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Abstract: In this paper, a review on the three most important communication techniques (ground,
aerial, and underwater vehicles) has been presented that throws light on trajectory planning, its
optimization, and various issues in a summarized way. This kind of extensive research is not often
seen in the literature, so an effort has been made for readers interested in path planning to fill the
gap. Moreover, optimization techniques suitable for implementing ground, aerial, and underwater
vehicles are also a part of this review. This paper covers the numerical, bio-inspired techniques and
their hybridization with each other for each of the dimensions mentioned. The paper provides a
consolidated platform, where plenty of available research on-ground autonomous vehicle and their
trajectory optimization with the extension for aerial and underwater vehicles are documented.

Keywords: path planning; ground vehicle; underwater vehicle; UAV; robotics; numerical techniques;
bio-inspired techniques; hybridization; non-linearity

1. Introduction

The 21st century is the century of autonomy, which accounts for the revolutionary
turn in science and technology. The first autonomous guided vehicle was introduced in
the 1950s when Barrett Electronics of Northbrook devised a trailer truck that can follow
a wire on the ground instead of a truck [1]. Advancement in research and commercial
technology made it conceivable for UAVs, robots, and their related application to appear in
our daily life activities at an unprecedented rate [2,3]. For UAVs, Dull Dirty and Dangerous
(DDD) missions [4–11] are the most prominent applications, whereas for robotics, iRobot
applications [12] and Self-Driven cars [13] have gained much importance in research area
as well as in commercial technology. Such vehicles require autonomous path planning
algorithms to be energy/time efficient for their implementation.

The vehicles are equipped with intelligent equipment to localize their position, detect
obstacles, and control the motion utilizing suitable navigational techniques to perform
navigation tasks. Hence the selection of appropriate navigational techniques is essential
for path planning, optimization, and obstacle avoidance. For path planning and motion
control of the vehicle, it is envisaged that the vehicle possesses the capability of detecting
the obstacle during motion and judge the environment for traveling. So the question
becomes, what is expected from such vehicles?

The primary objective of researchers is to develop a real-time autonomous guided
vehicle that can travel and can interpret the information gathered from the environment
to precisely determine the position and direction towards the goal in both structured
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and unstructured (obstacle cluttered) environments [14]. The next objective is to achieve
all these tasks with the shortest, safest, and most economical route, which ensures the
computational and space complexity without anybody’s intervention [15,16].

Traditionally, path planning involves (a) acquiring information from surroundings,
(b) localization of current position, and (c) cognitive mapping helps in taking the required
decision satisfying algorithm and executing the task [17]. The autonomous guided vehicle
research area lies in formulating computational, algorithmic structures that must be applied
to hardware structures utilizing minimum resources. By optimization, further enhancement
can be made. An efficient path planning technique of autonomous vehicles can reduce
search time and minimize the capital investment of autonomous robots. Optimizing
autonomous vehicle path planning involves various practical applications, e.g., disaster
management, rescue operations, job performance in industries and factories, agriculture,
restaurants, homes, and many others. Due to their applicability and diversity, it has gained
importance for researchers to explore the various branches. Autonomous vehicles do not
need human assistance for their operation. Any autonomous vehicle needs a path planner
to determine the next movement in any indoor/outdoor environment. The definition of
path planning differs from researcher to researcher [18,19].

2. Scholarly Contributions and Applications

The optimization algorithms for pathfinding for ground robotics [20–24], aerial ve-
hicles [25–27], and underwater vehicles [28,29] includes a wide range of applications.
The most well-known applications for autonomous vehicles are obstacle avoidance, path
planning, localization, navigation, sensing, and communication, which works on pre-
essential maps related to the environment; they also play a vital role in communication
relay, aviation industry for surveillance, and loitering dominated missions. However,
motion control and path planning problems are considered complex navigation tasks to
perform. Path planning involves numerous strategies to determine how a vehicle can reach
its destination point safely, guaranteeing that obstacles are avoided [30].

Oceans are considered the vital assets of a human society [31]. Autonomous underwa-
ter vehicles have numerous advantages, including payload capacity, depth activity despite
their short battery life, and high cost. An AUV is a reliable subsidiary part of a robot [32]
because it involves numerous sensors that are not bound by space and time [33].

Minghan Wei et al. [34] studied mobile robotics for indoor applications. The primary
concept for energy-efficient navigation involves offline and online navigation. Offline
involves relying on previously built maps of the environment, whereas online caters to
real-time navigation by building a map of its locality using local information. The authors
built the segmented image of the environment using the covariance function for a Gaussian
Process (GP)-type representation. In the online navigation process, energy measurements
collected during the trajectory formation estimate the surrounding area’s energy profiles
using GP regression integrated with an A-star algorithm. The validity and feasibility are
checked through simulations and experiments, both for practical application purposes.
Jeffrey Delmerico et al. [35] have addressed the issue involved in trajectory formation for
ground robotics and observation from a flying robot. The proposed idea is designed for
disaster sites for the delivery of aid. It involves the active exploration of the surrounding
area, where the flying robots map the entire area for optimization to reduce the response
time. The authors estimated the terrain map and performed a 3D simulation. The obtained
data from the terrain is used to estimate the efficient trajectory for ground robots. The ex-
periment demonstrated efficient results, and performance capabilities proved exceptionally
well. Pablo Marin et al. [36] aimed to analyze the performance of trajectory planning based
on the Time Elastic Band (TEB) and on the Ackerman model. The software involved is the
Robot Operating System (ROS), and the research platform is the iCab (Intelligent Campus
Auto-mobile). The modules involved in the trajectory formation proved that the goal can be
achieved without collision. The experiments were performed inside the university Carlos
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III from the starting point to the goal point without any collision. Table 1 depicts the few
robotics parameters mentioned in different studies.

Table 1. Robotic parameters mentioned in different studies.

