
electronics

Article

An Efficient FPGA-Based Convolutional Neural Network for
Classification: Ad-MobileNet

Safa Bouguezzi 1,* , Hana Ben Fredj 1,† , Tarek Belabed 1,2,3,† , Carlos Valderrama 2 , Hassene Faiedh 4

and Chokri Souani 4

����������
�������

Citation: Bouguezzi, S.; Fredj, H.B.;

Belabed, T.; Valderrama, C.; Faiedh,

H.; Souani, C. An Efficient

FPGA-Based Convolutional Neural

Network for Classification:

Ad-MobileNet. Electronics 2021, 10,

2272. https://doi.org/10.3390/

electronics10182272

Academic Editor: Joo-Young Kim

Received: 31 July 2021

Accepted: 9 September 2021

Published: 16 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratoire de Microélectronique et Instrumentation, Faculté des Sciences de Monastir, Université de
Monastir, Monastir 5019, Tunisia; Ben.fredj.Hanaa@gmail.com (H.B.F.); tarek.belabed@umons.ac.be (T.B.)

2 Electronics and Microelectronics Unit (SEMi), University of Mons, 7000 Mons, Belgium;
carlos.valderrama@umons.ac.be

3 Ecole Nationale d’Ingénieurs de Sousse, Université de Sousse, Sousse 4000, Tunisia
4 Institut Supérieur des Sciences Appliquées et de Technologie de Sousse, Université de Sousse,

Sousse 4003, Tunisia; hassene.faiedh@gmail.com (H.F.); chokri.souani@gmail.com (C.S.)
* Correspondence: safa_bouguezzi@outlook.com
† These authors contributed equally to this work.

Abstract: Convolutional Neural Networks (CNN) continue to dominate research in the area of
hardware acceleration using Field Programmable Gate Arrays (FPGA), proving its effectiveness in
a variety of computer vision applications such as object segmentation, image classification, face
detection, and traffic signs recognition, among others. However, there are numerous constraints
for deploying CNNs on FPGA, including limited on-chip memory, CNN size, and configuration
parameters. This paper introduces Ad-MobileNet, an advanced CNN model inspired by the baseline
MobileNet model. The proposed model uses an Ad-depth engine, which is an improved version of
the depth-wise separable convolution unit. Moreover, we propose an FPGA-based implementation
model that supports the Mish, TanhExp, and ReLU activation functions. The experimental results
using the CIFAR-10 dataset show that our Ad-MobileNet has a classification accuracy of 88.76%
while requiring little computational hardware resources. Compared to state-of-the-art methods,
our proposed method has a fairly high recognition rate while using fewer computational hardware
resources. Indeed, the proposed model helps to reduce hardware resources by more than 41%
compared to that of the baseline model.

Keywords: FPGA; MobileNet; depthwise separable convolution; CNN; deep learning

1. Introduction

Convolutional neural networks (CNNs) are widely used in research areas, particularly
in computer vision applications such as facial recognition, image classification, weather
forecasting, and object detection. CNNs built in recent years have become deeper [1–8], as
is the trend in the research field. The deeper the CNN, the harder it is to implement as a
hardware accelerator on an FPGA-based embedded board, with comparable processing
speed and precision.

For a suitable FPGA-based deployment, shallow and lightweight CNN models, such as
MobileNet [9,10] and ShuffleNet [11] are good candidates. However, we are still concerned
about maintaining the highest possible precision and processing power. To address this
issue, we propose Ad-MobileNet, a network based on the standard MobileNet model that,
while minimizing the computational cost of hardware resources, achieves a significant
recognition rate that outperforms many leading FPGA-based implementations.

Ad-MobileNet differs from the baseline MobileNet model. Indeed, in this model, we
propose an Ad-depth unit, which replaces the traditional depthwise separable convolution.
This unit is better suited for hardware implementation because it offers improved accuracy

Electronics 2021, 10, 2272. https://doi.org/10.3390/electronics10182272 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-5107-7508
https://orcid.org/0000-0003-2667-6132
https://orcid.org/0000-0001-6356-0601
https://orcid.org/0000-0002-1693-6394
https://orcid.org/0000-0002-9033-7365
https://orcid.org/0000-0002-8987-3582
https://doi.org/10.3390/electronics10182272
https://doi.org/10.3390/electronics10182272
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10182272
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10182272?type=check_update&version=1


Electronics 2021, 10, 2272 2 of 22

without significantly affecting the computational cost of hardware resources. In addition,
as will be demonstrated later, some layers having a negligible negative impact on the
recognition rate have been removed to facilitate hardware implementation. Third, besides
accuracy, the choice of activation function also has an impact on performance. Simple acti-
vation functions, such as sigmoid [12,13], rectified linear unit (ReLU) [14], and Tanh [15,16],
are preferred for hardware implementation. However, to improve classification accuracy,
MobileNet relies on various alternative activation functions that tend to work better on
deep models. Therefore, we have also extended the supported activation function set with
ReLU [14], Tanh Exponential (TanhExp) [17,18], and Mish [19].

In this paper, we propose Ad-MobileNet, a hardware-accelerated version of MobileNet.
For this FPGA-based model, we decided to use the floating-point representation to preserve
the precision of the classification. However, the piecewise linear method (PWL) is used
to approximate nonlinear activations, thereby reducing the computational resources. The
remainder of this paper is organized as follows. Section 2 presents a state-of-the-art analysis
of the CNN implementations on FPGAs. Section 3 describes the MobileNet model and
the depthwise separable convolution unit. Then, in Section 4, we introduce the proposed
Ad-MobileNet model. Section 5 describes the development methodology and hardware
implementation of the CNN on an FPGA using the CIFAR-10 dataset as an example. We
also detail the activation functions ReLU, TanhExp, and Mish, as well as the piecewise
linear approximation (PWL) method. Section 6 presents the experimental results of the
hardware implementation while varying the activation function, followed by a performance
comparison with the state-of-the-art in Section 7. Section 8 concludes the paper.

2. Related Work

Convolution neural networks (CNNs) require intensive CPU operations and memory
bandwidth, which causes general CPUs to fail to achieve the desired performance levels.
Consequently, hardware accelerators based on application-specific integrated circuits
(ASICs) and field programmable gate arrays (FPGAs) have been employed to improve
the throughput of CNNs. Many studies have focused on FPGA-based CNN topologies to
improve processing performance. Indeed, FPGAs provide flexibility, high throughput, fine-
grain parallelism, and energy efficiency. However, implementing hardware-accelerated
CNNs at the edge is a complex task owing to limitations in memory resources, computing
power, and power consumption restrictions.

Many recent techniques have been used to improve the acceleration performance
of CNNs on FPGAs [20–22]. FPGAs can achieve a moderate performance with lower
power consumption. However, FPGAs have relatively limited memory and computing
resources. For this reason, several approaches focus on the trade-offs between precision,
processing power, and hardware resources when proposing building blocks for CNNs.
For example, in [23], the authors proposed a processing element (PE) in which the built-in
multiplier accumulator (MAC) was replaced by a Wallace Tree-based Multiplier. In [24],
the authors proposed an optimized memory access by combining FIFO and ping-pong
memory operations on a Xilinx ZCU102 device. In contrast, in [20], the authors proposed a
pipelined parallel architecture with a standard ReLU as an activation function to improve
the computational efficiency.

