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Abstract: How to deal with rare and unknown data in traffic classification has a decisive influence
on classification performance. Rare data make it difficult to generate validation datasets to prevent
overfitting, and unknown data interferes with learning and degrades the performance of the model.
This paper presents a model generation method that accurately classifies rare data and new types
of attacks, and does not result in overfitting. First, we use oversampling methods to solve the data
imbalance caused by rare data. We separate the test dataset into a training dataset and a validation
dataset. A model is created using separate training and validation datasets. Furthermore, the test
dataset is used only for evaluating the performance capabilities of classification models, in order
to make the test dataset independent of learning. We also use a softmax function that numerically
indicates the probability that the model’s predictive results are accurate in detecting new, unknown
attacks. Consequently, when applying the proposed method to the NSL_KDD dataset, the accuracy
is 91.66%—an improvement of 6–16% compared to existing methods.

Keywords: intrusion detection; AI; GAN; softmax; validation; NSL_KDD

1. Introduction

In the real world, certain attacks are less numerous than others, and new types of
attack continue to emerge. Therefore, the quality of the data in these cases is difficult to
determine, and the datasets used in the field of network intrusion detection are unbalanced
and lack volume.

NSL_KDD is a representative dataset that suitably reflects certain unbalanced charac-
teristics of data, such as rare data appearing in the real world. There are two important
characteristics of this dataset: First, to reflect the data imbalance, some data in the dataset
are rare data, although there are relatively few instances, making the training dataset alone
inadequate for sufficient learning. Second, we use the difference between the training
dataset and the test dataset class configurations to reflect the existence of new attacks that
are thus far unknown. In other words, there exist data that cannot be learned.

Owing to these characteristics, the NSL_KDD dataset has long been used in research,
and although it is not possible to reflect all recent attack trends, it is still a common source
of study.

Existing studies have sought to address the characteristics of data imbalances in the
NSL_KDD dataset and differences in training/test dataset class configurations. For exam-
ple, they either reconstruct the training dataset and the test dataset together, or may focus
on how the test dataset is directly involved in model generation without constructing a
validation dataset. These methods have resulted in factors that degrade model performance
outcomes, such as overfitting and changes in dataset configurations, and the detection
accuracy rates associated with the findings are in the low-to-mid 80% range.
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Therefore, in this paper, we present a way to utilize these characteristics, rather than to
eliminate them. First, we use oversampling methods to solve for the data imbalance issue
caused by rare data. We use a generative adversarial network (GAN) to generate additional
rare data and ensure the constancy of the amount of data while maintaining the construction
of the dataset. Moreover, we learn the characteristics of the rare data fully during the
neural network learning process, in order to improve the detection performance for the
given class. In addition, the existing test dataset is separated into a training dataset and a
validation dataset to generate models, with the training dataset used only for evaluating the
performance of the classification models. In other words, we attempt to generate a model
that is not overfitted by making the test dataset completely independent of learning. Second,
we use a softmax function that numerically indicates the probability that the model’s
predictive results are accurate in detecting new, unknown attacks. Experiments confirm
that new types of attack are often classified as normal, with ambiguous probabilities,
because they are not trained. If the softmax score does not exceed a certain level, we classify
traffic that is classified as normal traffic with ambiguous probabilities as attack traffic. The
main contribution of this paper is that it overcomes the following challenges:

• We fully learn the characteristics of rare data using a GAN, and we make the test
dataset independent of learning in order to prevent overfitting of the model;

• In order to detect new, unknown attacks using softmax, traffic classified as normal
with ambiguous probabilities is classified as attack traffic;

• We show improved classification performance outcomes through comparisons with
existing studies.

The goal of this paper is to classify rare data and new types of attacks accurately, and
to present models that do not result in overfitting. When applying the proposed method
to the NSL_KDD dataset, the accuracy rate is 91.66%, demonstrating an improvement of
6–16% compared to existing research.

The structure of this paper is as follows: Section 2 describes related work. Section 3
analyzes the NSL_KDD dataset. Section 4 describes our approach. Section 5 shows the
experimental and analytical results. Section 6 summarizes the results and presents future
research directions.