Control Panel Sensor Software Testing Environment Source

E-puck robot IR, VGA camera,
Bluetooth Webots software Urban [37]

Pioneer 3-DX camera Xilinx, GA-IP
FPGA Laboratory based [38]

Matlab(ROS system) – ROS (SLAM) Willow Garage map [39]
Aria P3-DX – Saphira software simple environment [40]
Pioneer 3-DX robot sonar ROS simple environment [41]

In [42], the authors presented the survey UAV helicopter for autonomous cargo pickup,
which involved deployment and self-tracking. The authors in [43] discussed airborne mar-
itime surveillance for safeguarding national security and sea surveillance. Unmanned
Aerial vehicles known as UAVs tend to take off and land and are popularly used in nu-
merous environments. They are often used as drones’ targets. Every mission requires
subtle path planning and collision avoidance by optimizing a cost function with constraints.
The authors Primatesta et al. [44] presented the risk-aware trajectory strategy for UAVs in
urban scenarios. The objective is to calculate the shortest path that mitigates the risk to the
population. The authors introduced the off-line and on-line modes of the map computation.
First, a tentative map is constructed using static information using an ad hoc variant, an
A-star algorithm for trajectory planning, and later, the on-line mode utilizes the dynamic
map construction for navigation. Rochin et al. [45] introduce the concept of an autonomous
control system to navigate the pre-defined target with the help of a UAV. A camera facing
down mounted on a UAV continuously searches for the desired target; with the help of
the image detection system, it is completed and the target is found, the navigation stops,
and the required target specified location is reported back. The authors combined NED
(north-West-Down) with relative coordinates position FRU (Front-Right-Up). In the end,
3D simulation is done using Gazebo for real-world implementation. The Naazare et al. [46]
exhibited the application of a graph-based path planner on a UAV to avoid restricted areas.
The trajectory builds a visibility graph of the environment using GPS information and finds
the shortest path utilizing the A-star algorithm. The generated waypoints show the global
localization. Furthermore, the trajectory planner can be used to successfully eliminate
the difficulty of the manual operation of UAVs around restricted areas under challeng-
ing circumstances. Hailong et al. [47] presented the integration of UAVs with UGVs for
mapping, exploration, and navigation in the 3D environment. The system decomposes
into a fine-mapping layer and an exploration layer. It uses the SLAM model for mapping
and navigation. The proposed idea provides optimized trajectory planning and naviga-
tion. The integration of fine mapping with exploration is achieved by OctoMap-based
volumetric motion planning. The feasibility and effectiveness are verified via simulation
and experiments, which depict the tendency to implement UAV and UGV heterogeneously.
James C. Kinsey et al. [48] have done a complete extensive review on underwater vehicle
system navigation sensors. They further explained the deterministic and stochastic algo-
rithms involved in UAVs. The paper concluded with future remarks and challenges in
UAV systems based on their optimal length, vehicle state navigation, and surrounding
estimation for the position. They also highlighted the commercial, military, and scientific
advantages of the underwater system for practical purposes.

Collision avoidance is also an essential aspect of UAV; different steps involved in
collision avoidance are shown in Figures 1 and 2.
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Figure 1. Collision detection steps involve.

Figure 2. Steps involve in Collision.

The general characterization of trajectory formation of an autonomous vehicle in an
environment can be modeled in a three or two-dimensional space, often known as the
workspace or search space W. The work/search space contains obstacles, the free path for
vehicle maneuverability, an initial position, and a target position. Let Woj be the jth obstacle
in the search space and W f ree be the available space for motion such that W f ree = W ∪j Woj.
Let xint be the initial position of vehicle and ygoal be the target position. The following
definitions can be deduced:

i Definition: (Trajectory Planning)
Given a function ∂ : [0, M] −→ R3 on a bounded variation, where ∂(0) = xint and
∂(M) = xgoal . If there exists a process ϑ that can retain the values ∂(η) ε W f ree, such
that for M ε [0, M], then the process is called a continuous process, and ∂ is called
trajectory planning.

ii Definition: (Optimal trajectory Planning)
Let optimal trajectory planning have a cost function C : Σ −→ R ≥ 0, such that
Σ denotes the set of all paths. If definitions 1 is fulfilled to search the path ∂

′
and

C(∂
′
) = min(C(∂)), such that ∂ is a set of all the feasible paths, then ∂

′
is called as

optimal path and ϑ
′
, and is optimal path planning.

3. Objectives and Content of This Review

The paper extensively evaluates Numerical techniques, Bio-inspired techniques,
and their hybridization for popular trajectory planning and obstacle avoidance algorithms
available for ground vehicles with the extension for aerial and underwater vehicles in the
literature. The paper provides the state-of-the-art background that will enable researchers
to work on trajectory optimization and environment modeling. The intent of this paper is
to present the comparison of different algorithms and how they can be implemented in
different scenarios. The contribution of this review is mentioned below:

i Consolidation of relevant work: The tendency to concurrently discern a vehicle’s
environment, stabilize and restore its motion, and conduct the required driving
maneuvers is an exceptional aptitude of human drivers. All over the world, re-
searchers are working on replicating this maneuverable capability of human drivers
into designing an autonomous vehicular system to provide a simplified design,
comfort, and safety via ensuring the vehicle efficiency is not perturbed [49–53].

ii Exploration of design space and Parametric Characterization through Numerical
Solvers: Numerical solvers are considered the primitive and most predominant tool
for determining the design space and modeling the conventional configuration for
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ground and aerial vehicles. Few papers on the environment modeling characteriza-
tion through numerical solvers demonstrate that this area needs to be researched
thoroughly. We provide this study in Section 4.

iii Survey of trajectory optimization methodologies utilizing Bio-inspired and hy-
brid Technique: The selection modus operandi to execute trajectory optimization
is the most critical question for computational and numerical studies. The devel-
opment of numerical techniques for optimization directly relates to the exploration
of space for ground and aerial vehicles. The trajectory optimization problem is
treated as an optimal non-linear problem, so to formulate the optimal and desired
trajectory for ground and aerial vehicles, plenty of optimization methods are present
for utilization. Therefore, this urges us to conduct extensive research to highlight
the optimization algorithms for performing trajectory optimization. We provide this
study in Sections 5 and 6.

iv Limitations and the way forward: The paper’s contribution also lies in determining
the factors that are not contributing to the optimal trajectory optimization for both
ground and aerial vehicles. The drawbacks are categorized into two main areas:
(i) the limitations in existing non-linear control techniques; (ii) the limitations in
ground and aerial vehicles design. We provide this study at last in Section 7.

Techniques for Path Planning

The path planning and trajectory optimization problem can be solved through numer-
ical techniques, bio-inspired algorithms, and through the hybridization of these techniques
with each other.

There are numerous numerical techniques present for determining the exact solution,
some of them are: Bisection method [54], Newton Raphson [55] method, Runge Kutta [56],
and Iterative method [57]. These methods are further divided into linear algebra equations,
spline interpolation, polynomial interpolation, trigonometric interpolation, linear and
non-linear programming, and mathematical optimization. These methods can be used for
finding any possible solution. For autonomous vehicles, these methods are employed to
solve path planning, trajectory optimization, and numerous other vehicle variants.