Numerous studies have been conducted at a coarse grain level to further enhance the
CNN inference speed. In [25], the authors proposed a 23-layer SqueezeNet model, in which
each layer of the CNN was optimized and implemented separately on a Xilinx VC709 FPGA
board. However, the experiments showed a low recognition rate of 79% for the top-five
accuracy. In [26], the authors suggested a reduced-parameter CNN model that reduced the
size of the network model. Thus, they fitted smaller convolutional kernels on a Xilinx Zynq
XC7Z020 FPGA device. In particular, in [27], two dedicated computing engines, Conv and
Dwcv, were developed for pointwise convolution and depthwise convolution, respectively.
Their CNN model used the standard ReLU as the activation function. Their experiments
showed a low recognition rate of 68% top-1 accuracy on ImageNet, whereas they used more



Electronics 2021, 10, 2272 3 of 22

than 2070 DSPs. The authors in [28] proposed the Winograd fast convolution algorithm
(WFCA), which can lower the complexity by reducing multiplications. Based on the
ZYNQ FPGA device, the authors of [21] created a CNN accelerator that can accelerate both
standard and depthwise separable convolutions. While still using the standard ReLU as
the activation function, they used 95% of the available DSPs.

3. Background

The CNN has a multilayered structure, composed of a convolution layer, to extract
feature maps from an input image, an activation function that decides the features to be
transferred between neurons, a pooling layer to reduce the spatial size of feature maps,
thus the number of parameters and computational load (it also prevents overfitting during
the learning process), and a fully connected layer that classifies using the extracted features.
There are different types of CNN architectures with different shapes and sizes. Some are
deep models, such as GoogLeNet [2], DenseNet [4], VGG [29], and ResNet [30], whereas
others are shallow and light CNNs, such as MobileNet [9], an improved model using
SigmaH as the activation function [31], and ShuffleNet [11].

3.1. Convolution Layer

The convolutional layer employs a collection of learnable filters to detect essential
characteristics in the image data. The convolution is a linear operation consisting of the
multiplication of a two-dimensional array called a filter with an input array. The filter,
which is smaller than the input data, is applied multiple times to different locations of the
input array, resulting in a two-dimensional array called a feature map. The element-wise
multiplication is summed, resulting in a single value, operation performed by a multiply
accumulate (MACC) mathematical operator. Figure 1 represents the multiplication of the
receptive region of the inputs by the filter, kernel or matrix of weights. A bias value is
added to the sum of the weighted inputs. The figure represents the convolution process for
a three-dimensional input. Equation (1) depicts a function that calculates the output size of
the feature map.

Outputsize =
Inputwidth − Kernelsize + 2 × Padding

Stride
+ Bias. (1)

where kernel is a filter that is used to extract image features, Padding is the number of
pixels that are added to the image when processed by a CNN kernel, and Stride is the
number of pixels shifted across the input matrix.

Figure 1. Convolution operation on an input image of size M × N × 3 using a 3 × 3 × 3 kernel.



Electronics 2021, 10, 2272 4 of 22

Generally, this operation has no limit, making it difficult for the neuron to decide
whether to fire. Thus, using an activation function on the accumulated sum is required to
successfully transfer the results from the neurons in the current layer to the neurons in the
next layer.

3.1.1. Activation Functions

An activation function calculates a weighted sum and then adds a bias to it to deter-
mine whether a neuron should be activated. It is similar to a gate that verifies whether
an incoming number is higher than a certain threshold. The main role of the activation
function is to introduce nonlinearity into the output of a neuron. Without an activation
function, a neural network is simply a linear regression model that does not know how
to solve complex tasks such as image recognition. In summary, the activation function
improves the neural network, allowing it to learn and perform complex operations. Almost
all researchers use simple activation functions that require little computational hardware
for real-world applications. They have mostly used the standard and widely used ones,
such as sigmoid [13], ReLU [14], and Tanh [15]. However, because the activation function in
a neural network is very important, researchers have developed advanced networks such
as Swish [32], Mish [19], and TanhExp [17]. These functions improve the recognition rate
of CNNs, but they are rarely used in real-world applications, particularly on embedded
boards with limited memory. This is due to the fact that they are complicated. Figure 2
depicts the activation functions used in this study, such as TanhExp, ReLU, and Mish. We
chose ReLU because it is the standard function found in many CNN architectures, whereas
TanhExp and Mish outperformed many other functions in the same category, including
Swish and arctanh.

Figure 2. Graph of ReLU, Mish and TanhExp activation functions.

The nonlinearity of TanhExp and Mish makes their implementation on an embedded
board a difficult task. To solve this issue, we need an approximation method to implement
these functions on the FPGA. Numerous approximation methods have been applied to
nonlinear functions in the state-of-the-art to facilitate their deployment on an embedded
device. The authors of [12,18,33] implemented a nonlinear function on an FPGA using a
polynomial approximation technique, such as the piecewise linear (PWL) approximation
method or the quadratic approximation technique. These methods require the use of
adders and multipliers. The look-up-table method was chosen by the authors in [34], which
helped them to store the pre-calculated values. In addition, Reference [35] employs the
coordinate rotation digital computer (CORDIC) technique.

Compared to other approximation methods, PWL requires fewer hardware resources
and has significant precision. As a result, we chose the PWL approximation method to
deploy the nonlinear Mish and TanhExp functions on an embedded device.



Electronics 2021, 10, 2272 5 of 22

3.1.2. Pooling Layer

The pooling layer plays a role similar to that of the convolutional layer. It has to
diminish the spatial size of the convolved feature. Furthermore, it aids in the reduction of
feature dimensions while extracting the dominant characteristics to achieve a significant
recognition rate. The well-known methods for performing pooling are average pooling
and maximum pooling. Max-pooling aids in denoising the input while reducing the
feature dimension. On the other hand, average pooling acts as a denoising mechanism for
dimensionality reduction.

3.1.3. Fully-Connected Layer

The output of the convolution/pooling process was flattened and conducted into a
single vector of values. Each value indicates the probability that the features and labels
are similar. The fully connected layer is utilized to divulge the images into labels by using
the features derived from the convolution/pooling process. Every neuron prioritizes the
appropriate label for each received weight. After that, all neurons will ultimately vote
about which label will win the classification.

3.2. Depthwise Separable Convolution

In recent years, many innovative network models, such as ShuffleNet and MobileNet,
have been suggested to be deployed on an embedded board with limited memory and
computing budgets. The main reason behind the success of these models is the use of the
depthwise separable convolution (DSC) unit [36]. By reducing the number of parameters
and network calculations, this unit demonstrated its effectiveness. However, a decrease in
the number of parameters affected the precision of the network. Therefore, we considered
the improvement of the DSC as a compromise between accuracy and cost. Figure 3 depicts
the standard convolution unit and depthwise separable convolution unit. For the standard
convolution, the convolution results are summed to create one output channel for all the
input channels that have been used by the convolution kernel. In contrast, the DSC is
divided into a depthwise convolution (Dwcv) and a pointwise convolution (Pwcv). Dwcv
uses a filter on each input channel to create the same number of outputs. Furthermore,
Pwcv is a version of the standard convolution that uses a 1 × 1 filter.

