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Abstract: With the prevalence of online video-sharing platforms increasing in recent years, many
people have started to create their own videos and upload them onto the Internet. In filmmaking,
background music is also one of the major elements besides the footage. With matching background
music, a video can not only convey information, but also immerse the viewers in the setting of a
story. There is often not only one piece of background music, but several, which is why audio editing
and music production software are required. However, music editing is a professional expertise, and
it can be hard for amateur creators to compose ideal pieces for the video. At the same time, there
are some online audio libraries and music archives for sharing audio/music samples. For beginners,
one possible way to compose background music for a video is “arranging and integrating samples”,
rather than making music from scratch. As a result, this leads to a problem. There might be some
gaps between samples, in which we have to generate transitions to fill the gaps. In our research, we
build a transformer-based model for generating a music transition to bridge two prepared music
clips. We design and perform experiments to demonstrate that our results are promising. The results
are also analysed by using a questionnaire to reveal a positive response from listeners, supporting
that our generated transitions conform to background music.

Keywords: music transition; transformer; deep learning

1. Introduction

In the past, people used cameras and camcorders to take pictures of things in our
lives. Nowadays, along with the advances in technology, mobile devices have become
more prevalent, and many people use smartphones instead of cameras and camcorders to
keep records of details in lives. These recorded images can not only be put on Facebook, In-
stagram, and other social media platforms, but can also be made into videos and uploaded
to YouTube and other video sharing sites for people to share their daily lives with others.

In the face of the current trend of photography and video creation, much video editing
software is available on the market for editing video materials, such as PowerDirector,
iMovie, and Quik, which allows users to produce a video in a short time through simple
operations. During production, not only do we need the filmed materials, we also need
suitable background music. Many Internet platforms offer free soundtracks, but most of
them are monotonous and repetitive. If we want the music to match the changing plots of
a film, we need to select multiple pieces of music and edit them ourselves. However, music
editing requires domain knowledge, which is a challenge for amateurs and the general
public to produce materials that meet professional levels.

With the rise of Artificial Intelligence (AI) in recent years, people have easy access to
professional knowledge and technology in music creation. Some companies and scholars
have developed AI-based algorithms for automatic composition in which they are able to
customize their music according to the user-specified musical styles, lengths, and beats.
Examples can be found on platforms such as Jukedeck and AIVA. Some others leverage
a small piece of user-given music to enable AI-based algorithms to generate subsequent
parts, such as Music Transformer and MuseNet. Our project (sponsored by the Ministry
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of Science and Technology, Taiwan, under Contract No. MOST-108-2221-E-030-013-MY2)
makes use of transformer-based algorithms to build a score generation system for short
videos that allow the public to easily create their own video background music.

1.1. Research Background

In our MOST Project (MOST-108-2221-E-030-013-MY2), we design a soundtrack gen-
eration system for a short video. The proposed system consists of two main parts: video
analysis and soundtrack generation.

In the video analysis, the video provided by the user undergoes several image analyses,
and the features are extracted for subsequent soundtrack generation as shown in Figure 1.

Figure 1. Video analysis framework.

At the beginning of the process (¬ in Figure 1), the system divides the user-given
video into multiple shots by shot detection approaches, then finds the key frame ( in
Figure 1) from the segmented shots, such as KF1, KF2, and KF3. From these key frames,
the system finds the corresponding tags (® in Figure 1), which consist of descriptive words,
such as “style”, “tone”, “emotion”, “feeling”, etc. (e.g., Tag1 and Tag2 in Figure 1). Image
analysis technology is also used to formulate the pattern for editing, which makes the
event tags (e.g., Event 1 and Event 3 in Figure 1). Users can also add other tags during
the process as they wish. Examples are tags for “playing the music of a specific theme
at the time point of T1” (e.g., ‘Theme’ in Figure 1) or tags for “maintaining silence at the
time point of T5” (e.g., ‘Silent’ in Figure 1) After video analysis, the system will retrieve
all the tags and organize them as a sequence of tags associated with time stamps, where
the element of each sequence is composed of time stamps and tag sets (Tn, {tag, . . . }). The
following is an example of a sequence of tags:

Video → {(T1, {Tag1, Tag2, Theme}), (T2, {Event1}), . . . , (T8, {Theme})}

In soundtrack generation, the matching music clips are selected from the pool, and
these clips are combined into a complete soundtrack to go with a short video for the user.
The process is shown in Figure 2.