With growing interest, this research area expanded and introduced bio-inspired tech-
niques to solve trajectory planning, obstacle avoidance, and trajectory optimization. Fur-
ther, these techniques were utilized on optimizing the path-related issues [58]. The bio-
inspired methods are derived from the social hierarchy of birds and animals, which include
ants, bees, birds, and genetic algorithms [59–62], after improvement numerous other
algorithms have been developed, such as Whale Optimization, Grey Wolf Optimizer, Drag-
onfly Algorithm, Slap Swarm Algorithm, Grasshopper Algorithm, Ant Lion Optimizer,
Moth Flame Optimizer, Simulated Annealing, Deer Hunting Algorithm, Harmony Search
Algorithm, and Owl Search Algorithm [63–73].

It is often seen that no one algorithm or technique can guarantee the desired results;
therefore, it is common practice to integrate techniques for achieving higher accuracy and
designing the system more efficiently. This whole process is called the Hybridization of
Algorithms/Techniques [74].

The path planning for autonomous vehicles can further be defined as a multi-objective
optimization problem as it requires solving more than one objective, which may involve
the generation of suitable trajectories together with obstacles that evade the capability [75].
Based on the ability to perform a task in a surrounding environment, path planning
can be categorized into two main categories, namely: (i) the local path planning; (ii)
the global path planning, see Figure 3. The former is defined as: if the information of
surrounding area is accessible or known to the vehicle before the start of its journey, which
is referred to as priori information. Conversely, the latter can be explained as: when
the information of the surrounding area is unknown to the vehicle [58,76,77]. Similarly,
the environment can also be classified as static or dynamic; when the objects/obstacles are
stationary, it is referred to as static, and if the obstacles are in motion, it is referred to as a
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dynamic environment [15,17,30,75,76,78]. A few applications related to the ground, aerial,
and underwater vehicle systems can be seen in Table 2.

Figure 3. Available Methods for Ground Robotics.

Table 2. Applications involved in different Vehicle System.

Applications

Ground Vehicle
Agriculture applications of grass cutting, land surveying, soil
sampling, precision spraying, weeding, and harvesting of crops,
Harvester Robots

Aerial Vehicle UAV Drones: Mapping and Surveying, Asset Inspection, Mining,
Firefighting, Payload carrying, Aviation

Underwater Vehicle Sea-gliders, Drifters, propeller-driven vehicles

4. Numerical Techniques

The numerical analysis involves the implementation of algorithms for obtaining nu-
merical solutions. It engages the theoretical mathematical analysis. In this section, we
present the numerical techniques, numerical optimization software, and their implementa-
tion in ground, aerial and underwater vehicles.

Vehicle trajectory optimization is treated as an optimal control problem [9]. Except for
simple problems, optimal control problems must be solved numerically. Numerical meth-
ods for solving optimal control problems are divided into three methods: indirect methods,
direct methods, and dynamic programming [79]. These three methods are then further
sub-categorized into different sub-categories, which are graphically depicted in Figure 4
and elaborated in the following section.

i Dynamic programming: Dynamic programming [80] is an optimization approach
that transforms a complex problem into a sequence of simpler problems. The opti-
mality criterion in continuous time is based on the Hamilton–Jacobi–Bellman partial
differential equation.

ii Indirect methods: In the indirect method [81], the calculus of variations is used
to calculate the first-order optimality conditions of the original optimal control
problem. The indirect approach solves the problem indirectly by converting the
optimal control problem to a boundary-value problem. As a result, the optimal
solution is found in an indirect method by solving a system of differential equations
that satisfies endpoint and interior-point conditions.

iii Direct methods: In a direct method, the state and control of the optimal control prob-
lem are discretized in some manner, and the problem is transcribed to a non-linear
optimization problem or non-linear programming problem (NLP). Direct methods
are divided into three categories: direct shooting [82], direct multiple shooting [83],
and collocation. Direct collocation methods utilize a polynomial approximation to
the integrated state equations between the nodes, whereas direct shooting methods
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directly integrate state equations. Arguably, the most powerful methods for solving
general optimal control problems are direct collocation methods [79]. A direct collo-
cation method is a state and control parameterization method, where the state and
control are approximated using a specified functional form. The two most common
forms of collocation are local collocation [84] and pseudospectral (global orthogonal)
collocation [84]. In optimal control, local collocation has been employed using one of
two categories of discretization: Runge–Kutta methods or the orthogonal collocation
method [85–87]. In the pseudospectral method [88,89], the optimal control prob-
lem is transcribed to a non-linear programming problem (NLP) by parameterizing
the state and control using global polynomials (basis function are Chebyshev or
Lagrange polynomials) and collocating the differential-algebraic equations using
nodes obtained from a Gaussian quadrature. The collocation points are the roots of
an orthogonal polynomial (such as Chebyshev or Legendre polynomials) and/or a
linear combination of an orthogonal polynomial and its derivatives.

Figure 4. Numerical approaches for the control problem [9].

4.1. Applications to Aerial Vehicles

Researchers utilize different optimal control solvers to determine the optimal trajecto-
ries for UAVs in different conditions. Some related work is referenced below:

Using optimal control software, Sachs [90–92] calculated an energy-neutral trajec-
tory. Trajectory finders include Graphical Environment for Simulation and Optimization
(GESOP) [93] and Aerospace Launch Trajectory Optimization Software (ALTOS) [94]. AL-
TOS is an ideal trajectory finder and optimization tool for aeronautical vehicles. This is
because, in the presence of multiple local minima, the initial guess might significantly
impact the solution’s conclusion. Sachs [95] generated energy-neutral paths for trajectory
optimization using two different optimization software: BOUNDSCO and TOMP. The first
software, ’BOUNDSCO’, uses multiple shooting techniques, while the second, ’TOMP’,
uses a parameter optimization strategy to determine optimal control.

Zhao et al. [96,97] used a collocation strategy to turn the optimal control issue into
parameter optimization, which they solved numerically with the software Non-linear Pro-
gramming Solver” (NPSOL) [98]. NPSOL employs a Sequential Quadratic Programming
(SQP) technique, where the search direction is a quadratic programming sub-problem
solution. The step size is repeatedly chosen at each iteration to create a suitable drop in the
augmented Lagrangian merit function. The NPSOL program’s results represent a locally
optimal solution to the non-linear programming problem after successful convergence.
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Similarly, Akhtar et al. [99,100] implemented path planning using a technique known
as Inverse Dynamics in Virtual Domain (IDVD). The non-linear programming problem
was solved using Matlab’s ’fmincon’ to determine feasible paths. Akhtar et al. [101] used a
different strategy in another investigation, which was based on Taranenko’s direct method.
The direct method is a non-linear constrained optimization approach in which the boundary
conditions define the reference polynomials. The Pseudo Spectral Optimizer (PSOPT) [102]
and Sparse Optimal Control Software (SOCS) are other valuable trajectory optimization
software that may be used for dynamic soaring.