Provided that the input feature map size is N × F × F, the filter size of the convolution
is N × K × K × M, and the stride is 1. The number of parameters of the standard
convolution layer is:

WStandard convolution = N × M × K × K, (2)

The number of calculations is:

OStandard convolution = N × M × K × K × F × F, (3)

The number of parameters of the DSC is:

WDSC = N × K × K + N × M, (4)

The number of calculations of DSC is:

ODSC = N × K × K × F × F + M × N × F × F. (5)

The main role of DSC is to reduce the number of parameters and network calculations.
Therefore, the calculation of the reduction factors on weights is presented in Equation (6),
while the reduction factor for operation is presented in Equation (7) as follows:

FW =
WDSC

WStandard convolution
=

1
K2 +

1
M

. (6)



Electronics 2021, 10, 2272 6 of 22

FO =
ODSC

OStandard convolution
=

1
K2 +

1
M

. (7)

*

M

N

K

MF

F

N

F

(a)

*

K

NF

F

N

F F

N

(b)

*

M

N

K

MF

F

N

F

(c)

Figure 3. Standard convolution and depthwise separable convolution. (a) Standard convolution; (b) depthwise convolution;
(c) pointwise convolution

3.3. Arithmetic Representations

The selection of the arithmetic representation affects the performance of the CNN,
such as the recognition rate, speed, energy dissipation, and hardware resources.

To achieve the desired results from the CNN implementation on the FPGA, we must
select an appropriate arithmetic format. There are various formats to represent a real
number in the state-of-the-art [37,38]. The integer fraction method for real number repre-
sentation was introduced in [38]. The experimental results showed significant accuracy
despite the use of a large number of hardware resources. The authors of [37] discussed
the selection of an arithmetic number representation for network implementation on an
FPGA. A comparison of precision and FPGA hardware resources for fixed-point and float-
point representations was studied. The experimental results showed that a network with
a fixed-point format used fewer hardware resources than a network with a float-point
format. However, the network with float-point representation outperformed fixed-point
representation in terms of accuracy. Almost every application that employs a CNN requires
high precision and speed. As a result, we chose the float-point format for our FPGA imple-
mentation, which has acceptable precision. We then considered mitigating its disadvantage
by improving our CNN model and reducing the number of calculations required.

4. Enhanced Architecture for Real-World Application: Ad-MobileNet Model

Nowadays, many tasks in computer vision are resolved using CNNs, such as image
recognition. However, the use of the optimized version of CNNs in real-world applications
is often demanded looking to their large number of parameters and calculations required
for the network, as well as the limited memory on the embedded board. Hence, we
considered developing a slim and thin model that provides high accuracy while utilizing
a limited number of hardware resources. The proposed model is based on the shallow
MobileNet-V1 model.



Electronics 2021, 10, 2272 7 of 22

4.1. The Baseline MobileNet Model

The famous MobileNet-V1 [9] model is well-known for its small size, which was
achieved using a DSC unit. This unit is constructed by a depthwise convolution (Dwcv)
and a one-by-one pointwise convolution (Pwcv). The main idea of the DSC unit is to have
different layers for combining and different layers for filtering. To further explain this,
each input channel needs to be filtered separately in Dwcv, followed by Pwcv. In addition,
the objective behind using Pwcv is to linearly combine all outputs of Dwcv. Generally,
MobileNet uses the DSC unit to reduce the computation cost used on the network to
approximately one-eighth of the standard convolutions.

As shown in Figure 4, the baseline model is composed of a depthwise separable
convolutions unit, full convolution layer, global average pooling layer, fully connected
layer, and classification layer that uses the softmax function. Furthermore, the model has
two hyperparameters, with values ranging from 0 to 1. These two hyperparameters are
known as the width and resolution multipliers, and they can be used to shrink the model.
However, using these two hyperparameters to reduce the size of the model always results
in a significant decrease in the recognition rate.

FC & Softmax

Global Average pooling

Full convolution

Depthwise separable 
convolutions

Figure 4. The architecture of the baseline MobileNet model.

4.2. The Proposed Model: Ad-MobileNet

We present our Ad-MobileNet model, which is based on the baseline MobileNet
model. We made three types of modifications to the MobileNet-V1 model to achieve the
Ad-MobileNet architecture. First, we replaced the DSC unit with the Ad-depth unit, which
increased the accuracy. Second, we used various types of activation functions such as Mish,
TanhExp, and ReLU, to enhance the overall accuracy of the model. Third, we removed all
of the extraneous layers from the baseline model while altering the channel depth.

4.2.1. The First Modification: Using the Ad-Depth Unit

Each input channel in the DSC must be filtered separately in a Dwcv, followed by a
Pwcv, where the outputs are linearly combined. In the baseline MobileNet model, Dwcv
and Pwcv are defined separately. In our architecture, they are not defined as separate
layers. Instead, we employed Ad-depth, which is made up of three combined layers. The
Ad-depth is made up of two Pwcv on the edges and one Dwcv in the middle. They are
combined into a single layer because there is no need to define them as separate layers.
While the basic functionality of DSC remains unchanged, the number of layers is reduced
to 14, which is half of the total number of layers in the MobileNet-V1 model, which has
28 layers. In summary, the Ad-depth unit was constructed of a single layer. This layer is
formed by combining the Pwcv layer, the Dwcv layer, and another Pwcv layer. Figure 5
depicts the changes made to obtain the new unit Ad-depth used in the Ad-MobileNet
model. This transformation improved the overall accuracy of the network.



Electronics 2021, 10, 2272 8 of 22

Figure 5. Comparison between the standard DSC unit and the Ad-depth unit.

4.2.2. The Second Modification: Using Enhanced Activation Functions Instead of ReLU

The activation function is important in the network because it determines whether
or not to consider the neuron based on its value. Almost all modern architectures use the
standard activation function ReLU. The ReLU activation function is extremely useful in
almost every application. It does, however, have one fatal flaw, which is known as the dying
ReLU. Even though this problem does not occur frequently, it can be fatal, particularly in
real-time applications such as traffic sign recognition or medical image analysis applications
that deal with human safety. TanhExp, Swish, and Mish are examples of enhanced functions
that outperform the standard ReLU. As a result, we considered constructing three models,
each of which uses a different activation function and comparing their performance to find
the best-fit function that works well with our Ad-MobileNet model for image classification.
TanhExp, ReLU, and Mish were chosen as activation functions. TanhExp and Mish are
nonlinear functions with similar shapes. The TanhExp function is defined as

F(x) = x × Tanh(exp(x)). (8)

When x is greater than zero, TanhExp behaves roughly as the identity function, and
when x is less than zero, it behaves roughly as the ReLU function. The Mish function is
defined as follows:

F(x) = x × Tanh(so f tplus(x)). (9)

When x is greater than zero, Mish behaves roughly as the identity function, and when
x is less than zero, it behaves roughly as the ReLU function. Mish and TanhExp appear
similar, but they are not the same, and each has a unique impact on the network, such as
in terms of accuracy or hardware resources. Figure 2 depicts the graphs of the TanhExp,
ReLU, and Mish activation functions. The enhanced functions provide a boost in the overall
accuracy of the Ad-MobileNet model.

4.2.3. The Third Modification: Dropping All the Unnecessary Layers

In this section, we attempt to reduce the calculation and number of parameters in
the proposed model without sacrificing any necessary information. Hence, we considered
removing repetitive and unnecessary layers. We drop the five layers from 9 to 13, which
have the same output shape as (4,4,512). Furthermore, we discovered that reducing the
channel depth of the last DSC unit from 1024 to 780 increased the recognition rate of
the model by 1% while decreasing the number of computations simultaneously. Table 1



Electronics 2021, 10, 2272 9 of 22

shows the various layers of the Ad-MobileNet model, the strides, and the output shape for
each layer.

Table 1. Ad-MobileNet structure.