In this system, we build a music pool, and each music segment in the pool will be
analysed beforehand to associate with a series of related tags. The corresponding tags and
music clips will be maintained in the pool for later use in soundtrack generation.

At the beginning of soundtrack generation (¯ in Figure 2), we perform the “match
process” from the pool based on the tag sequences recorded by the video analysis and find
candidates of music segments to be arranged on the timeline according to the time stamps
in the sequences. Next, music fusion (° in Figure 2) is conducted using these candidate
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segments. The fusion steps include “resolving conflicts between candidate segments” (e.g.,
MS 2 v.s. MS 4 and MS 5 v.s. MS 3 in Figure 2) and “creating music transition” (e.g., MS 1
vs. MS 2 and MS 3 vs. MS 7 in Figure 2). Lastly, we add the fused single-track score with
chord and orchestration, coupled with arrangement and audio mixing (± in Figure 2) to
make a multi-track score that completes the whole short-video soundtrack.

Figure 2. Music generation framework.

1.2. Research Objectives

In this paper, we focus on the “create music transition” process in the framework
through the use of AI algorithms. Given two music segments, say MS 1 and MS 2, in the
symbolic sequences, we design a transformer-based model to generate a music transition
sequence to bridge MS 1 and MS 2.

2. Related Work

In this section, we introduce the related research topics, including MIDI commu-
nications protocol, automatic composition algorithms, and the transformer deep learn-
ing model.

2.1. MIDI

The Musical Instrument Digital Interface (MIDI) is a technical standard for electronic
communications protocol that allows electronic instruments and computers to coordinate
the playing of music through codes. MIDI files are composed of a header chunk followed
by one or more track chunks. The header chunk records the basic data of the entire file,
while the track chunk records the data of the music played through three types of events,
including the MIDI event, sysex event, and meta event. In the MIDI event, there are seven
functions to control the sound playback to correspond to the movement of the instrument
as shown in Table 1.

Table 1. MIDI event functions.

Type Function

Note on triggering note playback
Note off stopping note playback
Polyphonic key pressure controlling pressure of each played note
Control change changing controller settings
Program change switching tones used in the channel
Channel aftertouch controlling pressure of each played note in specified channels
Pitch wheel change changing pitch wheel
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2.2. Automatic Composition

In Fernández’s paper [1], algorithms for automatic music composition are categorized
into four main groups, Symbolic AI (grammars and rule-based systems), Machine Learning
(Markov Chains and Artificial Neural Networks), Optimization Techniques (Evolutionary
Algorithms), and Complex Systems (self-similarity and cellular automaton), as shown in
Figure 3.

Symbolic AI applies music syntax to generate music. In earlier days, music syntax
was obtained by humans from music theory or existing scores, and after the 1980s, some
proposed computational approaches to extract music syntax. After obtaining the rules
of syntax, it is possible to automatically generate music through algorithms such as the
L-system [2–5] or Evolutionary Algorithms [6–9], and also to build a rule-based system [10]
for generating music. Machine learning uses extensive existing music data to learn music
with algorithms, such as Markov Chains [11–13] or Artificial Neural Networks [14–16],
which has been popular in recent years. Evolutionary Algorithms are often used in Opti-
mization Techniques where the fitness function selects the best candidate among many after
several generations of cycles. The fitness function in Evolutionary Algorithms can conduct
automatic determination using rule-based methods, artificial neural networks [17,18] or
interactive filtering based on feedback from the test subjects [19,20]. In Complex Systems,
it was found that the sound signal composed of Pink noise (1/ f noise) sounded better as
in musical syntax. Researchers used the self-similarity to generate music [15], and some
others created music through Cellular Automaton (CA) [21,22].