Imran Mir et al. [10] presented the integration of dynamic soaring with morphing ca-
pabilities for a small Unmanned Aerial Vehicle (sUAV). Variable spans and variable sweeps
are two wing morphologies. The non-linear wind gradient profile and 3D point-mass UAV
equations of motion have been utilized to model flight dynamics. Parametric characteriza-
tion has been accessed to check the critical performance parameters for various phases of
flight dynamics. The results show that the morphing UAV can perform dynamic soaring in
an area where fixed-configuration UAVs might not fall by 15% and 14%. A detailed review
of dynamic soaring and non-linear modeling can be found in [9]. Imran Mir et al. [103]
presented the integration of wing sweep morphing during the dynamic soaring maneu-
ver. The aerodynamic model is validated using the VLM vortex lattice method, and the
trajectory optimization is done using the Gauss pseudospectral method. The performance
analysis shows that both the configurations include minimum aerodynamic efficiency and
wind shear. Imran Mir et al. [7] researched aerial munitions that can be modeled into smart
munitions. The model has a smart adaptation kit (SAK) with a Guidance and Control
Module (GCM). The purpose of the kit and GSM is to ensure that SAK glides optimally
towards the goal point. The control surfaces were kept at a minimum, which resulted
in an actuated system. The paper depicts the application to design a tracking controller
for SAK. The results assessed in the simulation using the dynamic model give improved
circular error probable (CEP) results. Yu Wu et al. [104] came up with a new consensus
theory-based method for formation control and obstacle avoidance in UAVs.

4.2. Applications to Ground Vehicles

The concept started with the DARPA Urban Challenge. Later on, numerous con-
trollers have been developed for dealing with the non-linear characteristics of autonomous
vehicles. Different controllers has been designed for autonomous guided vehicles, e.g., PID
controller [105], sliding mode controller [106], linear quadratic regulator [107], fuzzy logic
controller [108], backstepping controller [109], adaptive control [110], and pure pursuit
controller [77]. Some related work from the literature is referenced below:

Thaer et al. [111] studied the robotic arm control parameters with numerical solutions
involved with the help of the Runge–Kutta method. The non-linear equations are incorpo-
rated with formulas of centrifugal effects, Coriolis, and gravitational torques. The method
employed was an attempt to mitigate the error involved in the industrial robotic arm,
which helps in the increased production system. The acquired results validate the effec-
tiveness of the numerical method and help in analyzing the variations in position and
velocity joints. The Runge–Kutta method output perfectly matches with actual velocities.
PeiJiang et al. [112] used a backpropagation algorithm for the path planning solution in the
autonomous robot. The path solution is presented by the numerical method. The concept
is employed on the robotic arm manipulator. The industrial robot used for this purpose is
the KUKA KR 210 R2700 EXTRA robot. Experiments are performed for validating the path
tracking. The mean absolute error for a position is also presented. A comparison between
the numerical solution based on the Newton–Raphson algorithm and the path planning
solution demonstrates the high-end accuracy and efficiency of the path planning solution.
Anirudha et al. [113] designed a stability controller by the use of a sums of squares set
defined in Lyapunov inequalities. The proposed polynomial controller can be used for
handling time-variant dynamics resulting from oscillations involved in trajectory forma-
tion. The approach is implemented on an under-actuated double pendulum (Acrobat) and
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validates that the proposed method performs efficiently. Azali et al. [114] solve the path
planning issue iteratively using the numerical method. The Laplace equation is used to
calculate the potential function. The author came up with a block iterative method known
as 4 Point-EG to resolve the trajectory planning. The experiment shows that the proposed
method can generate a clear path from the start to the goal position and validates that 4
Point-EG works better compared to previous methods involved in trajectory formation.

Evan Kerl et al. [23] presented the PSO algorithm for developing a collision-free path
for the autonomous guided vehicle. Then the Gazebo simulator was used to check the
response under the ENVI vector representing a solution to the optimization problem. Ja-
nine Thoma et al. [22] have summarized images as a set of landmarks, which meet the
requirements for image-based navigation. The authors formulated the requirements and
divided them into two tasks: accurate self-localization and compact map construction.
These particular requirements were then further exploited for a network flow problem
related to path planning. Jianhua Li et al. [115] presented the control strategy for trajec-
tory formation by avoiding obstacles. The control approach has two controllers: (i) the
controller’s map trajectory of the environment and (ii) the obstacle avoidance controller,
which helps evade them using vector relationships between the obstacles and the robot.
Later, the two controllers combined to perform switching tasks. The Lyapunov function
checks the stability of the controller. The simulation results prove that the proposed scheme
applied to the trajectory formation of mobile robots guarantees safe maneuverability in an
unknown environment.

4.3. Application to Underwater Vehicle

The autonomous underwater vehicle system’s (AUV) navigation and controllers have
achieved the same importance as ground and aerial vehicles. They are also known as ocean
vehicle navigation. It is equally important to address the related literature involved in the
AUV system.

Similar to ground and aerial vehicles, autonomous underwater vehicles (AUVs) also
need path planning to have an optimal path for their navigation. However, due to data
transmission, the sensing range, and power constraints, the sea environment is vulnerable
to numerous challenges compared to ground and aerial vehicles. When underwater, it
is not easy to communicate effectively because of the continuous fluctuating bandwidth
channel. This makes path planning of autonomous underwater vehicles a very challenging
task. Motion planning can be categorized into path planning and trajectory planning,
and the former can be defined as the course points that the vehicle has to travel to reach
the destination point, whereas the time required to complete this journey is formally
called trajectory planning. Since no global positioning system (GPS) and no external
communication are available underwater, it is hard to acquire information with limited
power, and thus, it is hard for an AUV to navigate. Primarily three navigation methods have
been suggested [116,117]: (i) acoustic navigation, (ii) dead-reckoning and inertial navigation
systems, and (iii) geophysical navigation. Based on the literature survey, they can be
categorized as ‘close-to-bottom navigation’, ‘close to-surface navigation’, and ‘navigation in
the mid-depth zone’. Figure 5 shows communication between an autonomous underwater
vehicle with unmanned aerial-aquatic vehicle (UAAV) for its navigation purpose.

John J. Leonard et al. [116] surveys the problems linked with the navigation for AUVs.
The author focused on good and safe navigation techniques associated with data gathering.
The primary modes involved in navigation are: (i) geophysical navigation mode, (ii) dead-
reckoning and inertial navigation systems mode, and (iii) acoustic navigation. The recent
state-of-art is elaborately explained in the paper.
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Figure 5. The communication between the autonomous underwater vehicle with the unmanned
aerial-aquatic vehicle [118].