Layer Output Shape Stride

Input Layer 32,32,3 -
Basic convolution 32,32,32 s1
Depth separable conv 32,32,64 s1
Depth separable conv 16,16,128 s2
Depth separable conv 16,16,128 s1
Depth separable conv 8,8,256 s2
Depth separable conv 8,8,256 s1
Depth separable conv 4,4,512 s2
Depth separable conv 2,2,780 s2
Depth separable conv 2,2,780 s1
MaxPooling 1,1,780 s2
Global average pooling 1,1,780 s1
Fc + Softmax 1,1,10 s1

4.2.4. Ablation Study of the Ad-MobileNet Model’s Modifications

As previously stated, the primary objective of this article is to develop a model that
maintains a balance between recognition rate and the number of parameters. To that end,
we have listed three modifications that complement one another.

To determine the importance of the first modification, we compare the Ad-MobileNet
with and without the Ad-depth unit while keeping the activation function as TanhExp
(second modification) and removing all unnecessary layers from the baseline MobileNet
(third modification). Figure 6 depicts the accuracy of Ad-MobileNet with and without the
Ad-depth unit. Using the Ad-depth unit improves the model’s overall recognition rate, as
shown in this figure. The Ad-depth, on the other hand, is composed of two Pwcv on the
edges and one Dwcv in the middle, which reduces the number of parameters compared to
the standard convolution but slightly increases the number of parameters compared to the
DSC unit.

Figure 6. Comparison between Ad-MobileNet model with and without Ad-depth unit while con-
serving the second (TanhExp function) and third modifications.



Electronics 2021, 10, 2272 10 of 22

Provided that the input feature map size is N × F × F, the filter size of the convolution
is N × K × K × M, and the stride is 1. The number of parameters of the standard
convolution layer is presented in Equation (2), and the number of calculations is presented
in Equation (3).

The number of parameters of the Ad-depth unit is:

WAd depth = N × K × K + 2 × N × M, (10)

The number of calculations of Ad-depth unit is:

OAd depth = N × K × K × F × F + 2 × M × N × F × F. (11)

The main role of the Ad-depth unit is to enhance the recognition rate while reducing
the number of parameters and network calculations compared to the standard convolution.
Therefore, the calculation of the reduction factors on weights is presented in Equation (12),
while the reduction factor for operation is presented in Equation (13) as follows:

FW =
WAd depth

WStandard convolution
=

2
K2 +

1
M

. (12)

FO =
OAd depth

OStandard convolution
=

2
K2 +

1
M

. (13)

The second modification is to swap the activation function between Mish, TanhExp,
and the standard ReLU. Figure 7 shows a comparison of test accuracy based on the baseline
MobileNet when the activation function is changed. As illustrated in the graph, the model
with TanhExp or Mish as the activation function outperforms the standard ReLU model.
Various researches support this result in the literature [17,19,39,40].

Figure 7. Comparison between accuracy of Mish, TanhExp and ReLU activation functions using the
baseline MobileNet on CIFAR-10.

The third modification is to remove any unnecessary layers. As shown in Table 2,
this modification has one flaw: it reduces the model’s performance while increasing its



Electronics 2021, 10, 2272 11 of 22

robustness. This is where the first and second modifications come into play; they ensure a
balance between performance and robustness by masking the flaw of the third modification
while retaining its advantage.

Table 2. Ad-MobileNet with and without the third modification.

Model Number of Parameters

Ad-MobileNet with 3rd modification 1,311,394
Ad-MobileNet without 3rd modification 3,238,058

The ablation study may highlight the benefits and drawbacks of each modification
and the benefit after using all three modifications, not just one. More specifically, each
modification may cover the flaws of the other modification.

These modifications allow us to significantly reduced the computational number of
the proposed model. Although the usage of the Ad-depth unit in place of the DSC unit
slightly increases the computational number, we reduce more than 41% of the overall
computations by removing the unnecessary layers and decreasing the channel depth of
the last Ad-depth unit. A demonstration will be carried out in the experimental section.
Figure 8 depicts the architecture of the Ad-MobileNet model, which was obtained after
implementing all of the modifications mentioned above.

FC & Softmax

Global Average pooling

Basic convolution: conv 32, stride = 1

Batch-normalization

Activation function: TanhExp/ Mish/ 
ReLU

Ad-depth unit
conv 64, stride = 1

Ad-depth unit
conv 128, stride = 2

Ad-depth unit
conv 128, stride = 1

Ad-depth unit
conv 256, stride = 2

Ad-depth unit
conv 256, stride = 1

Ad-depth unit
conv 512, stride = 2

Ad-depth unit
conv 780, stride = 2

Ad-depth unit
conv 780, stride = 1

MaxPooling (2,2)

Input image (32x32x3)

Batch-normalization

Activation function: 
TanhExp/ Mish/ ReLU

Ad-depth unit
conv 64, stride = 1

Deep depthwise

• Pointwise (1,1)
• Batch-normalization
• Activation function: 

TanhExp/ Mish/ ReLU

• Depthwise (3,3)
• Batch-normalization
• Activation function: 

TanhExp/ Mish/ ReLU

• Pointwise (1,1)
• Batch-normalization
• Activation function: 

TanhExp/ Mish/ ReLU

Figure 8. Architecture of the Ad-MobileNet model with the structure of the Ad-depth unit.



Electronics 2021, 10, 2272 12 of 22

5. Hardware Implementation of Ad-MobileNet on FPGA

To implement the Ad-MobileNet model on the FPGA, we elect the float-point rep-
resentation to digitalize the real numbers, such as the weights, inputs, and biases. The
float-point representation provides significant precision while requiring an acceptable
number of hardware resources. Then, we need to arrange the implementation of the non-
linear activation functions for conducting the convolution layer and the Ad-depth unit on
the FPGA.

5.1. Hardware Implementation of Activation Functions

We implemented three different activation functions. The first function was the
standard ReLU. The implementation of this activation function, which is defined as follows:
ReLU(X) = Max(X,0), is simple and depthless. This only requires registers (FF) and look-up
tables (LUTs). However, the implementation of the two nonlinear activation functions,
Mish (Equation (14)) and TanhExp (Equation (15)), is unique. They cannot be directly
implemented on an FPGA. Hence, they require an approximation to be performed on an
embedded board.

Mish(X) = X × tanh(ln(1 + eX)) (14)

TanhExp(X) = X × tanh(eX) (15)

To implement the Ad-MobileNet model, we used the float-point format to perform the
PWL approximation of the two nonlinear activation functions Mish and TanhExp. The PWL
approximation of Mish (16) and that of TanhExp (17) are implemented on an embedded
FPGA device using one adder, one multiplier, and registers for each approach function. The
average and maximum errors of the PWL approximation of the Mish activation function are
ε avg = 1.30 × 10−3 and ε max = 1.1989 × 10−1, respectively. On the other hand, the average
and maximum errors of the PWL approximation of the TanhExp activation function are
ε avg = 4.10524 × 10−4 and ε max = 6.743 × 10−2, respectively, which are lower than those of
the Mish function. A comparison between the PWL approximations of Mish and TanhExp
is shown in Figure 9. Figure 10 shows the graph of the activation functions and their
approximations.