Figure 3. Categories of algorithms for automatic composition.

2.3. Transformer

Transformer is a deep learning algorithm proposed in Vaswani’s paper [23] for text
translation, and has been widely used in natural language processing (NLP) in recent years.

The Transformer is formed by an encoder–decoder architecture and uses the self-
attention mechanism in the model. Figure 4 illustrates the Transformer model. When
the input sequence is first entered into the Transformer, it goes through an embedding
layer, which transforms each one-hot token in the input sequence into vectors of other
dimensions. The converted input sequence is then processed with position encoding before
entering the Encoder or Decoder. In this way, the position difference among tokens can
be identified in the input sequence when self-attention is carried out. After this, the input
sequence enters the Encoder or Decoder for computation.
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Figure 4. An illustration of transformer model.

The Encoder (as shown in Figure 5) consists of two sub-layers, the multi-head attention
layer and the position-wise feed-forward layer, where the multi-head attention is the main
part in which the Transformer carries out self-attention computing. Upon entering the
multi-head attention layer, the input sequence is linearly transformed into multiple sets
of queries (Qh for Query, Qh = WQ

h X), keys (Kh for Key, Kh = WK
h X), and values (Vh for

Value, Vh = WV
h X) based on the number of heads. Each group of Qh, Kh, and Vh computes

the attention between each token via scaled dot-product attention. The equation for the
scaled dot-product attention computing is as follows:

Ah = Softmax(
QhKT

h√
d

)Vh (1)

The Ah is the result from the scaled dot-product attention computing, and d is the
dimension size of Qh, Kh, and Vh (to avoid large variance generated by Qh and Kh dot-
product computing, d is used for scaling the result of dot-product computing). After
computing, multiple sets of results, A1, A2, . . . , Ah, will be concatenated, and the final
output from the multi-head attention layer will be calculated via a linear transformation.
The Decoder (as shown in Figure 5), consists of three sub-layers, the masked multi-head
attention layer, multi-head attention layer, and position-wise feed-forward layer. The
masked multi-head attention layer, which does not exist in the Encoder, features masking
that prevents the Decoder from viewing the tokens in advance during training. Therefore,
the token after the predicted target is masked, as shown in Mask (Opt.) in Figure 6.
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Figure 5. Encoder and Decoder in the Transformer.

Figure 6. Multi-head Attention [24].

In the Encoder and Decoder, the position-wise feed forward layer is composed of
two feed-forward layers, which are connected after the multi-head attention layer. The
sub-layers of the Encoder and the Decoder are connected using layer normalization and
residual connection. The experimental analysis of Vaswani [23] found that the training
speed of the Transformer is faster than that of recurrent layer and convolution layer, and the
hidden layer in the Transformer can retain more information with the help of self-attention
computing, which makes the training result from the Transformer much better than that
from the RNN.

In addition to the Transformer [23], this model has been applied in various fields. In
music, for instance, Huang [25] proposed a Music Transformer, which uses a specified music
sequence to generate subsequent music sequences. In text generation, Dai [26] proposed
Transformer-XL, which can break the length limit of the Transformer [23] to generate longer
texts. In terms of image generation, Child [27] proposed Sparse Transformers, which allow
Transformers to process 2D data in addition to 1D data and adjust the attention mechanism
to reduce the volume of model parameters for computation.

