
electronics

Article

A Self-Supervised Model for Language Identification
Integrating Phonological Knowledge

Qingran Zhan 1, Xiang Xie 1,2,*, Chenguang Hu 1 and Haobo Cheng 1,2

����������
�������

Citation: Zhan, Q.; Xie, X.; Hu, C.;

Cheng, H. A Self-Supervised Model

for Language Identification

Integrating Phonological Knowledge.

Electronics 2021, 10, 2259. https://

doi.org/10.3390/electronics10182259

Academic Editor: Daniel Hládek

Received: 12 August 2021

Accepted: 7 September 2021

Published: 14 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China;
qingran.zhan@gmail.com (Q.Z.); 3220200551@bit.edu.cn (C.H.); chb@bit.edu.cn (H.C.)

2 Shenzhen Research Institute, Beijing Institute of Technology, Shenzhen 518000, China
* Correspondence: xiexiang@bit.edu.cn

Abstract: In this paper, a self-supervised learning pre-trained model is proposed and successfully
applied in language identification task (LID). A Transformer encoder is employed and multi-task
strategy is used to train the self-supervised model: the first task is to reconstruct the masking spans
of input frames and the second task is a supervision task where the phoneme and phonological
labels are used with Connectionist Temporal Classification (CTC) loss. By using this multi-task
learning loss, the model is expected to capture high-level speech representation in phonological
space. Meanwhile, an adaptive loss is also applied for multi-task learning to balance the weight
between different tasks. After the pretraining stage, the self-supervised model is used for xvector
systems. Our LID experiments are carried out on the oriental language recognition (OLR) challenge
data corpus and 1 s, 3 s, Full-length test sets are selected. Experimental results show that on 1 s test set,
feature extraction model approach can get best performance and in 3 s, Full-length test, the fine-tuning
approach can reach the best performance. Furthermore, our results prove that the multi-task training
strategy is effective and the proposed model can get the best performance.

Keywords: self-supervised learning; phonological knowledge; language identification

1. Introduction

Recently, the self-supervised training has shown to be effective for improving down-
stream systems [1–4]. Speech signal contains a rich set of acoustic and linguistic informa-
tion, including phonemes, words, articulatory and even sentiment information. Through
self-supervised pre-training, high-level speech representation can be captured from raw
speech [1,5]. The learned models could be applied to downstream speech and language
processing tasks through feature-based speech representation extraction.

In this work, we propose a self-supervised based pre-trained model where the phono-
logical labels are used as an auxiliary objective. In this model, two objectives are used.
First, like most of the self-supervised models do, the masking strategies are applied on the
input frames and the L1 Loss is used to minimize reconstruction error between prediction
and ground-truth frames. Second, to make the model learn the speech representation in
phonological space, we apply the CTC with phoneme and phonological labels. After the
pre-training stage, xvectors system is incorporated with pre-trained self-supervised model
for LID. The framework is described as Figure 1.

During the self-supervised model training, the input acoustic frames are randomly
masked on time and channel axis, the model learns to reconstruct and predict the original
frames. In neutral network models, a contrastive loss can induce high-level latent knowl-
edge [5] so the sequence-level CTC loss is used with phoneme and phonological labels
for phonological representation learning here. Language identification is very important
in our real life communication, for both text LID [6,7] and speech LID [8,9]. In speech
LID, phonetic knowledge is often used to improve the system performance. The most
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traditional approach is to incorporate the deep bottleneck features (DBF) with LID model,
where the DBF is extracted from a well-trained hybrid automatic speech recognition (ASR)
system. In our proposed model, we not only use phonetic information, phonological
knowledge is also introduced to make the model learn phonological representation. A lot
of researches have proved that the phonological knowledge can be shared across different
languages by using statistical model but most of the previous works are using “acoustic-to-
articulatory(-attribute) modeling [10,11]. When the self-supervised model reconstructs the
masked frames, the CTC loss works as a regularization with phonological knowledge at
the same time, thus the model can capture high-level representation at phonological space.
To balance the different losses, we apply a principled approach to multi-task deep learning
which weighs multiple loss functions by considering the homoscedastic uncertainty of each
task. Because of the jointly training, the model can learn both acoustic and phonological
representation. By incorporating the pre-trained model, the LID system can integrate the
phonological representation from source language through model transferring method to
improve the LID performance.

Figure 1. Block diagram of the proposed self-supervised pretrain model for language identification.
For model transfer, two approaches are considered: Feature extraction and Fine tuning, which will be
described in Section 4.