John J. Leonard et al. [117] surveys the drawbacks associated with the navigation and
trajectory planning involved in AUVs. The non-availability of GPS (Global Positioning
System) underwater makes trajectory planning and navigation challenging for research and
practical purposes. A recent development has been noticed in this area concerning sensors
involvement, and algorithms, such as cooperative navigation and SLAM (simultaneous
localization and mapping), have proven to be effective contributory factors involved in
AUVs trajectory planning and navigation. Paul A. Miller et al. [119] presented the UAV
with 6 degrees of freedom using the error state formulation concept utilized in the Kalman
filter. The integration of different sensors has been done to achieve high time propagation
and measurement corrections involving gyros, IMU, and accelerometer. The long acoustic
baseline (LBL) and Doppler velocity log (DVL), attitude sensor, and pressure sensor aid low
rate sensor measurement. A novel coupled technique proposed for integrating DVL and
LBL is presented. The LBL is used for estimating correct and accurate error discovery using
the transition matrix, whereas high coupled techniques do not involve error estimation as
they ignore the error state when used in the measurement cycle. The navigation system
allows performing critical sensor calibration to improve system efficiency. The proposed
concept is validated in experiments and simulations. V. A. Bobkov et al. [120] proposed
the problem associated with autonomous underwater vehicles and 3D reconstruction with
the help of stereo images. This process is called odometry. Different modifications are
incorporated to maximize accuracy and minimize expenses. This includes an adaptive
mode for trajectory calculation.

The paper covers a survey of 3D reconstruction of objects for an underwater vehicle
system. Ricardo Pérez-Alcocer et al. [121] proposed a vision-dependent navigation for an
autonomous underwater vehicle in a cluttered obstacle environment. A camera mounted
on the top of a robotic platform to visually inspect the area is known for aerial and terrestrial
applications, but for underwater applications, capturing images is not easy because color
can get depleted and blurred out. An adaptive approach for color space in the UAV
system is presented to cater to this problem, which can identify features with high visibility.
For more excellent stability, a robust free control model is presented. For validation,
a real-time experiment is performed. Nak Yong Ko et al. [122] presented a new technique
for attitude detection that uses MEMS-AHRS (Micro-electromechanical systems Attitude
Heading Reference System). Accurately detecting attitude in real-time is essential for
navigation, as trajectory formation and collision avoidance depend on attitude information.
An inertial measurement unit (IMU) and three-axis magnetic field are used for attitude
detection. The IMU sensor is affected by disturbances, and the magnetic field is affected by
EM (electromagnetic field) waves. The authors proposed a depth measurement method
whose robustness and accuracy are higher than the magnetic field and IMU sensors, which
ultimately improves the efficiency of the attitude estimation. The technique involves
quaternion to relate depth with attitude. The proposed method was tested using simulated
data and performing different sea trials. The acquired results prove the efficiency of the
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proposed method. Talmon Alexandri et al. [123] presented a non-linear navigation solution
for UAVs known as Reverse Bearing Only Target Motion Analysis (Reverse BO-TMA).
It is a passive method for the localization of UAVs. The proposed idea revolves around
bearing measurements of radiated noise from passive vessels sailing around a predefined
route. The Reverse BO-TMA remains farther from the reference vessel and does not require
integration for the message exchange. The proposed idea incorporates the optimization
technique and provides a solution for the least square and unscented Kalman filter. The
numerically obtained solutions demonstrate the effectiveness of Reverse BO-TMA for
speed and position relative to the Cramer–Rao lower bound. The idea was also validated
experimentally in the sea, proving it is suitable for long routes and consumes less energy.
Udo Frese et al. [124] exploited the techniques involved in robotics and implemented
them for AUVs’ navigation. The author studied the development and implementation of
different sensors in robotics and applied them to the underwater vehicle system. Because in
the underwater system, some spaces are confined and cannot be explored, which means
distant environments can be mapped, but these sensors’ advantages can be taken. Danhe
Chen et al. [125] investigated the unmanned underwater vehicle (UUV) in a complex
environment with an inertial navigation system (INU) and a Doppler lag (DL) with an
estimation judgment algorithm. The errors occurred due to a deviation in the gyro platform.
A linear regulator is incorporated with INS and an adaptive non-linear Kalman filter to
mitigate the angles deflections. A regulator was altered at the state-dependent coefficient
(SDC), and a modified non-linear Kalman filter was used that was modified through a
genetic algorithm. Th combined modeling and experiments performed validate the overall
efficiency of the proposed idea.

4.4. Summary Numerical Techniques

A summary of numerical techniques involved in aerial, ground, and underwater
vehicles are referenced in Table 3 for the speedy convenience of readers.

Table 3. A summary of numerical techniques involved in aerial, ground, and underwater vehicle systems.

Numerical Technique Contributions Source

Direct global collocation
Pseudo spectral

The author proposed a guidance strategy for autonomous dynamic
soaring utilizing Guass Pseudospectral OPtimization Software (GPOPS). [126–129]

Variable order orthogonal
collocation method

Sachs calculated energy-neutral trajectories for trajectory optimization
utilizing two other optimization software, namely ’BOUNDSCO’ and
’TOMP’. The first program ’BOUNDSCO’ is based upon multiple
shooting methodology, whereas ’TOMP’ is based on a parameter
optimization technique for determining optimal control.

[95,130,131]

Graph-based Planner with
Visibility Graph

Naazare et al. exhibited a graph-based path planner on a UAV to avoid
collision in restricted areas. The trajectory builds a visibility graph of the
environment using GPS information and finds the shortest path utilizing
the A-star algorithm. The generated waypoints show the global
localization. Furthermore, the trajectory planner can be used to
successfully eliminate the difficulty of manually operating UAVs around
restricted areas under challenging circumstances.

[46,132,133]

Parametric characterization

Imran Mir et al. presented the integration of dynamic soaring with
morphing capabilities for a small Unmanned Aerial Vehicle (sUAV).
Variable span and variable sweep are two wing morphologies. The
non-linear wind gradient profile and 3D point-mass UAV equations of
motion have been utilized to model flight dynamics. Parametric
characterization has been accessed to check the key performance
parameters for various phases of flight dynamics. The results show that
the morphing UAV can perform dynamic soaring in an area where
fixed-configuration UAVs might not work.

[10,134–136]
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Table 3. Cont.

Numerical Technique Contributions Source

Runge–Kutta method

Thaer et al. studied the robotic arm control parameters with numerical
solutions involved with the help of the Runge–Kutta method.
The non-linear equations are incorporated with formulas of centrifugal
effects, Coriolis, and gravitational torques. The method employed was an
attempt to mitigate the error involved in the industrial robotic arm,
which helps in the increased production system. The acquired results
validate the effectiveness of the numerical method and help in analyzing
the variations in position and velocity joints. The Runge–Kutta method
output perfectly matches with true velocities.