Mish(X) =



x, 2 < x
1.08273 × x − 0.22053, 1 < x ≤ 2
1.02872 × x − 0.11989, 0 < x ≤ 1
0.29798 × x − 0.04853,−1 < x ≤ 0
−0.05617 × x − 0.37574,−2 < x ≤ −1
−0.10802 × x − 0.46768,−3 < x ≤ −2
−0.07294 × x − 0.36108,−4 < x ≤ −3
−0.03876 × x − 0.22528,−5 < x ≤ −4
−0.01855 × x − 0.12508,−6 < x ≤ −5
−0.00838 × x − 0.06455,−7 < x ≤ −6
−0.00049 × x − 0.00632, x ≤ −7



(16)

TanhExp(X) =



x, 1 < x
1.00522 × x − 0.01850, 0 < x ≤ 1
0.34275 × x − 0.06743,−1 < x ≤ 0
−0.08953 × x − 0.45752,−2 < x ≤ −1
−0.12067 × x − 0.50794,−3 < x ≤ −2
−0.07575 × x − 0.37267,−4 < x ≤ −3
−0.03929 × x − 0.22795,−5 < x ≤ −4
−0.01864 × x − 0.12562,−6 < x ≤ −5
−0.00840 × x − 0.06466,−7 < x ≤ −6
−0.00049 × x − 0.00632, x ≤ −7



(17)



Electronics 2021, 10, 2272 13 of 22

Figure 9. Graph of the TanhExp and Mish activation functions and their PWL approximations on the [−5, 1] interval.

Figure 10. Activation functions and their approximations.

All of the requirements for implementing the nonlinear TanhExp and Mish activation
functions using the PWL approach and float-point representation are now complete. As a
result, we can implement a convolutional layer on an FPGA.

5.2. Hardware Implementation of Basic Convolutional Layer

We decided to classify the images provided by the CIFAR-10 dataset as an applica-
tion. This database uses two-dimensional data as input. Figure 11 depicts the hardware
implementation of a convolution unit based on an N × M filter. The algorithm used for the
convolution filter N × M is presented in Figure 12. This architecture takes advantage of the
parallelism generated by the convolution layer to accelerate the application.



Electronics 2021, 10, 2272 14 of 22

Figure 11. Hardware architecture of the convolutional layer.

Figure 12. Algorithm of of the convolution filter N × M.

The convolutional layer employs the MACC mathematical operation. Therefore,
we need to transfer the values of the inputs into a sliding window that has an identical
weight filter size. The convolution operations are performed all at once, which assures the
parallelization of the implementation. The accumulation of the weighted inputs constructs
the main processing element (PE) in the convolution layer, as shown in Figure 11. Following
the construction of the processing element, an adder was appended to add a bias to the nine
values (for M × N = 3 × 3) acquired for each PE. Then, we apply an activation function to
the output of that summation. In addition, the output of the activation functions is buffered
and fed into the next layer. Figure 11 depicts how to build a convolution layer using a
M × N filter. As previously stated, we intend to vary the activation function between the
Mish, TanhExp, and ReLU. This step provides three CNN models, namely, MAd-MobileNet,
TAd-MobileNet, and RAd-MobileNet.

5.3. Hardware Implementation of Ad-Depth Unit

As mentioned in the previous sections, the Ad-depth unit is made up of two pointwise
layers and one depthwise layer. In this study, the depthwise unit is composed of 32 slices
of line buffer, 32 slices of multiplier array, adder, normalization block (Norm), and an
activation block. Depthwise convolution is performed by k × k convolution operations
with spatial proximity. When the input data are passed through the buffer in a row-
major layout, sliding window selection is released by the line buffer on the input image.
Furthermore, multiple rows of pixel values can be buffered for simultaneous access. As
shown in Figure 13, each Dwcv unit manages the 2D convolutional operation of one input
feature map and its corresponding weights. The construction of the Ad-depth unit is
presented in Figure 14. Using multiple Dwcv units in parallel represents the depthwise
convolution, which is depicted in Figure 15.



Electronics 2021, 10, 2272 15 of 22

Figure 13. Hardware architecture of the Dwcv unit.

Figure 14. Algorithm of AD-Depth class.

Figure 15. Hardware architecture of the Ad-depth unit.



Electronics 2021, 10, 2272 16 of 22

The pointwise convolution unit (Pwcv) is composed of a PE unit, adder, batch-
normalization block (Norm), activation function module, ram, and registers, as shown in
Figure 13. PE units operate a 1 × 1 convolution, which is accomplished by multiplying the
depthwise convolution output by the pointwise weights, followed by the accumulation
of all multipliers results. Then, a bias is added to the result of the multi-channels that are
calculated using the adder and passed through the normalization block and activation
module. We used a broadcast operation to copy the result of depthwise convolution to
various Pwcv units, as depicted in Figure 15.

In the proposed model, we varied the activation function between the ReLU, TanhExp,
and Mish functions to test their performance and influence over the Ad-MobileNet model.
The experimental section presents the results of each implementation of the Ad-MobileNet
model using these functions.

5.4. Hardware Implementation of Max-Pooling Layer

The pooling layer is the most basic unit of the CNN. In this layer, a sliding window is
applied to all stored values obtained from the preceding layer. The pooling kernel reflects
the sliding window size, whereas stride represents the step size. Then, we elect the average
or maximum value in the sliding window, which is based on the type of pool chosen.
Figure 16 shows a sample of the hardware architecture corresponding to the max-pooling
layer. We used a 2 × 2 pooling filter and a stride of size “2”. Each pair of values in the
sliding window is compared to determine which is greater.

F
IF

O

REG

REG

REG

DIN

REG

REG

REG

REG

Stride enable

Figure 16. Hardware architecture of the max-pooling layer using a kernel size of 2 × 2.

The Ad-MobileNet module uses the global average pooling (GAP) instead of the
fully connected layer, which is simple to conduct on FPGA and requires fewer parameters
compared to the fully connected layer. GAP is similar to the pooling layer in that we need
to find the mean output of each feature map in the previous layer while using a pool size
equal to the input.

6. Experiment and Results

We implemented the models MAd-MobileNet, TAd-MobileNet, and RAd-MobileNet,
which use the activation functions Mish, TanhExp, and ReLU successively on FPGA
xc7vx980t of the Virtex-7 family. To demonstrate the functionality of these models, we
used an image classification application, which is based on the CIFAR-10 dataset. This
database contains ten classes. To carry out this experiment, we used VHDL as the hardware
definition language.

After implementing the modifications described in Section 4, the Ad-MobileNet
architecture was obtained. We varied the activation function between ReLU, Mish, and
TanhExp activation functions using the PWL approach method to represent nonlinear
functions. We erased the five needless layers while changing the channel depth in the last
DSC unit from 1024 to 780. We replaced the DSC unit with a thicker one, which is named the
Ad-depth unit. The Ad-depth unit combines the Pwcv, Dwcv, and Pwcv layers into a single



Electronics 2021, 10, 2272 17 of 22

deep layer. These modifications help to improve the recognition rate of the Ad-MobileNet
network while minimizing the number of hardware resources. Figure 17 illustrates the
comparison of the top-1 test accuracy between the baseline MobileNet, RAd-MobileNet,
TAd-MobileNet, and MAd-MobileNet models while varying the width multiplier (alpha)
using the CIFAR-10 dataset.

0

10

20

30

40

50

60

70

80

90

100

Alpha = 1 Alpha = 0.75 Alpha = 0.5 Alpha = 0.25

Accuracy vs Models

RAd-MobileNet MAd-MobileNet TAd-MobileNet Baseline MobileNet

Figure 17. Comparison of the model performance based on the top-1 test accuracy for varying the width multiplier.

Figure 17 proves that the baseline MobileNet model has the lowest accuracy. Further-
more, MAd-MobileNet and TAd-MobileNet outperform the two other models in terms of
recognition rate achieving 88.76% and 87.88%, respectively. However, the RAd-MobileNet
has the lowest number of hardware resources. It reduces more than 41% of the DSP used
compared to that used in the implementation of the baseline MobileNet, which is illustrated
in Table 3. In addition, Table 3 proves that implementing the Network using an advanced
nonlinear activation function on FPGA slightly increases the number of hardware resources
compared to that using ReLU.

