Visibility Graph
	Complex Network Analysis of the IOTA and IoTeX VG and HVG
	Curve_Fit
	Power Law Fit Using the Powerlaw Module by Alstott et al.

	Average of Clustering Coefficients per Degree and Fit
	Communities in the Network
	Link with Intentional Risk and Application to 5G

	Analysis and Results
	The Visibility Graph Creates Four Networks
	Power Law Fit Using Curve_Fit
	Power Law Fit Using the Powerlaw Module by Alstott
	Communities Formation Criteria within the Networks
	Communities Identified in the IOTA and IoTeX Networks

	Conclusions
	Visibility Graphs Are a Helpful Tool to Leverage Time Series with Network Analysis
	IOTA and IoTeX Markets Are Still at Their Infancy in Terms of Development—IoTex Appears to Develop Faster
	IOTA and IoTeX Visibility Networks form Communities in a Hierarchical Structure
	5G Can Accelerate IOTA and IoTeX Development
	Intentional Risk: A Lever to Understand the Impact of 5G on IOTA and IoTeX
	5G Can Improve Information Security in IOTA and IoTeX

	Future Work
	References