[111]

Laplace equation

Azali et al. solve the path planning issue iteratively using a numerical
method. The Laplace equation is used to calculate the potential function.
The author came up with a block iterative method known as 4 Point-EG
for resolving the trajectory planning. The experiment shows that the
proposed method can generate a clear path from the start to the goal
positions and validates that 4 Point-EG works better as compared to
previous methods involved in trajectory formation.

[114]

MEMS-AHRS
(Micro-electromechanical
systems Attitude Heading
Reference System

Nak Yong Ko et al. presented a new technique for attitude detection that
accurately uses MEMS-AHRS for detecting the attitude in real-time.
The authors proposed a depth measurement method whose robustness
and accuracy are higher than the magnetic field and IMU sensors, which
ultimately improves the efficiency of the attitude estimation.
The technique involves quaternion to relate depth with attitude.
The proposed method was tested using simulated data and performing
different sea trials. The acquired results prove the efficiency of
proposed method.

[122]

5. Bio-Inspired Methods

This section contains relevant path planning and trajectory optimization data linked
with bio-inspired techniques for ground, aerial, and underwater vehicles.

Siddique et al. [137] studied meta-heuristic and nature-inspired algorithms that im-
itate natural phenomena of natural sciences. Numerous researchers have addressed the
ground and aerial vehicle trajectory planning and obstacle avoidance problem using the
optimization algorithm that mimics the behavior of living things, such as fish, ants, bees,
whales, wolves, and bats [138–143]. They are known as non-conventional methods. These
algorithms are known as bio-inspired techniques and have been utilized in engineering to
solve complex mathematical problems in research [144].

Bio-inspired computational-dependent techniques utilized the idea acquired from
observing how nature reacts to different things and behaves to solve complex problems,
which are considered and characterized with uncertainty and imprecision, to acquire
robust solutions at a minimum cost [145]. The most prominent bio-inspired algorithms
used in trajectory formation and obstacle avoidance for ground robotics include Artificial
Neural Networks (ANN), Fuzzy logic, Genetic Algorithm (GA), Artificial Bee Colony
(ABC), Simulated Annealing (SA), etc. The newly established algorithms include the
Grey Wolf Optimizer (GWO), Moth Flame Optimization, Whale Optimization Algorithm
(WOA), Ant Lion Optimizer (ALO), Dragonfly Algorithm, Grasshopper Optimization
Algorithm, and Slap Swarm Algorithm. Bio-inspired algorithms are considered better for
performing computational-based navigation for path defining as compared to conventional
based algorithms, such as the Artificial Potential Field [146]. Many researchers integrate
these non-conventional algorithms with reinforcement learning to increase the performing
capability of ground vehicles in a cluttered obstacle environment. Some techniques are
mentioned in Table 4 to give insight to the readers.
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Table 4. Bio-Inspired Algorithms.

Technique Seminal Work Source

Artificial Neural Network It is based on Kohonen’s self-organizing maps. [147,148]

Fuzzy Logic Presented by Professor Lofti Zadeh, in 1965, at the University of
California, (refer Figure 6). [147,148]

Artificial Bee Colony Algorithm

Proposed by Karaboga, in 2005, for solving optimization problems.
The algorithm mimics the bees colony behavior for the food search.
They are divided into three groups: (i) employed bees, (ii) onlooker
bees, and (iii) scouts.

[149–151]

Genetic Algorithm Derived from evolutionary algorithms, they involve different operators,
e.g., mutation, crossover, and selection operator (refer to Figure 7). [152–160]

Simulated Annealing

It is a probabilistic method used for finding the global minimum of a
function. It is considered the first metaheuristic algorithm inspired by
the physical phenomena happening in the solidification of fluids, such
as metals.

[161]

Grey Wolf Optimizer

Assessing the nature of wolves, researchers were able to formulate
mathematical expressions revealing their social behavior in terms of
hierarchy distribution of roles in a pack, hunting, the search for prey,
and attacking strategies.

[64,162]

Moth Flame Optimization

Inspired by the behavior of moths in nature, its popularity lies in its
simple implementation and no derivation involvement in the starting
phase with fewer parameters, making it easy to implement and flexible
for all kinds of applications.

[69,163]

Whale Optimization
The hunting behavior hierarchy of whales inspires Whale Optimization.
They out-stand because of their hunting strategy. Their foraging
behavior is called the bubble-net feeding method.

[63,164,165]

AntLion Optimizer
The life cycle of antlions includes two main phases: larvae and adult.
Antlions undergo metamorphosis in a cocoon to become adults. They
mostly hunt in larvae, and the adulthood period is for reproduction.

[68]

Figure 6. Block diagram of the Fuzzy Logic Controller for an autonomous guided vehicle [58].

5.1. Application to Aerial Vehicles

Jesimar et al. [166] applied a Genetic Algorithm to path planning for UAVs during the
emergency landing situation. Path planning uses a mathematical function, which caters
to all constraints. Three different path planning approaches are used: the Genetic Algo-
rithm, greedy heuristic approach, and multi-population algorithm. The greedy approach
helps determine the quick solution, whereas the genetic algorithm returns a better quality
solution, which helps mitigate the computational time. The methods were validated on a
huge dataset with different levels of difficulty. Simulations were carried on the FlightGear
simulator, where the behavior of UAVs was checked under different wind directions and
velocity directions. The overall statistical analysis demonstrates that combining genetic
algorithms with a greedy approach is beneficial for the path planning of UAVs.
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Figure 7. Pseudo-code for the Genetic Algorithm [58].