The rest of the paper is organized as follows: Section 2 presents some related works.
Section 3 describes the definition of the phonological. Section 4 gives the model architecture.
Section 5 and Section 6 show the experiments set and experimental results. Section 7
concludes the paper.

2. Related Work

Inspired by the Masked Language Model (MLM) task from BERT [12], researches
have explored using BERT-style tasks to pretrain speech encoders. In [13], the author
proposed a transformer encoder based pretrain model named Mockingjay, where the input
frames are masked to zero. The model learns to reconstruct and predict the original frames.
In Audio ALBERT [14], Mockingjay is modified to share parameters across Transformer
layers. In [13], a pretrained model using time and frequency alteration objective, the results
show that the pretrained model can improve several downstream tasks. In PASE [15],
a single neural encoder is trained to solve multiple self-supervised tasks at the same time,
including reconstruction of waveform, Log power spectrum, MFCC, prosody and other
binary discrimination tasks.

The phonological knowledge has been used in many speech tasks. Many researches
design neutral network model to map the acoustic features to articulatory features (AFs) by
using phonological knowledge. In [16], the authors combined the acoustic and articulatory
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features, which can improve the speaker identification performance. [17] applied the articu-
latory features (AFs) to Deep Bottleneck (DBN) features based ivector and xvector systems,
which can get better performance than baseline. Because the AFs are language-independent
features, there are many researches focused on multilingual speech recognition [18–20]. Pre-
vious studies generally take a bottom-up approach and train phonological feature detectors,
and here we jointly train the phonological labels and the acoustic frames reconstruction.

Most traditional solutions are based on ivector which is extracted from Gaussian
mixture model (GMM) [21]. Recently, as the development of the deep neural network
(DNN), it has been demonstrated that the DNN can bring significant improvement for LID.
In [22], the authors developed deep bottleneck features (DBF) based ivectors, which were
extracted from a well-trained hybrid automatic speech recognition (ASR) system. In [23],
authors proposed a LID model namedPhonetic Temporal Neural Model (PTN) where
LSTM-RNN LID system that accepts phonetic features produced by a phone-discriminative
DNN as the input. In this work, the self-supervised model is used to learn phonological
knowledge and transfer the knowledge to LID model.

3. Phonological Definition

In this experiment, Mandarin is used to train the self-supervised model. According
to the previous work [24] and the International Phonetic Alphabet (IPA) [25], we defined
the six speech attributes for Mandarin, which can be found in Table 1. These attributes
of speech can be comprehended by a collection of information from fundamental speech
sounds. For each phoneme, it has six classes: Place, Manner, Front, Height, Roundness and
Voiced. In this table, the nil means "not specified". For example, the articulatory class
Manner does not exist in consonants, thus, in consonants phones, this class is defined as nil.

Table 1. Articulatory classes definition for Mandarin.

Articulatory
Classes

Articulatory
Attributes Phoneme

Place

alveolar n l d t

bilabial b p m

dental c iy

labiodental f

palatal aa o u j q a oo i
iz ei uu g ee x v e vv ii

pos-alveolar zh r sh ix ch

retroflection er

velar h

nil sil

Manner

fricative f s sh r x h

lateral i

nasal m ng n

stop t q j b d ch zh c g k p z

nil all_vowels sil
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Table 1. Cont.

Articulatory
Classes

Articulatory
Attributes Phoneme

Voiced

voiced
oo uu o n ng

ei ix a er i vv ee ii
iz r m e u iy aa i v

unvoiced s ch p zh z x sh b t g q k c h d j f

nil all_consonants nil

Height

height iz vv i iy ix v u uu ii

low ee e oo o

mid-height ee e oo o

mid-low er er

nil all_consonants sil

Round

round u v uu vv o oo

unround ix iy a e ee iz i ii aa er ei

nil all_consonants sil

Front

front i ei v iy vv iz ii

central a aa er ix

back uu e ee oo o u

nil all_consonants sil

4. Model Structure
4.1. Architecture for Self-Supervised Model

In recent years, Transformer model has been applied successfully in mask speech
tasks [26,27], so we use a standard multi-layer Transformer encoder with multi-head self-
attention for left-and-right bidirectional encoding to train the self-supervised model. Each
encoder layer has two sublayers, the first is a multi-head self-attention network, and the
second is a feed-forward layer, each sub-layer has a residual connection followed by layer
normalization [6]. To make the model aware of the input sequence order, the positional
encoding is used. The sinusoidal positional encoding instead of learnable positional
embeddings because acoustic features can be arbitrarily long with high variance [13].
After the Transformer encoder, the fully connected layer is used to reduce the dimension of
the output vector.