2. Related Work

Starting with LeCun et al. [1], who proposed the concept, deep learning has been
extensively applied to visual and speech recognition, as well as natural language processing.
Attempts are also actively underway to leverage deep learning to improve intrusion
detection performance outcomes. Mostafa A. Salama et al. [2] confirmed the performance
of binary classification using intrusion detection imaging and a hybridization scheme
method. Ugo Fiore et al. [3] implemented a semi-supervised anomaly detection system
to implement the ability of the model to adapt to changes and generalize behavior to the
network environment.

A convolutional neural network (CNN) is a representative deep learning algorithm
that demonstrates superior performance on image classification tasks. Typically, a CNN
is used as a method of classifying image classes after converting traffic from intrusion
detection fields into images. A CNN offers the advantage of reducing the computations by
algorithms by not having to perform the feature selection process early, but some sample
properties are inevitably excluded, resulting in losses. Nevertheless, a CNN allows for ef-
fective classification of classes while using all of the properties of the sample. Vinayakumar
R et al. [4] modeled network traffic in a predefined time range using a supervised learning
method using a time series. Xuewen Zeng et al. [5] applied an expression learning approach
to malicious program traffic classification using raw traffic data. Wei Wang et al. [6] used a
CNN to learn low-level spatial features of network traffic and use long short-term memory
(LSTM) networks.
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One of the best examples of applying deep learning to intrusion detection was that by
Chuanlong et al. [7], who applied a semi-supervised GAN (SGAN) to intrusion detection
model generation tasks; they achieved a high binary classification accuracy rate of 84.75%
on the NSL_KDD dataset. The discriminator of the original GAN is a binary classifier
that determines whether the sample is extracted from a real dataset, and it is not capable
of classifying sample classes [8]. On the other hand, the SGAN discriminator proposed
by Augustus et al. [9] serves as a classification model, and can also distinguish between
different classes of samples.

However, the above works ignored the effects of dataset imbalances and rare classes,
and used a CNN and an SGAN for image classification. To address this problem, two
studies [10,11] used a weighting method for each class of cost functions, and proposed
an undersampling method [12]. The resulting classification model performance shows
accuracy of approximately 80% based on the NSL_KDD dataset.

An important reason that the performances of intrusion detection models do not
exceed a certain level is that they overlook the fact that the training dataset from the dataset
and the detailed composition of the test dataset are different. Considerable amounts of
rare data exist in the NSL_KDD dataset—a benchmark dataset used in intrusion-detection-
related studies. In addition, there are many new types of attack traffic that are not in the
training dataset, but exist only in test datasets. This highlights the continued emergence of
new types of attack, or variant attacks. Classification models developed in existing studies
misclassify most samples of R2L and U2R attack traffic classes into normal traffic classes.

Kuhn and Johnson note that when applying a prediction model, the model should
be evaluated using samples not used for model construction and parameter tuning, with
overfitting also not occurring in the model [13]. Russell and Norvig continue to reiterate
the importance of the complete separation of the dataset used for final model performance
evaluations [14].

3. Dataset

The NSL_KDD dataset is an improved version of KDD Cup ’99, and is a benchmark
dataset for intrusion detection research. Given that KDD Cup ’99 contains a large number
of duplicate data samples (78%), it interferes with the learning of the classification model.
Therefore, NSL_KDD eliminates these duplicates, and keeps the ratio of normal traffic and
attack traffic similar to the actual ratio. Each traffic sample has 41 forms of characteristic
information in 4 categories, as shown in the example in Figure 1 [15], of which 32 are
continuous values, 6 are discrete values, and 3 are categorical data types.

Figure 1. Characteristic of the NSL_KDD traffic sample.

The dataset is largely divided into five classes: Normal, DoS, Probe, R2L, and U2R.
The compositions of the training dataset and test dataset are shown in Table 1.

Table 1. Class composition of NSL_KDD.

Class Total Normal DoS Probe R2L U2R

KDD
Train+ 125,973 67,343 45,927 11,656 995 52

KDD
Tset+ 22,544 9711 7460 2421 2885 67
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• Normal: Normal traffic;
• DoS: Traffic that attempts a denial-of-service attack;
• Probe: Traffic that attempts to acquire information for an attack, such as via a port

search;
• R2L: Traffic in which an unauthorized external user attempts to obtain access rights;
• U2R: Traffic attempting to acquire administrator rights.