Zhang et al. [162] also worked on obtaining the optimal flight path by avoiding threats
in a combat field. They demonstrated the performance of GWO on an Unmanned Combat
Aerial Vehicle (UCAV) for solving path planning in 2D. The UCAV finds the safest route
by connecting nodes to reach the desired target by avoiding threats. The results obtained
from the simulations were staggering and prove that UCAV is more competent when com-
pared with an evolutionary algorithm. Chengzhi Qu et al. [167] hybridized the algorithms
to achieve successful path planning in a UAV. They combined the Grey Wolf Optimizer
(GWO) with Symbiotic Organisms Search (SOS) and called it the Simplified Grey Wolf
Optimizer (SGWO) and Modified Symbiotic Organisms Search (MSOS), together called
HSGWO-MSOS. The exploration and exploitation phases are efficiently combined with
speeding up the convergence rate, and the commensalism phase of the SOS algorithm is
modified so that it helps in exploitation capability. A linear difference equation is used for
analysis purposes, and the cubic B-spline curve method is incorporated to smooth the flight
trajectory. The experimental results proved that the proposed algorithm HSGWO-MSOS
gives better results, produces feasible outputs, and efficiently performs the flight trajectory.
Ram Kishan Dewangan et al. [168] modeled the NP-hard problem as an optimization
problem. Finding trajectory for a UAV is problematic as the UAV has to find the path from
the start to target points with minimum complexity. The GWO algorithm is implemented to
solve the trajectory complexity involved in the UAV. In simulations, the GWO is compared
the deterministic algorithms, e.g., D*, Dijkstra, and A* and meta-heuristic algorithms,
e.g., Biogeography-Based Optimization (BBO), Whale Optimization Algorithm (WOA),
Particle Swarm Optimization (PSO), Intelligent BAT Algorithm (IBA), Sine Cosine Algo-
rithm (SCA), Glowworm Swarm Optimization (GSO), for finding the optimal trajectory
for flight. The experimental results show that GWO outperforms the above algorithm in
finding the safest trajectory. M.S. Soundarya et al. [169] aim to propose a novel approach
for path planning of a UAV along with obstacle avoidance. Path planning is achieved
through a swarm intelligence algorithm inspired by the behavior of grey wolves known as
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the Grey Wolf Optimizer (GWO). The optimal path planning of UAVs using the GWO is
obtained by correctly choosing the objective function for targets and obstacle avoidance
conditions. The algorithm has three search agents, alpha, beta, and gamma, which help in
the proper convergence of the solution to the target while avoiding obstacles. The proposed
approach is tested with different test cases of target and obstacles conditions and reported
simulated results. The simulation is carried out in a MATLAB environment.

5.2. Application to Ground Vehicles

Farhad et al. [170] attempted to investigate the neural network technique with statisti-
cal dimension reduction techniques to execute the navigation task and obstacle avoidance
for the robot. The proposed method uses two feed-forward neural networks with a back-
propagation learning algorithm. Laser (SICK) is used with a 180◦ range to visualize the
surrounding environment. The algorithm checks on real-world and experimental results to
prove the efficacy of the proposed algorithm. Lingyan Ran et al. [171] worked on vision-
based lightweight robot navigation based on uncalibrated spherical images. To improve
the trajectory formation, the navigation problem is divided into sub-classification tasks.
A 360◦ fisheye camera is introduced for acquiring spherical images in different heading di-
rections. The classification is accomplished using a Convolutional Neural Network (CNN).
The CNN tends to predict paths in different directions with high efficiency. Experimental
results prove the validity of the proposed method. Ngangbam Herojit et al. [172] presented
the problem related to the navigation of ground robotics and obstacle avoidance with
an Artificial Neural Network. The entire area is divided into five segments, then MLP
(Multilayer Perceptron) is activated to find the collision-free path. The simulation proves
that the said algorithm gives optimal results for reaching the goal position.

M. M. Almasri et al. [173] proposed the multi-robot path planning strategy for static
and dynamic obstacles. Eight sensors were incorporated along the robot’s sides to gather in-
formation from the environment for trajectory formation. The implementation was done in
real-time, which validated the proposed algorithm. Akmal et al. [174] developed 256 fuzzy
logic rules for a controller, which collects data from the surroundings using an IR sensor.
Matlab and Webot Pro are used as software development tools. The controller was imple-
mented in simulations, which validates the results. However, no real-time experiments
were implemented, so there is no possible way to judge the approach if constraints are
added. Mahmut Dirik et al. [175] proposed the robotic path planning using camera-based
on interval type-2 fuzzy logic (IT2FIS). An IT2FIS is used to generate the path and detect
obstacles and avoid them to reach the target. Different simulations were performed with
differently shaped obstacles to validate the algorithm. The results obtained from the exper-
iments show the efficacy of the proposed strategy. Yupei Yan et al. [176] implemented the
fuzzy logic to smooth out the data obtained from the laser sensor. The controller worked
best in a dynamic environment and was able to find the trajectory via avoiding obstacles.
B.K.Patle et al. [177] presented the new variants of GA, which utilizes binary codes through
the matrix for robot path planning navigation (MRN) in a dynamic environment. Trace
theory, matrix stimulation, and Sylvester Law of Inertia (SLI) were utilized for establishing
a controller. The simulation results presented on MATLAB validates the efficiency of the
controller for generating an optimal path. Rath et al. [178] have presented the research on
robotic navigation. The authors incorporated a Fuzzy Logic Controller (FL) with GA to
solve the trajectory optimization problem. The simulations performed on the proposed
method validate the results of the simulation-based 2D ground vehicle. Bakdi et al. [179]
presented the two-wheel indoor mobile robot using a Kinect camera system for planning
the trajectory. The information acquired from the surroundings is done through the image
processing technique, and GA is used for generating an optimal path to join the start posi-
tion with the target-defined location. Furthermore, to smooth the path, Piecewise Cubic
Hermite Interpolating Polynomial is incorporated with GA. At last, an Adaptive Fuzzy
Logic Controller is incorporated to keep track of vehicle movements of the left and right
wheel velocities. Parallelly, the Kinect camera and odometry sensor work to estimate the
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current position of the vehicle. The complete proposed integrated concept is implemented
on RobuTER to check the feasibility of the algorithm and controller.

Milad Nazarahari [180] presented the novel Artificial Potential Field (APF) to locate
all optimal paths between the start and goal positions. An enhanced Genetic Algorithm
(EGA) is implemented in the next stage to improve the initial path generation. The EGA
uses five mutation and crossover operators. The author deals with three objectives: path
smoothness, path distance, and safety—therefore, it is called multi-objective path planning.
The authors extended their work on a multi-robot system for trajectory finding. In addition
to other objectives, the total distance between all the robots is calculated by adding a new
collision removal operator to EGA. Different planar environments of numerous shapes
and sizes are added to validate the algorithm to check the computational complexity.
The experiments were performed to demonstrate that the proposed method does not
affect the control parameters of EGA to a greater extent. At last, the proposed method
is experimentally verified by comparing it with different techniques, say, Bi-RRT, A*,
Particle Swarm Optimization (PSO), and PRM. The obtained results from the proposed
method show that it performs well in terms of computational time, rate, and path length,
and when validated on a multi-robot, it creates a collision-free trajectory by finding an
optimal feasible solution.