In reference to Figure 3, there are some possible approaches to developing specific
methods of generating music transitions, such as a rule-based system, evolutionary algo-
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rithms, and machine-learning-based algorithms. When applying a rule-based system or
evolutionary algorithms, we need domain expertise of music theory to construct rules or
fitness functions. However, machine-learning-based algorithms would be data-driven, in
which limited domain expertise is involved. Meanwhile, the transformer is a promising
method for sequence generation. We believe that the machine-learning-based methods,
including our approach, could be more friendly to beginners and be easily applied for
rapid development in the early stage. Certainly, in the following stages, domain expertise
should be always appreciated and involved to polish and refine our method to achieve
more pleasant/delightful/attractive music transition sequences.

3. Method

In this section, we introduce the data processing and model construction used in the
study. Figure 7 illustrates our framework of proposed methodology. The upper part of the
framework is designed for the training and validation process to build the Transformer-
based model. After finishing model construction, in the test phase, the input data are
two music segments, namely preceding data and following data; the output data is music
transition sequence (MTS) to bridge the two user-given segments.

Figure 7. The proposed framework.

3.1. Data Pre-Processing

This section explains the music data representation method which converts music
MIDI files into the specific data formats, and then properly organizes them as a training
dataset for model construction.

3.1.1. REMI

In this paper, the REMI representation proposed by Huang [28] is used to convert
music MIDI files into the REMI-defined data format. Before the REMI representation
was made public, most of the recent studies used the MIDI-like event representation
proposed by Oore [29], which converts musical MIDI files into a data format compatible
with the MIDI-like event representation to train models. The MIDI-like event representation
converts the MIDI events in the MIDI file into 4 corresponding token events, which are,
respectively, Note-On (trigger note play), Note-Off (end note play), Note Velocity (note
play force), and Time-Shift (time difference between token events).

Huang’s study [28] found several features of MIDI-like event representations; for
example: MIDI-like event representations convert music MIDI files in a way that features
faithful representation of keyboard-style music (e.g., piano music). In this way, the con-
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verted data lack the high-level musical information such as Downbeat, Chord, and Tempo
presented in the score. Huang [28] also mentioned in their paper that “We note that when
humans compose music, we tend to organize regularly recurring patterns and accents over
a metrical structure defined in terms of sub-beats, beats, and bars.” [28] (p. 2), therefore
they proposed REMI to resolve the issues of MIDI-like event representations.

In reference to Table 2, REMI representation retains the original MIDI-like event
representation’s Note-On and Note Velocity, and adds token events that include Note
Duration, Position & Bar, Tempo, and Chord. The newly-added Note Duration replaces
Note-off in the MIDI-like event representation. In the MIDI-like event representation, the
playing of a note is based on its Note-on, Note-off, and the Time-Shift accumulated in
between, which often contains many other token events between Note-On and Note-Off
(in Huang’s practice [28], there is an average of 21.7± 15.3 token events in between). REMI
representation only needs to use Note-On and the adjacent Note Duration to determine a
note’s beginning and ending for a model in training to easily learn this feature. REMI rep-
resentation replaces Time Shift in the MIDI-like event representation with the newly added
Position & Bar. Time-Shift in MIDI-like event representation marks the time difference
between token events. Huang’s study found that training models could not use Time-Shift
to generate music with a steady beat, and Huang attributed this to the lack of metrical
structure in MIDI-like event representation. Therefore, in REMI representation, Position
& Bar is used to represent token events’ absolute positions on the score. In subsequent
experiments, they also found that the models could easily learn the dependency of note
events on the same Position through Position & Bar. Lastly, REMI’s newly added Tempo
and Chord supplement higher-level musical data which MIDI-like event representation
lacks. In reference to Figure 8, we illustrate an example of REMI representation.

Table 2. Comparison between MIDI-like and REMI representations.