Each attack class consists of several attack categories. As shown in Table 2, 3750 sam-
ples of 17 types that do not appear in the training dataset newly appear in the test dataset.
This is a high number, representing 29.2% of the total 12,833 attacks in the test dataset,
having a decisive influence on the attack traffic classification performance of the intrusion
detection system. For example, 996 instances of mscan in the Probe class are included only
in the test dataset, and not in the training dataset. In this case, neural networks trained
using the training dataset never learn the properties of mscan and, thus, cannot identify
instances of mscan in the test dataset. Here, mscan accounts for 7.3% of all attacks on the
test datasets—the third most common among all attacks. Detecting these can improve the
overall intrusion detection accuracy. Another important problem relates to imbalances
in training datasets, where most samples are biased towards certain types of attacks, re-
sulting in multiple rare classes. For example, in the case of neptune of the DoS class, the
number of samples is 41,214, which accounts for 70.3% of all attacks in the training dataset,
whereas guess_password and warezmaster of the R2L class number 53 and 20, respectively,
accounting for less than 0.1% of the training dataset.

Table 2. Class detail composition of NSL_KDD.

Set Class Category Samples Set Class Category Samples

Train+

Normal - 67,343

Test+

Normal - 9711

DoS

back 956

DoS

back 359
land 18 land 7

neptune 41,214 neptune 4657
pod 201 pod 41

smurf 2646 smurf 665
teardrop 892 teardrop 12
apache2 0 apache2 737

udpstorm 0 udpstorm 2
processtable 0 processtable 685

worm 0 worm 2
mailbomb 0 mailbomb 293

6 45,927 11 7460

Probe

satan 3633

Probe

satan 735
ipsweep 3599 ipsweep 141

nmap 1493 nmap 73
portsweep 2931 portsweep 157

mscan 0 mscan 996
saint 0 saint 319

4 11,656 6 2421

R2L

guess_password 53

R2L

guess_password 1231
ftp_write 8 ftp_write 3

imap 11 imap 1
phf 4 phf 2

multihop 7 multihop 18
warezmaster 20 warezmaster 944
warezclient 890 warezclient 0

spy 2 spy 0
xlock 0 xlock 9

xsnoop 0 xsnoop 4
snmpguess 0 snmpguess 331

snmpgetattack 0 snmpgetattack 178
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Table 2. Cont.

Set Class Category Samples Set Class Category Samples

httptunnel 0 httptunnel 133
sendmail 0 sendmail 14

named 0 named 17
8 995 13 2885

U2R

buffer_overflow 30

U2R

buffer_overflow 20
loadmodule 9 loadmodule 2

rootkit 10 rootkit 13
perl 3 perl 2

sqlattack 0 sqlattack 2
xterm 0 xterm 13

ps 0 ps 15
4 52 7 67

Attack 22 58,630 Attack 37 12,833
Total - 125,973 Total - 22,544

Although this dataset has long been available, new attacks continue to emerge, making
it clear that attacks that are not present in the training dataset are meaningful in an analysis
of the configurations present in the test dataset [16].

4. Our Approach
4.1. Structure of Our Model

The overall concept of the model scheme is shown in Figure 2. First, raw data from
NSL_KDD are preprocessed, categorical data are one-hot encoded, and continuous data
are adapted to the (0, 1) range via min–max normalization. The preprocessed data are
transformed into 28 × 28 16-bit grayscale images suitable for inputs from artificial neural
networks.

Figure 2. Structure of the model.

The training dataset is then constructed by dividing the training dataset (125,973) into
data to be used for real training (100,778) and data comprising a validation (25,195) dataset
to be used for validation at a ratio of 8:2, with the test (22,544) dataset used only for the
final evaluation. That is, the ratio of the training, validation, and test datasets is 8:1:1.

Next, we select rare data from the training dataset and generate additional samples of
that type using DCGAN. The generated samples are used for classification model training
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with the original training dataset samples. The classification model is constructed based
on SGAN, which showed outstanding performance during an NSL_KDD classification
attempt study [7].

Once a model is created that achieves the best accuracy through the training and
validation datasets, we use the model to check the softmax score for each sample on the test
dataset. If this score does not exceed a certain level, we classify the sample as attack traffic.

The most important purpose of intrusion detection systems is to block attack traffic
that penetrates the system when disguised as normal traffic. Therefore, it is more important
to distinguish whether traffic is of the normal or attack type before designating the attack
class in detail, and then to block attack traffic from penetrating the system.

In this paper, we reconstruct all four classes (DoS, Probe, R2L, and U2R) corresponding
to attacks into attack classes in the NSL_KDD dataset, and attempt binary classification for
attack and normal classes.