4.2. Multi-Task Learning

As we describe above, there are two tasks in our proposed model: reconstruction
task and supervision task using phonological knowledge. By training the model jointly
with these tasks, the model can learn more on phonological space since LID relies on
phonological information. The training stage is described in following parts:

• Reconstruction task: For reconstruction task, we apply two kinds of masking ap-
proaches on the input frames: Time mask and Channel mask.

– Time mask: Follow BERT and some previous work on self-supervised models
with speech, the Time masking strategy is used. Through the masking of segments
along the time axis, our model learns bidirectional representations from past and
future contex. For the Time mask, 15% of the input frames are selected. In the
selected 15% of frames, (1) 80% of those frames are masked to zero. (2) 10% of
those frames are replaced by random frames. (3) leave the frames untouched 10%
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of the time. Through the masking of contiguous segments along the time axis,
our model learns bidirectional representations from past and future context.

– Channel mask: Inspired by Specaugment [28] and TERA, we also introduce channel
mask on top of time mask. For channel mask, a block of consecutive channels
is masked to zero on all the time step. In our experiments, the percentage of
the masked channels are 20%. In [29], the results showed that using channel
masking can make the model to learn more on speaker representation. So by using
the channel masking, we want to find whether the channel masking can learn
phonological representation since the CTC loss with phonological knowledge
is used.

To better illustrate the Time mask and Channel mask, we visualize different masking
strategies, as plotted in Figure 2.

(a)Original Fbank features

(b)Time masking

(c)Channel masking

(d)Combining Time masking and Channel masking

Figure 2. Visualization of the inputs frames on different masking strategies. The masking parts are
highlighted in Red.

For both masking strategies, we follow RoBERTa [30] and generate new masking
patterns for each batch. Finally, we reconstruct all the frames to induce acoustic
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information at all positions and more explicitly train the model. The loss is described
as follows:

Lrec =
1
T ∑T

t=1 |xt − zt| (1)

where zt are outputs of the transformer encoder and xt is the input.
• Supervision task: To make the model learn phonological representation from speech,

the CTC loss function is applied and the phoneme and phonological labels are used.
The CTC approach is an objective function for sequence labeling problem [31], which
doesn’t rely on force alignment between input and output labels. For the phoneme
output, the loss of the phoneme based CTC can be calculated as:

Lphn−ctc(y|x) = ∑πεΩ(ŷ) P(π|x) (2)

where the x is the input acoustic features and y is the phoneme sequence.
There are 6 classes for phonological labels, so for ith class, the loss is:

Lpho−ctc−i(y|x) = ∑πεΩ(ŷ) P(π|x) (3)

where the x is the input acoustic features and y is the phonological labels sequence.
So the multitask learning loss is:

L = λrecLphn−ctc(y|x) + λphnLp f−ctc−1(y|x) + λiLp f−ctc−i(y|x) (4)

The λ represents the weight of the corresponding task.
When using the multi-task learning, the performance of the model can be sensitive to

the weight between different tasks and finding optimal values can be expensive. To better
train the model, we propose to use the adaptive loss function derived in to automatically
weight the task-specific loss functions [32], i.e.,

Lada(σ1, σ2σi) =
1

σ2
1

Lrec +
1

σ2
2

Lphn−ctc +
i

σ2
1

Lp f−ctc−i + logσ1σ2σi (5)

Thus this adaptive loss is used for model training.

4.3. Xvector System

For the xvector system, the Time Delay Neutral Network (TDNN) based xvector
system is chosen because it can get the state-of-art results and always considered as the
baseline for LID [33,34].

The first five layers are the extended context layers while following a statistical pooling
layer then accumulates all frame-level outputs. Then the outputs are calculated the mean
and standard deviation and the segment-level fixed-dimension representation is obtained.
The segment-level statistics are passed to the fully connected hidden layers. There are main
two ways to incorporate the pretrained model to language identification tasks.

4.4. Incorporating with Language Identification Tasks

• Feature Extraction: The first approach is to extraction the features from the last
layer of transformer encoder. The extracted features are fed to LID system as input.
Parameters of the self-supervised model is frozen when training the LID system in
this approach. In later experiments, we denote this approach as FE.