Token Event MIDI-Like [29] REMI [28]

Note onset
Note-On
(0–127)

Note-On
(0–127)

Note offset
Note-Off
(0–127)

Note Duration
(32th note multiples; 1–64)

Time grid
Time-Shift
(10–1000 ms)

Position (16 bins; 1–16) & Bar

Tempo changes N/A
Tempo
(30–209 BPM, beats per measure)

Chord N/A
Chord
(60 types)

Figure 8. An example of REMI representation.
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3.1.2. Data Processing

The goal of this study is to generate a musical transition sequence (MTS), in which
the generated MTS must refer to its preceding music sequence and the following one. The
preceding music sequence and the following music sequence are the input for the training
models, with their output as MTSs. In data processing, the music MIDI files are converted
into REMI format and segmented into units every n number of tokens. In this paper, the
value of n is set to 256 (based on NVIDIA GeForce RTX 2080, the equipment used in this
experiment). In the experiment, every three consecutive units form one sample of training
input and the corresponding output data. In reference to Figure 9, the sliding window
is designed to cover three units, and the window moves one unit forward at a time to
generate the next sample for the training.

Figure 9. Data processing of training samples for model construction.

3.2. Deep Learning Framework

In this paper, we use a transformer-based model to generate music transition sequences
(MTS). A preceding music sequence and a following music sequence are used as the input
to generate an MTS that bridges the two musical sequences. In recent years, Vaswani [23]
proposed the transformer deep learning model, which not only received good results
in NLP, but also is widely applied in other fields. In the music field, Huang [25] also
successfully used music transformers to generate subsequent music sequences with a small
segment of sequence. In this study, we also applied a transformer-based model to solve the
challenges when it comes to MTS.

The structure of the model referred to the Encoder–Decoder structure used by Vaswani [23]
in the transformer learning model. Since the goal of this paper is to generate an MTS be-
tween two music segments of sequences, our framework, consisting of two encoders and
one decoder, is applied to build the transformer-based model, as shown in Figure 10.

Figure 10. Encoder–Decoder framework.

By using two encoders to capture key information from the preceding music sequence
and the following one, the decoder might generate the suitable/appropriate MTS with
reference to the features from the two music sequences.
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In our model, we also make use of the positional encoding used in Transformer-
XL [26], which is different from the one used in the Transformer [23]. In the Transformer,
positional encoding is applied to enhance the positional information between tokens, so
that the input sequence can recognize the positional difference between tokens when
performing self-attention computation. Sinusoid values of different frequencies are applied
to the input sequence, which can be seen as an implant of absolute positional information
into the input sequence. After Shaw’s [30] paper was published, subsequent studies of
transformers [25,26] started to employ relative positional encoding in the models. In the
study [25,26], the training error of using relative positional encoding is smaller than that
of using absolute positional encoding. As a result, in this paper, we also employ relative
positional encoding in the transformer-based model used in the experiment.

In the transformer-based model in this paper, the encoder is the same as that used in
Transformer [23], which consists of a multi-head attention layer and position-wise feed-
forward layer, and these layers are connected through layer normalization and residual
connection. The decoder, on the other hand, adopts the one from the Transformer for
adjustment. As shown in the Decoder part in Figure 11, the sub-layer at the bottom
adopts the masked multi-head attention layer from the Transformer [23], and after it, two
consecutive multi-head attention layers are used. One of them is responsible for receiving
the encoder information from the preceding music sequence of the MTS, and the other for
the one from the following music sequence. Lastly, the results from the two multi-head
attention layers are concatenated to go through a feed-forward layer. In the Decoder part,
(masked) multi-head attention layers are connected to each other using layer normalization
and residual connection. Only the concatenated feed-forward layer in the end of the process
is connected to the masked multi-head attention layer in the beginning using the residual
connection. Figure 12 shows our framework of transformer-based model.

Figure 11. Encoder and decoder.
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Figure 12. Transformer-based model.

3.3. Sampling

In the framework, the trained transformer-based model can be used to only predict
the probability of the next token. To generate a sequence consisting of tokens, we apply the
temperature-controlled stochastic sampling method with top-k [31] to determine consecu-
tive tokens. As shown in Figure 13, the token probabilities predicted by the model undergo
temperature sampling, before top-k is used for the selection of the next token.