Table 3. Hardware resources of Ad-MobileNet model on varying the activation function.

Model DSP LUTs FF

Baseline MobileNet 1593 137,291 183,614
RAd-MobileNet 937 57,438 79,327
MAd-MobileNet 1128 68,796 87,569
TAd-MobileNet 1128 69,163 86,251

As shown in Figure 17 and Table 4, the width multiplier has a significant influence
on the recognition rate and size of the model. Hence, we can say that increasing alpha
increases the accuracy and number of hardware resources. For alpha equal to 1, RAd-
MobileNet has a 2.57% higher recognition rate than the baseline MobileNet architecture,
TAd-MobileNet has a 17.05% higher recognition rate, and MAd-MobileNet has an 18.72%
higher recognition rate. Ad-Mobile Nets (alpha = 0.25), on the other hand, outperforms the
other architectures in terms of model size, frequency, and number of parameters. When we
changed the alpha to 0.25, we reduced the number of parameters by 97.17%.



Electronics 2021, 10, 2272 18 of 22

Table 4. Performance of Ad-MobileNet model using ReLU activation function on varying alpha.

Model Model Size (MB) Parameters Frequency (MHz)

Baseline MobileNet (α = 1) 38.2 3,223,178 110
Ad-MobileNet (α = 1) 5.11 1,311,394 225

Ad-MobileNet (α = 0.75) 2.94 746,593 245
Ad-MobileNet (α = 0.5) 1.38 339,762 270

Ad-MobileNet (α = 0.25) 0.42 90,901 310

There is no such thing as a perfect network, but there is such a thing as a well-fitting
network. As a result, we have the flexibility to select any model that meets our requirements.
For example, if we need an ultra-thin model with adequate accuracy, we can use any one
of the Ad-MobileNet models with a width multiplier equal to 0.5. If we need a higher
precision in the classification, we can use the MAd-MobileNet network with a width
multiplier equal to 1.

7. Discussion
7.1. Comparison with MobileNet-V1 Model

In this section, we compare our networks to the MobileNet model to ensure that the
suggested architectures are both efficient in terms of the recognition rate and suitable in
terms of hardware resources for real-world applications. Table 5 compares the performance
of the baseline MobileNet and our networks implemented on an FPGA using the same
CIFAR-10 database.

Table 5. Performance comparison of the baseline MobileNet and the Ad-MobileNet models on FPGA.

Model Baseline MobileNet RAd-MobileNet MAd-MobileNet TAd-MobileNet

FPGA Virtex-7 xc7vx980 Virtex-7 xc7vx980 Virtex-7 xc7vx980 Virtex-7 xc7vx980
Top-1 test accuracy (%) 70.04 72.61 88.76 87.09

Frequency (MHz) 160 225 200 205
DSP 1842 937 1128 1128
LUT 127,325 57,438 68,796 69,163
FF 183,211 79,327 87,569 86,251

In this section, we present an analysis comparing the efficiency and performance of
hardware implementation of our proposed models to baseline MobileNet architecture.
Table 5 shows the performance comparison of MobileNets hardware implementations on
FPGA. Based on the speed and computation of hardware resources, we compared the
effectiveness of our algorithms to the baseline MobileNet model used on the same board.
The baseline MobileNet model achieved the worst accuracy, speed, and the highest number
of hardware resources in the table. For more detail, we compared the standard MobileNet
to the Ad-MobileNet networks. MAd-MobileNet is an Ad-MobileNet model that uses
Mish as its activation function. This model achieved an accuracy of 88.76%, which is the
highest in Table 5 and higher than the baseline MobileNet model by 18.72%. Furthermore,
the MAd-MobileNet model achieved a speed of 200 MHz, which is higher than that of the
baseline model by 40 MHz. Even for the hardware resources, MAd-MobileNet used 38.7%
DSP less than that used in the implementation of the standard MobileNet. RAd-MobileNet
is an Ad-MobileNet model that uses ReLU as its activation function. This model achieved
an accuracy of 72.61%, which is higher than that of the standard MobileNet only by 2.6%.
However, the RAd-MobileNet model achieved a speed of 225 MHz, which is the highest in
the table and higher than that of the baseline model by 65 MHz. Furthermore, the number
of hardware resources used in the implementation of RAd-MobileNet is the lowest in the
table and lower by 50% than that used in the standard MobileNet.

MAd-MobileNet and TAd-MobileNet architectures consecutively used the activation
functions Mish and TanhExp. They both used slightly more hardware resources than RAd-
MobileNet, which used ReLU as its activation function. The comparison in Table 5 shows



Electronics 2021, 10, 2272 19 of 22

that our models surpass MobileNet-V1 model in terms of speed and accuracy (Figure 17)
while using fewer hardware resources.

7.2. Comparison with the State-of-the-Art

In this section, we compare our networks to existing ones in the literature to ensure
that the suggested architectures are both efficient in terms of the recognition rate and
suitable in terms of hardware resources for real-world applications. Table 6 compares the
performance of the networks implemented on an FPGA using the same CIFAR-10 database.

Table 6. Performance comparison with other MobileNet models on FPGA.

Model [41] [22] [42] [21] RAd-MobileNet

FPGA Intel Stratix 10 XCZU19EG XCZU9EG ZYNQ 7100 Virtex-7 xc7vx980
Frequency (MHz) 156 200 150 100 225

DSP 297 1020 1452 1926 937
LUT 926,000 368,936 139,000 142,291 57,438
FF 583,000 391,517 55,000 187,146 79,327

Power (W) - 7.35 - 4.083 3.25

In this section, we present an analysis comparing the efficiency and performance of
hardware implementation of our proposed models to existing MobileNet-based architec-
tures in the literature. Table 6 illustrates the performance comparison of various hardware
implementations on the FPGA. Based on the speed and computation of hardware resources,
we compared the effectiveness of various algorithms used on FPGAs. The authors of [21]
proposed a CNN accelerator based on the MobileNet structure that can accelerate both
standard and depthwise separable convolutions. They used ReLU as the activation func-
tion. They achieved a speed of 100 MHz, which is the slowest in Table 6 and slower than
our suggested RAd-MobileNet model by 125 MHz. Furthermore, their model necessitated
a large number of hardware resources of 1926 DSP, which is the highest in the table. They
used 989 DSP more than that used in the implementation of RAd-MobileNet. In addition,
they used a power consumption higher by 0.8 W more than that of RAd-MobileNet. The
authors of [42] adopted an implementation of the RRMobileNet model using two levels of
redundancy data-level and model-level redundancy. Their suggestion achieved a frequency
of 150 MHz, which is the second-lowest frequency in the table. In addition, they used a
large computational hardware resource of 1452 DSP, which is the second-highest in the
table. Furthermore, they drew on a significant amount of logic element 139 K (LUT), which
is more than double the amount used in our proposed models. The authors of [41] pro-
posed Tomato, a framework designed to automate the process of generating efficient CNN
accelerators. The implementation of MobileNet-V1 based on their suggestion achieved
the fewest hardware resources in terms of DSP. However, they used the highest number
of LUTs and FFs in the table. They used more than 16× as many LUTs as we did in our
implementations. Furthermore, the speed of their model was 69 MHz slower than that of
our model. The authors of [22] proposed an accelerator for inference on the MobileNet-V2
network using a heterogeneous system. Their system achieved a significant speed of
200 MHz, which is the second-highest speed of our RAd-MobileNet model. However, they
used 83 DSP more than that used in the RAd-MobileNet implementation. Furthermore,
they used more than 6× as many LUTs, as we did in our implementations. They also used
a power of 7.35 W, which is higher than that of RAd-MobileNet by 4.1 W.