4.2. Data Preprocessing and Image Generation

Among the 41 features of the NSL_KDD dataset, ‘num_outbound-cmds’ was deleted
as an attribute, as it did not affect the classification performance of the model because
the values of all of the data were ‘0’. Because the three features of ‘protocol_type’, ‘flag’,
and ‘service’ are categorical rather than numerical data, symbols are mapped to numbers
through one-hot encoding. For example, three categories of protocol_type functions—
TCP, UDP, and ICMP—are mapped to (1,0,0), (0,1,0), and (0,0,1), respectively. Through
this process, 41-dimensional features of the NSL_KDD dataset are transformed into 121-
dimensional shapes. In addition, due to the wide distribution of the dataset features,
normalization is required so that certain features do not have an excessive impact on model
learning; in this paper, all values are changed to be in the range of (0, 1) through min–max
normalization [10].

Subsequently, the sample transformed into a 121-dimensional form through one-hot
encoding is converted to an 11 × 11 matrix, which is then converted to a 16-bit grayscale
image for reflection of the feature information into a single pixel of the image. Finally, as
shown in Figure 3, each sample is scaled to a size of 28 × 28, which is suitable for input
into an artificial neural network.

Figure 3. Sample images for each class (Normal, DoS, Probe, R2L, and U2R).

4.3. Resampling

Looking at the structure of the NSL_KDD training dataset, 13 of the 22 sub-attack
types in the attack class, including land in the DoS class, correspond to rare data, at less
than 1% of the total number of samples. After dividing the existing training dataset into
training and validation datasets at 8:2, using the DCGAN generator on a real training
dataset generates 1000 additional samples for each of the 13 attack types, increasing the
number of attack traffic samples in the training dataset from 46,904 to 59,904.

4.4. Classification Model Training

For classification model training, as shown in Figure 4, normal and attack traffic images
from the training dataset, images generated from DCGAN, and fake images generated by
the generator of SGAN are used as inputs. One of the goals of SGAN is to use unlabeled
images for learning, but NSL_KDD uses all labels in an intact manner, because samples
are already designated according to class, and with more labels used, better classification
accuracy results.
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Figure 4. Training of the classification model.

4.5. The Softmax Score and Reclassification

Table 3 is part of the softmax scores for the KDDTest+ process in the classification
model. For example, for Sample 1, the probability of attack traffic is 100%, and the
probability of normal traffic is 0%. On the other hand, samples 56 and 114 were misclassified
as normal traffic, with a low probability of 64.750% and 55.047%, respectively, although
they were samples representing actual attack traffic. Therefore, we reclassify samples
classified with these ambiguous probabilities as attack traffic.

Table 3. The KDDTest+ softmax score.

Real Class Sample
Number

Softmax Score Predicted
ClassAttack Normal

Attack

0 1.00000 0.00000 Attack
1 0.98548 0.01452 Attack
2 1.00000 0.00000 Attack

. . . . . . . . . . . .
56 0.35250 0.64750 Normal
. . . . . . . . . . . .
114 0.44953 0.55047 Normal
115 0.99716 0.00284 Attack

Normal

22,539 0.00024 0.99976 Normal
22,540 0.00000 1.00000 Normal
22,541 0.40185 0.59815 Normal
22,542 0.00000 1.00000 Normal
22,543 0.00002 0.99998 Normal

4.6. The Performance Evaluation Index

To evaluate the performance capabilities of the classification models, we typically use
metrics such as accuracy, precision, recall, and F1 scores. However, ACC (accuracy), DR
(detection rate), and FAR (false alarm rate) are used in the study of intrusion detection
systems. In other words, in this paper we use ACC, DR, and FAR as performance evaluation
metrics. The relationships between elements of the error matrix, and binary classification
to illustrate them, are shown in Figure 5 [4].
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Figure 5. Relationships between TP, FP, FN, and TN.

The three evaluation indicators can be defined as follows: (1) ACC = (TP + TN)/(TP
+ FN + FP + TN); (2) DR = TP/(TP + FN); (3) FAR = FP/(FP + TN). In addition, ACC
and DR should be improved without excessively increasing FAR, in order to improve the
performance of the model.

5. Experiment and Evaluation

All experiments in this paper were conducted using Python and Keras on a PC with
the Windows 10 Home 64-bit operating system, an AMD Ryzen 7 4800H CPU, 16.0 GB of
RAM, and a NVIDIA GeForce GTX 1650i graphics card.