Figure 13. Temperature-controlled stochastic sampling method with top-k.
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3.4. Loss Function

In our framework, KL divergence defined in Equation (2) is used as the loss function.
When processing data, the prediction target is converted into one-hot encoding. Therefore,
when training the model, the output is the probability of each class. Thus, this paper uses
KL divergence to measure the degree of difference between two independent probability
distributions with the following equation:

DKL(T||P) = −Ex∼T [ln P(x)− ln T(x)] = −∑
x

T(x) ln
P(x)
T(x) (2)

T(x) is the probability distribution of the predicted target, and P(x) is that of the
model output. By calculating the KL divergence, we can obtain the decreased expected
value that has changed from the probability distribution of the predicted target to that of
the model output, which can be used to adjust the model parameters and improve the
accuracy of the training model.

3.5. Optimizer

This section describes the optimizer used in the model training process.

3.5.1. Adam Optimizer

The training process uses the Adaptive Moment Estimation (Adam) as the optimizer
in the experiment. Adam is one of the commonly used optimizers in deep-learning models,
combining the advantages of momentum and RMSprop, as shown in the following equation:

mt = β1mt−1 + (1− β1)gt (3a)

vt = β2vt−1 + (1− β2)g2
t (3b)

m̂t =
mt

1− βt
1

(3c)

v̂t =
vt

1− βt
2

(3d)

xt+1 = xt − γ√
v̂t + ε

m̂t (3e)

In the equation, mt serves similar purposes as momentum, which is used to adjust the
amount of corrections made to the model. The vt , on the other hand, works as RMSprop,
which is used to adjust the learning rate in a dynamic approach in the optimizer according
to the gradient of loss in the model. β1 and β2 in the equation are the degrees of decline of
mt and vt, and gt is the gradient of loss in the training model. Equation (3c) and (3d) are
used to keep mt and vt from leaning toward 0 in the early stages of model training, which
would lead to excessive model correction and scattered training results. ε in Equation (3e)
is a parameter that keeps the denominator from being 0, while γ is the learning rate set
by Adam.

In this paper, the Adam parameters are set as β1 = 0.9, β2 = 0.98, γ = 0, ε = 10−9.

3.5.2. Warmup

Vaswani [23] found in the course of the experiment that the model gradient changes
greatly in the transformer’s early stages of training, which may cause Adam to update too
many of the model parameters in the early stages of training, possibly resulting in scattered
training results. For this reason, Vaswani used warmups to assist Adam when training the
transformer. When using warmups, there are warmup steps; when the number of training
sessions is smaller than that of the warmup steps, the learning rate of training will be
increased gradually with reference to the equation, to a point when the number of training
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sessions is larger than that of the warmup steps, before the learning rate is gradually dialed
down, as shown in Figure 14. The equation for warmup steps is as follows:

lrate = d−0.5
model ·min(step_num−0.5, step_num · warmup_steps−1.5) (4)

lrate is the learning rate used by the optimizer, and dmodel is the dimension size set
by the transformer in the embedding layer. step_num stands for the number of epochs
during the training, and warmup_steps is the value set for warmup steps. Vaswani [23]
used warmups to avoid scattered training results in the early stages using a transformer, as
well as to minimize the gradient of loss.

Figure 14. Warmup (learning rate initially set to 0, with warmup step at 4000 for the blue line and
8000 for the orange).

3.6. Regularization

This section explains the regularization used to improve the result accuracy from the
training model.

3.6.1. Label Smoothing

Label smoothing is used during model training to reach a prediction target with
soft one-hot encoding, so that the output of the model can be adjusted to the prediction
target. Label smoothing prevents the model from generating over-confident results, and
the equation of adopting label smoothing is as follows:

yLS
c = yc(1− α) +

α

C
(5)

yc is the value of the predicted target for the c-th class, and α is the parameter for the
smoothing. When α equals 0, we have the value of the original prediction target, while
when α equals to 1, the distribution of the prediction target will be uniform.