• Fine-tuning: The second approach is to fine-tune the self-supervised model with
LID model. Here the output of the self-supervised model is connected to the xvector
model. We then update the pretrained model with random initialized xvectors model.
In later experiments, we denote this approach as FT.
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5. Experiment Setup
5.1. Datasets

For the self-supervised model, the THCHS30 [35] dataset is used and the details of the
dataset are listed in Table 2. The LID experiments are conducted on the second oriental
language recognition (OLR) challenge AP17-OLR [34]. The training set contains 10 different
languages: Mandarin, Cantonese, Indonesian, Japanese, Russian, Korean, Vietnamese,
Kazakh, Tibetan and Uyghur. In these languages, the male and female speakers are
balanced. For the training set, it is recorded by mobile phones, with a sampling rate of
16 kHZ and a sample size of 16 bits.

Table 2. Statistics of THCHS-30 database.

Dataset Speaker Utterances Duration (Hours)

Train 30 10,893 27.23
Test 10 2496 6.24

Our systems are evaluated on AP17 challenge’s development set , which is selected
apart from the training set. The development set contains three test sets of different
conditions: 1 s, 3 s and full length utterance condition, which are denoted as 1 s, 3 s,
and full-length. The test utterances of the 1 s and 3 s are randomly excerpted from the
full-length utterance. If a test utterance is not sufficient long for the excerption, it is simply
discarded. The details of the dataset are described in Table 3.

Table 3. Statistics of AP17 challenge database.

Languages
Train Test

No. of Speakers Total Utt No. of Speakers Total Utt

Kazakh 86 4200 86 1800

Tibetan 34 111,000 34 1800

Uyghur 353 5800 353 1800

Cantonese 24 7559 6 1800

Mandarin 24 7198 6 1800

Indonesian 24 7671 6 1800

Japanese 24 7662 6 1800

Russian 24 7190 6 1800

Korean 24 7196 6 1800

Vietnamese 24 7200 6 1800

5.2. Self-Supervised Model Setup

For the self-supervised model training, the input to our network is cepstral mean-
normalized Fbank of speech utterances. All of the features are extracted using open-source
toolkit Kaldi [36] , using windows of 25 ms and an overlap of 10 ms. We stack every 3 frames
to reduce the memory cost of long sequences [37]. The self-supervised Transformer encoder
architecture has 12 self-attention layers and the number of multi-head attention is 12.
Gradient descent training with mini-batches of size 16 is used to find model parameters.
The Adam optimizer [38] is employed for updating model parameters, where learning rate
is warmed up over training.

All the experiments are conducted on Pytorch [39].
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5.3. LID Systems

To compare our proposed model, different systems are introduced:

• Xvectors: For the xvector system, the open-source toolkit asv-subtools is used [40].
The acoustic features for xvector system is 23-dim MFCCs and before feeding to the
xvector system, a frame-level energy-based voice activity detection (VAD) is used
to select voiced speech frames. The xvector system contains 6-layers TDNN layers,
the details of the TDNN configuration is shown in Table 4. To get the xvectors, 512-
dimensional embedding features are extracted at the layer segment6 of the network
before the nonlinearity. We apply the Linear Discriminant Analysis (LDA) to reduce
the dimension of output vectors. For the back-end classifiers are used: Logistic
Regression(LR) and Probabilistic Linear Discriminant Analysis(PLDA).

Table 4. The standard xvector architecture. The T represent the speech frames to input the DNN,
and t is the current frame.

Layer Layer Context Context Input Dim Output Dim

Frame 1 (t − 2, t + 2) 5 200 512
Frame 2 (t −2, t, t+ 2) 9 1536 512
Frame 3 (t −3, t, t + 3) 15 1536 512
Frame 4 (t) 15 512 512
Frame 5 (t) 15 512 1500

stats pooling [0,T) T 1500T 3000
segments 6 (0) T 3000 512
segments 7 (0) T 512 512

softmax (0) T 512 6

• SSLxv: The self-supervised learning pre-trained model is used to incorporate xvector
system, as shown in Figure 1.

• PTN: Phonetic Temporal Neural Model (PTN) [23] an auxiliary phonetic model pro-
duces phonetic feature, and an RNN LID model is used to identify the language.
The PTN is also the baseline for AP17 OLR challenge [34]. Meanwhile, in the results
reported by this model, the same source data THCHS30 is used.

• IM-LSTM-PTN: The structure of the IM-LSTM-PTN is described in [41]. This model
is the submitted model to AP17 OLR challenge which ranked 4th among all the partici-
pated teams (http://cslt.riit.tsinghua.edu.cn/mediawiki/index.php/OLR_Challenge_
2017). Based on the PTN, The IM-LSTM-PTN uses a modified LSTM which has a
top-down connection from time t to time t + 1.