The KDDTest+ confusion matrix in the classification model shown in Figure 6 in-
dicates that most of the normal traffic is correctly classified, while 3531 out of a total of
12,833 instances of attack traffic are incorrectly classified as normal traffic. As shown in
Figure 7, the training results achieved the highest accuracy in Epoch 57, with rates of
99.51% for the training dataset and 99.51% for the validation dataset, and 83.14% accuracy
was later achieved by conducting experiments on the test dataset using this model.

Figure 6. Confusion matrix for the KDDTest+.
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Figure 7. Accuracy of the classification model.

Table 4 presents the results after reclassifying the traffic as attack traffic when the
softmax score is below a certain level, e.g., reclassifying samples with a softmax score of
0.990 or less as attack traffic increases ACC by 7.94% and DR by 16.61% compared to the
original model. As a result, the maximum softmax score increases the ACC, DR, and FAR
levels. At this time, a high FAR can be analyzed by administrators, but low ACC and DC
outcomes do not properly block attack traffic, causing serious damage within the system,
implying that it is important to increase ACC and DR even if FAR rises.

Table 4. The result of the reclassification.

Max Softmax Score ACC (%) DR (%) FAR (%)

Original 83.140 72.485 2.780
<0.990 91.084 89.098 6.292
<0.991 91.173 89.387 6.467
<0.992 91.266 89.683 6.642
<0.993 91.284 89.901 6.889
<0.994 91.341 90.205 7.157
<0.995 91.457 90.587 7.394
<0.996 91.637 91.218 7.806
<0.997 91.656 91.576 8.238
<0.998 91.581 91.943 8.897
<0.999 91.115 92.543 10.462

The ACC score records the maximum values at the point where samples with a
maximum softmax score of 0.997 or less are reclassified as attack traffic, increasing ACC by
8.52% and DR by 19.09%. The accuracy and confusion matrix of the model are shown in
Figures 8 and 9, respectively.
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Figure 8. Accuracy of our model.

Figure 9. Confusion matrix for our model.

Table 5 shows the results of a comparison of the model method in this study with
that in an earlier aforementioned study. Compared to this earlier work, we can say that
the effectiveness of the model method proposed here is sufficient, as it outperformed the
previous method by 6.63–14.84% for ACC.

Table 5. The performance comparison.

Model ACC (%)

DNN-4 [17] 82.74
RNN [17] 77.00

CNN4 [17] 80.00
RF [17] 77.00

SVM [17] 78.00
Random tree+NBTree [18] 89.24

TSE-IDS [18] 85.79
SAVAER-DNN [18] 89.36

OUR MODEL 91.66

6. Conclusions

In the real world, certain attacks are less numerous than others, and new types of
attack continue to emerge. Therefore, the quality of the data in these cases is difficult to
determine, and the datasets used in the field of network intrusion detection are unbalanced
and lack volume. The purpose of the intrusion detection system is to prevent attempts to
penetrate the system as if attack traffic was normal. Therefore, we reclassify four attack
classes (DoS, Probe, R2L, U2R) from the NSL_KDD dataset into attack classes, attempting
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binary classification for attack and normal classes in this dataset. The main contribution of
this paper is that it overcomes the following challenges: We fully learn the characteristics
of rare data using a GAN, and we make the test dataset independent of learning in order to
prevent overfitting of the model. In order to detect new, unknown attacks using softmax,
traffic classified as normal with ambiguous probabilities is classified as attack traffic. We
show improved classification performance outcomes through comparisons with existing
studies.

In this paper, to implement the proposed model and technique, the raw dataset of
NSL_KDD is preprocessed with one-hot encoding and normalization, and transformed
into 28 × 28 16-bit grayscale images. We then divide the training dataset into training
and validation datasets to make the test dataset fully independent. Rare data from the
training dataset are generated using DCGAN and learned using a model based on the
SGAN classification model. We also propose a method that reclassifies traffic as attack
traffic when the softmax score is below a certain level.

The experimental results show that the accuracy rate is 91.66%, which is 6~16% better
than the results of previous research.

Various neural networks and datasets will be used in future studies, and the method
here will be extended beyond binary classification to applicable methods for multi-class
classification problems. Furthermore, we will study the performance improvement of the
output layer function calculated with ambiguous probability.
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