Label smoothing first appeared in Szegedy’s paper [32], and although label smoothing
raises the uncertainty for the model and reduces the accuracy during training, it improves
the accuracy during validation. Vaswani’s paper [23] used label smoothing to raise their
scores in BLEU. Note that BLEU (bilingual evaluation understudy score) is a metric for
evaluating the quality of text which has been machine-translated from one natural language
to another. BLEU indicates how similar the candidate text is to the reference text, with
values closer to one representing more similar texts [33]. This paper refers to the label
smoothing used in Vaswani’s paper [23] and sets the value of parameter α as 0.1 to improve
the accuracy during validation. This also allows the model to obtain better results when
using the temperature-controlled stochastic sampling method with top-k [31].

3.6.2. Dropout

One of the challenges in machine learning training process is over-fitting. In past
research, some used model combination as a solution, but this method requires several
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different models for training, and the large amount of training data as well as computational
costs make it even more difficult to be adopted. In 2014, Hinton [34] proposed Dropout,
a training method similar to model combination. Dropout rules out some units in the
neural network and trains the model with a new thinned neural network instead. The
loss resulting from the thinned neural network during the training will be updated by
back-propagation to generate a modified thinned neural network. After the update, the
model retrieves the units that have been removed earlier to restore the original neural
network. The above process will be repeated until the training is finished. The following is
the equation of the neural network before Dropout is adopted:

z(l+1)
i = w(l+1)

i yl + b(l+1)
i (6a)

y(l+1)
i = f (z(l+1)

i ) (6b)

After Dropout is adopted:

rl
j ∼ Bernoulli(p) (7a)

ŷ(l) = rl ∗ y(l) (7b)

z(l+1)
i = w(l+1)

i ŷl + b(l+1)
i (7c)

y(l+1)
i = f (z(l+1)

i ) (7d)

l is the position of neural network hidden layers; zi
(l) is the output of the i-th unit of

Layer l; f is any activation function; y(l)i is the output of the i-th unit of Layer l after going

through the activation function f . b(l)i and w(l)
i are the bias and weight of the i-th unit

of Layer l, and r(l)j is the vector from Bernoulli random variables which generates 1 with
probability p.

Using Dropout in a neural network is like sampling multiple thinned neural networks
from the original network. When there are n units in the neural network, we can sample 2n

kinds of thinned neural networks. That is, when training a neural network using Dropout,
it can be seen as training a thinned neural network with 2n kinds of sets, just like the
model combination explained above. In this paper, Dropout is used in the model, and the
probability of Dropout is set to 0.1.

4. Experiment

In this section, we introduce the data source and evaluation in our experiments.

4.1. Data Source

We have two datasets, namely pop music and classical music. In our experiment, we
train two different model using the two datasets separately. The dataset used for pop music
is the training dataset provided by Huang [28], which contains 775 pieces, including MIDI
files of Western pop, Korean pop music, and music from Japanese anime. The dataset used
for classical music is the recorded MIDI files of 290 pieces played by the contestants in the
Piano-e-Competition in 2018. Before the deep learning model was trained, the datasets
of each music style were divided into 80/10/10, which represent 80% training data, 10%
validation data, and 10% test data.

4.2. Evaluation

In the experiments, we trained two sets of model parameters (stack for six layers;
stack for three layers) separately on the pop and classical music datasets. At the end
of the training, we compared the results by verifying the KL Divergence loss from the
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datasets, and the results are shown in the tables below. In the results for the two styles, the
divergence loss in the model with a stack for six layers is the minimum. Table 3 shows the
experimental results with the pop dataset, and Table 4 the classical dataset.

Table 3. Results with popular music dataset.

POP Music (Validating Data) KL Divergence Loss

Transformer-based model (stack for six layers) 0.00323
Transformer-based model (stack for three layers) 0.00416

Table 4. Results with classical music dataset.