6. Experimental Results
6.1. Language Identification Results

First we list all the results on proposed methods in Table 5. In this table, it can
be found that for back-end classifiers, the LR always performs better than PLDA in all
the LID systems. For model transferring approaches, in short duration test condition 1
s, the FE outperforms than FT. This is because that the 1s utterance is too short so it is
hard to do fine-tuning on pretrained model. In 3 s and Full-length test condition, FT can
get better performance. When applying the channel masking on top of time masking,
the performance of the LID always worse than only using time masking. The reason is
that the LID often requires linguistic knowledge which is on time axis and the CTC loss is
a sequence-level loss. Previous works also show that the channel masking mainly helps
to encode speaker information [29]. Then we compare our best results with some other
results reported in some previous works, which are listed in Table 6. Among al the results
reported, our proposed model still can get the best performance. More specifically, when
comparing our best results with PTN which is also a phonetic based LID model, our results
still have significant improvement.

http://cslt.riit.tsinghua.edu.cn/mediawiki/index.php/OLR_Challenge_2017
http://cslt.riit.tsinghua.edu.cn/mediawiki/index.php/OLR_Challenge_2017
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Table 5. LID results (EER %) on different test set. In this table, FT means fine-tuning and FE means
feature extraction. “+” means the corresponding approach is used and “−” means not. “+ channel”
means the channel masking is applied on the corresponding model.

Methods LID Sytem LR PLDA 1 s 3 s Full-Length

Baseline Xvector PLDA − + 12.9 5.9 4.9
XvectorLR + − 10.9 5.6 3.4

Proposed Methods

SSLxv+PLDA(FT) − + 10.9 4.5 3.2
+ channel − + 11.6 4.6 3.5

SSLxv+PLDA(FE) − + 11.9 3.8 2.3
+ channel − + 13.8 5.1 3.6

SSLxv+LR (FT) + − 10.0 2.5 1.6
+ channel + − 10.1 4.6 3.4

SSLxv+LR(FE) + − 9.7 3.3 2.4
+ channel + − 11.8 3.5 2.8

Table 6. LID results (EER %) on proposed model and some results from previous works. In this table,
the results of proposed model are the best from Table 5.

Methods LID Sytem 1 s 3 s Full-Length

Proposed Methods SSLxv+LR (FT) 10.0 2.5 1.6
SSLxv+LR(FE) 9.7 3.3 2.4

Competive Methods

PTN [23] 12.3 8.2 8.0
LSTM-LID [23] 11.7 8.0 7.8
TDNN-LID [23] 15.6 15.4 14.6

ivector+SVM [23] 12.6 4.7 3.3
IM-LSTM-PTN [41] 11.7 8.0 7.8

stacked-SDC-Resnet [42] 14.4 11.1 10.1

6.2. Analysis of Different Tasks

To analyze the influence of different tasks in the training stage, we train our model
with single task and apply to LID. To simplify the experiments, we conduct the experiments
using SSLxv+LR (FT). The results are listed in the Table 7.

It shows that all the single tasks can improve the LID results. Meanwhile, the model
only using reconstruction loss performs worse than only using CTC loss does which is
because the phonetic knowledge always benefits the LID system. By combining all the
losses and using weighted adapted loss, the LID system can get the best performance.
Considering all the results above, it can be concluded that through the reconstruction task,
the model can capture contextual representation and when the supervision task is applied,
the phonological representation is learned. So by jointly training these two tasks, our
proposed method can improve the performance on LID.

Table 7. Multi-task learning results versus different single tasks (EER %). The results of SSLxv+LR

(FT) are taken from Table 5.

LID Systems 1 s 3 s Full-Length

Xvector 12.9 5.9 4.9
SSLxv+LR (FT), only Lphn−ctc 10.5 2.9 2.0
SSLxv+LR (FT), only Lpho−ctc 10.7 3.2 2.3

SSLxv+LR (FT), only Lrec 11.1 3.6 2.6
SSLxv+LR (FT) 10.0 2.5 1.6
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7. Conclusions

In this paper, a self-supervised model integrating phonological knowledge is proposed
for language identification. The proposed model achieves training speech perception
and speech production jointly by using self-supervised approach and our model can get
significant improvement on downstream task (language identification task). In the self-
supervised model, the reconstruction loss and CTC loss with phonological labels are jointly
used to train the model. For the reconstruction loss, we apply masking on time and channel
axis and use L1 loss to reconstruct the output frames. For the CTC loss, the phoneme
labels and phonological labels are used to train the model. By doing the jointly training,
the model aims to learn high-level speech representation at phonological space. The final
results show that our proposed model can get best performance with features extraction
(FE) model transfer approach and LR as the back-end classifier. Our future work will
explore on applying our proposed model on other speech tasks.
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