The comparison in Table 6 shows that our models achieve competitive results in
terms of speed, power consumption and accuracy (Figure 17) while using fewer hardware
resources. To summarize, we can select the model that best meets our requirements in
terms of computational hardware resources, speed, or accuracy.



Electronics 2021, 10, 2272 20 of 22

8. Conclusions

In this study, we intended to build a network with a few hardware resources while
providing a high classification rate without losing information and implementing it on
an FPGA. We improved the MobileNet-V1 architecture to achieve this goal. We changed
the three aspects of the original design. First, we removed the needless layers that had
the same output shape as (4,4,512). Second, we varied the activation functions of Mish,
TanhExp, and ReLU. The activation functions Mish, TanhExp, and ReLU were used in
the models MAd-MobileNet, TAd-MobileNet, and RAd-MobileNet, respectively. Both
nonlinear activation functions Mish and TanhExp were implemented on an FPGA using
PWL approximation. Furthermore, to digitalize real numbers, we adopted a float-point
format. Third, we replaced the depth-separable convolution unit with a thicker one, named
the Ad-depth unit, which enhances the recognition rate of the model. We compared the
number of hardware resources, power consumption, speed, and accuracy required for
FPGA implementation on the Virtex-7 board. We achieved an 88.76% recognition rate with
the MAd-MobileNet model, which is 18.72% higher than the baseline MobileNet model.
Furthermore, we achieved a speed of 225 MHz using the RAd-MobileNet network, which
is more than 120 MHz faster than the baseline model.

It is worth noting that the previously discussed results were obtained using a simple
database CIFAR-10 for an image classification application. As a result, we decided to study
the Ad-MobileNet model using larger databases and different applications in order to
discover each flaw and advantage as part of our future work.

Author Contributions: Conceptualization, all authors; methodology, S.B.; software, S.B.; validation,
S.B.; formal analysis S.B.; investigation, S.B.; resources, S.B.; data curation, S.B.; writing—original
draft preparation, S.B., H.B.F. and T.B.; writing—review and editing, all authors; visualization, all
authors; supervision, C.V., H.F. and C.S. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data available in a publicly accessible repository that does not issue
DOIs. Publicly available datasets were analyzed in this study. This data can be found here:
https://github.com/safabouguezzi/Ad-MobileNet (accessed on 7 September 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zagoruyko, S.; Komodakis, N. Wide Residual Networks. In Proceedings of the British Machine Vision Conference 2016, York,

UK, 19–22 September 2016; pp. 1–87. [CrossRef]
2. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; pp. 1–9. [CrossRef]

3. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.

4. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.
[CrossRef]

5. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

6. Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Van Esesn, B.C.; Awwal, A.A.S.; Asari, V.K. The
History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches. arXiv 2018, arXiv:1803.01164.

7. Ben Fredj, H.; Bouguezzi, S.; Souani, C. Face recognition in unconstrained environment with CNN. Vis. Comput. 2021, 37, 217–226.
[CrossRef]

8. Belabed, T.; Coutinho, M.G.F.; Fernandes, M.A.C.; Sakuyama, C.V.; Souani, C. User Driven FPGA-Based Design Automated
Framework of Deep Neural Networks for Low-Power Low-Cost Edge Computing. IEEE Access 2021, 9, 89162–89180. [CrossRef]

9. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.

https://github.com/safabouguezzi/Ad-MobileNet
https://github.com/safabouguezzi/Ad-MobileNet
http://doi.org/10.5244/C.30.87.
http://dx.doi.org/10.1109/CVPR.2015.7298594
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1007/s00371-020-01794-9
http://dx.doi.org/10.1109/ACCESS.2021.3090196


Electronics 2021, 10, 2272 21 of 22

10. Bouguezzi, S.; Faiedh, H.; Souani, C. Slim MobileNet: An Enhanced Deep Convolutional Neural Network. In Proceedings of the
2021 18th International Multi-Conference on Systems, Signals & Devices (SSD), Monastir, Tunisia, 22–25 March 2021; pp. 12–16.
[CrossRef]

11. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June
2018; pp. 6848–6856. [CrossRef]

12. Tsmots, I.; Skorokhoda, O.; Rabyk, V. Hardware Implementation of Sigmoid Activation Functions using FPGA. In Proceedings
of the 2019 IEEE 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM),
Polyana, Ukraine, 26 February–2 March 2019; pp. 34–38. [CrossRef]

13. Pan, S.P.; Li, Z.; Huang, Y.J.; Lin, W.C. FPGA realization of activation function for neural network. In Proceedings of the 2018 7th
International Symposium on Next Generation Electronics (ISNE), Taipei, Taiwan, 7–9 May 2018; pp. 1–2. [CrossRef]

14. Nair, V.; Hinton, G.E. Rectified linear units improve Restricted Boltzmann machines. In Proceedings of the ICML 2010-Proceedings,
27th International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010. [CrossRef]

15. Xie, Y.; Joseph Raj, A.N.; Hu, Z.; Huang, S.; Fan, Z.; Joler, M. A Twofold Lookup Table Architecture for Efficient Approximation of
Activation Functions. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020, 28, 2540–2550. [CrossRef]

16. Givaki, K.; Salami, B.; Hojabr, R.; Reza Tayaranian, S.M.; Khonsari, A.; Rahmati, D.; Gorgin, S.; Cristal, A.; Unsal, O.S. On the
Resilience of Deep Learning for Reduced-voltage FPGAs. In Proceedings of the 2020 28th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing (PDP), Västerås, Sweden, 11–13 March 2020; pp. 110–117. [CrossRef]

17. Liu, X.; Di, X. TanhExp: A smooth activation function with high convergence speed for lightweight neural networks. IET Comput.
Vis. 2021, 15, 136–150. [CrossRef]

18. Bouguezzi, S.; Faiedh, H.; Souani, C. Hardware Implementation of Tanh Exponential Activation Function using FPGA. In
Proceedings of the 2021 18th International Multi-Conference on Systems, Signals & Devices (SSD), Monastir, Tunisia, 22–25 March
2021; pp. 1020–1025. [CrossRef]

19. Misra, D. Mish: A Self Regularized Non-Monotonic Activation Function. arXiv 2019, arXiv:1908.08681.
20. Li, Z.-l.; Wang, L.-y.; Yu, J.-y.; Cheng, B.-w.; Hao, L. The Design of Lightweight and Multi Parallel CNN Accelerator Based on

FPGA. In Proceedings of the 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference
(ITAIC), Chongqing, China, 24–26 May 2019; pp. 1521–1528. [CrossRef]

21. Liu, B.; Zou, D.; Feng, L.; Feng, S.; Fu, P.; Li, J. An FPGA-Based CNN Accelerator Integrating Depthwise Separable Convolution.
Electronics 2019, 8, 281. [CrossRef]

22. Pérez, I.; Figueroa, M. A Heterogeneous Hardware Accelerator for Image Classification in Embedded Systems. Sensors 2021,
21, 2637. [CrossRef] [PubMed]

23. Farrukh, F.U.D.; Xie, T.; Zhang, C.; Wang, Z. Optimization for Efficient Hardware Implementation of CNN on FPGA. In
Proceedings of the 2018 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), Beijing,
China, 21–23 November 2018; pp. 88–89. [CrossRef]

24. Chang, X.; Pan, H.; Zhang, D.; Sun, Q.; Lin, W. A Memory-Optimized and Energy-Efficient CNN Acceleration Architecture Based
on FPGA. In Proceedings of the 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), Vancouver, BC, Canada,
12–14 June 2019; pp. 2137–2141. [CrossRef]