Classical Music (Validating Data) KL Divergence Loss

Transformer-based model (stack for six layers) 0.00371
Transformer-based model (stack for three layers) 0.00437

4.3. Listening Test

In addition to the data analysis shown in Section 4.2, we also designed a listening test
to evaluate the results generated by the model. We came up with a total of 20 questions
in the listening test in the form of an online questionnaire, with ten questions each for
the pop and classical genres. Each test included a piece of music, paired with a question.
Before the test, the subjects were asked whether or not he/she is a music professional who
understands basic music theory and has played a musical instrument for more than six
years. At the beginning of the test, the subjects must first listen to the music before they
answered the 20 questions and reached the end of the listening test.

The folder (at https://reurl.cc/73XArb) contains all the twenty music clips in the lis-
tening test. In the folder, there are two subdirectories: “Pop Testing Music” and “Piano_e
Testing Music”. For each subdirectory, there are ten midi files, for instance, “Question
1(original).midi” and “Question 2(model).midi”. Regarding the file name, we further
explain with the following examples: “Question 1(original).midi” indicates that the
music is for question 1, and all the midi is cut from the original music file. “Question
2(model).midi” indicates that the music is for question 2, and part of the midi (i.e., the
music transition) is generated through our approach. Therefore, in our experiment, the
subject (listener) has no idea which midi file is from original music and which is generated
using our approach.

The music pieces in the test were sequences of 768 REMI token events, consisting of
ten sequential segments of 768 REMI token events randomly selected from both the pop
and classical musical style datasets. Five segments with 256 REMI token events in the
middle were replaced by 256 model-generated REMI token events, which were sampled
using the temperature-controlled stochastic sampling method with the top-k algorithm [31].
The other five segments of REMI token events remained the way they had been generated.
In the test, the subjects were asked to comment on the fluency of the music clips, based on
a scale from 1 to 5, with 5 being the most fluent and 1 the least, as shown in Figure 15.

In this test, we collected 26 subjects, four of whom are music professionals who know
basic music theory and have played musical instruments for more than six years, and the
rest are non-music professionals. In pop music, the model-generated clips scored 3.45 on
average and clips from original pieces scored 4.19; in classical music, the model-generated
clips scored 3.02 on average and clips from original pieces scored 3.55.

https://reurl.cc/73XArb
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Figure 15. The screenshot of the listening test. (The text in the interface is in Chinese. We provide the
English translation indicated with the box).

In the listening experiment, we use a boxplot to illustrate the distribution of the score
of each test. In reference to Figure 16, the test scores of original music clips are more
concentrated than those of the model-generated ones. In addition, only one or two model-
generated music clips are considered to be more fluent than most of original music clips.
Compared with original music clips, more than half of the model-generated music sounds
choppy and rough.

Figure 16. The boxplot of test scores.

5. Conclusions

This paper explores music transition, and the goal is to generate a music transition
sequence (MTS) that fills in the gaps between a preceding music sequence and a following
one so that they can be connected. In the experiment, both pop and classical music datasets
were used to train the Transformer-based model, where an assumption had been made that
the two music sequences (preceding ones and following ones) and the generated MTS all
consist of 256 REMI token events. Under this condition, the Transformer-based model was
trained using a total of 1000 epochs, and a comparison of the two sets of model parameters
(stack for six layers; stack for three layers) shows that the model with six layers has a
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slimmer validation dataset loss. In addition, this paper performed twenty questions in
the listening test. The music sequences in ten of the questions were existing music clips
(768 REMI token events), and the remaining ten questions consisted of model-generated
MTSs that had been used to replace those of existing music clips (replacing the middle
256 REMI token events of the original 768 ones with 256 events generated by the model).
The test results showed that although the existing music sequences scored higher on
average than the model-generated ones did, the average score of the model-generated
ones was above 3, which was not the worst. With improvement, it is believed that this
experiment can obtain comparable results in future studies.
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