25. Huang, C.; Ni, S.; Chen, G. A layer-based structured design of CNN on FPGA. In Proceedings of the 2017 IEEE 12th International
Conference on ASIC (ASICON), Guiyang, China, 25–28 October 2017; pp. 1037–1040. [CrossRef]

26. Hailesellasie, M.; Hasan, S.R.; Khalid, F.; Awwad, F.; Shafique, M. FPGA-Based Convolutional Neural Network Architecture with
Reduced Parameter Requirements. In Proceedings of the IEEE International Symposium on Circuits and Systems, Florence, Italy,
27–30 May 2018. [CrossRef]

27. Wu, D.; Zhang, Y.; Jia, X.; Tian, L.; Li, T.; Sui, L.; Xie, D.; Shan, Y. A High-Performance CNN Processor Based on FPGA for
MobileNets. In Proceedings of the 2019 29th International Conference on Field Programmable Logic and Applications (FPL),
Barcelona, Spain, 8–12 September 2019; pp. 136–143. [CrossRef]

28. Liang, Y.; Lu, L.; Xiao, Q.; Yan, S. Evaluating fast algorithms for convolutional neural networks on FPGAs. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 2020, 39, 857–870. [CrossRef]

29. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition Karen. arXiv 2014,
arXiv:1409.1556.

30. Xie, S.; Girshick, R.; Dollar, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 5987–5995. [CrossRef]

31. Bouguezzi, S.; Ben Fredj, H.; Faiedh, H.; Souani, C. Improved architecture for traffic sign recognition using a self-regularized
activation function: SigmaH. Vis. Comput. 2021, 1–18. [CrossRef]

32. Ramachandran, P.; Zoph, B.; Le, Q.V. Swish a self-gated activation function. arXiv 2017, arXiv:1710.05941.
33. Yesil, S.; Sen, C.; Yilmaz, A.O. Experimental Analysis and FPGA Implementation of the Real Valued Time Delay Neural Network

Based Digital Predistortion. In Proceedings of the 2019 26th IEEE International Conference on Electronics, Circuits and Systems
(ICECS), Genoa, Italy, 27–29 November 2019; pp. 614–617. [CrossRef]

http://dx.doi.org/10.1109/SSD52085.2021.9429519
http://dx.doi.org/10.1109/CVPR.2018.00716
http://dx.doi.org/10.1109/CADSM.2019.8779253
http://dx.doi.org/10.1109/ISNE.2018.8394695
http://dx.doi.org/10.5555/3104322.3104425
http://dx.doi.org/10.1109/TVLSI.2020.3015391
http://dx.doi.org/10.1109/PDP50117.2020.00023
http://dx.doi.org/10.1049/cvi2.12020
http://dx.doi.org/10.1109/SSD52085.2021.9429506
http://dx.doi.org/10.1109/ITAIC.2019.8785800
http://dx.doi.org/10.3390/electronics8030281
http://dx.doi.org/10.3390/s21082637
http://www.ncbi.nlm.nih.gov/pubmed/33918668
http://dx.doi.org/10.1109/CICTA.2018.8706067
http://dx.doi.org/10.1109/ISIE.2019.8781162
http://dx.doi.org/10.1109/ASICON.2017.8252656
http://dx.doi.org/10.1109/ISCAS.2018.8351283
http://dx.doi.org/10.1109/FPL.2019.00030
http://dx.doi.org/10.1109/TCAD.2019.2897701
http://dx.doi.org/10.1109/CVPR.2017.634
http://dx.doi.org/10.1007/s00371-021-02211-5
http://dx.doi.org/10.1109/ICECS46596.2019.8964743


Electronics 2021, 10, 2272 22 of 22

34. Piazza, F.; Uncini, A.; Zenobi, M. Neural networks with digital LUT activation functions. In Proceedings of the 1993 International
Conference on Neural Networks (IJCNN-93-Nagoya, Japan), Nagoya, Japan, 25–29 October 1993; Volume 2, pp. 1401–1404.
[CrossRef]

35. Tiwari, V.; Khare, N. Hardware implementation of neural network with Sigmoidal activation functions using CORDIC. Microprocess.
Microsyst. 2015, 39, 373–381. [CrossRef]

36. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807. [CrossRef]

37. Savich, A.; Moussa, M.; Areibi, S. A scalable pipelined architecture for real-time computation of MLP-BP neural networks.
Microprocess. Microsyst. 2012, 36, 138–150. [CrossRef]

38. Nedjah, N.; da Silva, R.M.; de Macedo Mourelle, L. Compact yet efficient hardware implementation of artificial neural networks
with customized topology. Expert Syst. Appl. 2012, 39, 9191–9206. [CrossRef]

39. Marina Adriana Mercioni, S.H. Novel Activation Functions Based on TanhExp Activation Function in Deep Learning. Int. J.
Future Gener. Commun. Netw. 2020, 13, 2415–2426.

40. Zhang, Z.; Yang, Z.; Sun, Y.; Wu, Y.F.; Xing, Y.D. Lenet-5 Convolution Neural Network with Mish Activation Function and Fixed
Memory Step Gradient Descent Method. In Proceedings of the 2019 16th International Computer Conference on Wavelet Active
Media Technology and Information Processing, Chengdu, China, 14–15 December 2019.

41. Zhao, Y.; Gao, X.; Guo, X.; Liu, J.; Wang, E.; Mullins, R.; Cheung, P.Y.; Constantinides, G.; Xu, C.Z. Automatic generation
of multi-precision multi-arithmetic CNN accelerators for FPGAs. In Proceedings of the 2019 International Conference on
Field-Programmable Technology, ICFPT 2019, Tianjin, China, 9–13 December 2019. [CrossRef]

42. Su, J.; Faraone, J.; Liu, J.; Zhao, Y.; Thomas, D.B.; Leong, P.H.; Cheung, P.Y. Redundancy-reduced MobileNet acceleration on
reconfigurable logic for ImageNet classification. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2018. [CrossRef]

http://dx.doi.org/10.1109/IJCNN.1993.716806
http://dx.doi.org/10.1016/j.micpro.2015.05.012
http://dx.doi.org/10.1109/CVPR.2017.195
http://dx.doi.org/10.1016/j.micpro.2010.12.001
http://dx.doi.org/10.1016/j.eswa.2012.02.085
http://dx.doi.org/10.1109/ICFPT47387.2019.00014
http://dx.doi.org/10.1007/978-3-319-78890-6_2

	Introduction
	Related Work
	Background
	Convolution Layer
	Activation Functions
	Pooling Layer
	Fully-Connected Layer

	Depthwise Separable Convolution 
	Arithmetic Representations

	Enhanced Architecture for Real-World Application: Ad-MobileNet Model
	The Baseline MobileNet Model
	The Proposed Model: Ad-MobileNet
	The First Modification: Using the Ad-Depth Unit
	The Second Modification: Using Enhanced Activation Functions Instead of ReLU
	The Third Modification: Dropping All the Unnecessary Layers
	Ablation Study of the Ad-MobileNet Model's Modifications


	Hardware Implementation of Ad-MobileNet on FPGA
	Hardware Implementation of Activation Functions
	Hardware Implementation of Basic Convolutional Layer
	Hardware Implementation of Ad-Depth Unit
	Hardware Implementation of Max-Pooling Layer

	Experiment and Results
	Discussion
	Comparison with MobileNet-V1 Model
	Comparison with the State-of-the-Art

	Conclusions
	References