Anh Vu Le et al. [21] discussed the tilting robots with a fixed morphology face in terms
of covering the cleaning area and generating the optimal trajectory during navigation.
During formulation, the cleaning environment is filled with various tiling patterns of
the tetriamond-based robot, and a waypoint addresses each tiling pattern. The objective
is to minimize the amount of shape-shifting. The objective function is optimized based
on evolutionary algorithms, such as the Ant Colony Optimization (ACO) and Genetic
Algorithm (GA) of the Traveling Salesman Problem (TSP), and estimates the shortest path
that connects all waypoints. The proposed path planning technique can be extended to
other polyiamond-based reconfigurable robots.

Darwish et al. [181] implemented the bees algorithm in real-time path planning.
The path is generated in an offline mode, which is later updated using the bees algorithm
to avoid collision with obstacles. Amigobot was utilized for evaluating the proposed
method, and the results obtained prove the performance of the proposed algorithm in
real-time. Jun-Hao et al. [182] proposed a novel design for multi-robot systems without
collision. The author presented the ABC algorithm with a modification known as efficient
ABC (EABC). The path planning for the multi-robot system chooses the required objective
function for obstacle avoidance and reaching the goal safely as required. The elite func-
tion is incorporated to enhance the performance metrics of individuals. The simulations
performed show the efficacy of the proposed algorithm.

Liu et al. [161] worked in the integration of Simulated Annealing with the Ant Colony
Optimization Algorithm to perform the path planning and to solve local optima problems.
To further improve the results, the increase entropy strategy was employed. Simulation
results prove the efficiency of the proposed algorithm in terms of path planning.

Wu et al. [183] used the approach called Wolf Pack Algorithm (WPA), which is an
extension of WCA. It improved the drawbacks involving local optima and efficiency
together with two additional rules: (i) the winner wolf takes all generation of a lead wolf,
and (ii) the strongest among them survive. The former rules emphasize following the
lead wolf, which can be continuously updated through performing iterations. The most
muscular wolf survives by following the objective function as fast as possible, ruling
out the weakest among the pack. Liu et al. [184] proposed the mathematical model
called the Wolf Colony Algorithm (WCA). The method formulates the searching behavior
and flank-out the quarry, updating the wolf in the colony using assignment functions.
The authors implemented the algorithm on mobile robotics to compute the path length
in the least amount of time. The method was compared with GA and PSO. To extract the
benefits of nature-inspired algorithm modifications in algorithms is a common practice.
Mittal et al. [185] performed the modification by adjusting random parameters of GWO
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to achieve the steady-state in exploring the convergence rate associated with the global
minima problem. Similarly, Li et al. [186] updated the location of search agents by tuning
with weight parameters that help in refining optimal solutions. They called this method
a Modified Discrete Grey Wolf Optimizer (MDGWO). Mirjalili et al. [187] presented the
novel algorithm for multi-criterion optimization performing Multi-Objective Grey Wolf
Optimizer (MOGWO). The objective functions were integrated with the original GWO for
selecting the leader and solving non-dominant solutions. The proposed algorithm was
tested on different test benchmarks and compared with multi-objective metaheuristics,
showing a high convergence speed. Singh et al. [188] worked on the hybridization of the
metaheuristics algorithm, which involves the integration of two or more to create a new
one. The hybridization of algorithms is often referred to as the H-algorithm. The authors
utilize the PSO and GWO in such a way that it increases the exploration of GWO and
the exploitation of PSO. The search agents involved in GWO are updated by the inertia
and velocity parameters involved in PSO. Muro et al. [189] explained the hunting strategies
involved in creating the wolf pack for hunting. The study asserted that the position of
search agents involved in hunting is not necessarily important; instead, it deals with the
hierarchical division for communication. Rodriguez et al. [190] performed the contradicting
conclusion about the hierarchical division and found the new fuzzy hierarchical division
in GWO. They came up with three new parameters involved in the implementation of a
hierarchical division that affects the positions of alpha, beta, and gamma; they are: (i) fuzzy
weights, (ii) weighted average, and (iii) weighted-based on the fitness. The simulations
performed on the different benchmark functions show that the added fuzzy weights
improved the overall performance of the traditional algorithm.

Seyed Jalali et al. [191] combined the numerical technique called gradient descent,
exploiting the neural network, together with the metaheuristic technique called Moth
Flame Optimization. The author applied the proposed scheme for finding the trajectory of
the mobile robot. The MFO is used for training the multilayer perceptron (MLP) to shadow
the problems in the gradient descent. The proposed algorithm is compared with GWO,
PSO, MVO, and CS, and the acquired results demonstrate that the integrated technique
outperforms. Moreover, the obtained results were also compared with two gradient
descent methods called back-propagation (BP) and Levenberg–Marquardt (LM). Seyed
Jalali et al. [192] researched different evolutionary algorithms for designing and applying
neuroevolution applications. Six different EAs are used for determing the trajectory
of the robot, which are the Cuckoo Search (CS), Particle Swarm Optimization (PSO),
MultiVerse Optimizer (MVO), Grey Wolf Optimizer (GWO), Moth Flame Optimization
(MFO), and Bat Algorithm (BA). A multi-layer perceptron (MLP) network is integrated
with all six algorithms, and experiments were conducted using three different datasets.
Among all the algorithms. MVO and EA achieve the highest performance metrics.

A complete comprehensive review of Whale Optimization and its applications are
discussed in [193]. Thi-Kien Dao et al. [141] presented the multi-objective technique for
robot navigation based on the Whale Optimization Algorithm (WOA). Two criteria are
fulfilled, i.e., path smoothness and path distance. The proposed algorithm caters to both
objectives to plan the trajectory of the robot. The target and start locations are known as
the fitness of WOA. The best global whale position is selected in each iteration, which
creates waypoints for trajectory formation. The robot updates its position in each iteration
with the whale position. The simulation results showed that the proposed algorithm
efficiently helps the robot reach the target location within the minimum time. Ankit
Chhillar et al. [194] researched trajectory planning and divided it into two methods: (i) the
heuristic method and (ii) the classical method. The proposed idea contains the modification
of the Whale Algorithm to optimize and create an optimal trajectory. The fitness of the
Whale Optimization Algorithm (WOA) depends on the target position and obstacles
position in the search area. The proposed idea is verified on simulations and produces a
feasible trajectory for a mobile robot.
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Zhang Zhenxing et al. [195] utilized the capability of the AntLion Optimizer to search
the chaotic space area. In the first step, the population is initialized via utilizing chaotic
tent mapping. A self-adaptive dynamic adjustment of the chaotic search is proposed to
improve the overall optimization capability and fitness function objectives. A tournament
approach is incorporated for picking up the best lion form population. At last, a logistic
operator is employed for a random walk of antlions. The analysis was performed on
13 benchmark functions. The obtained data show that the proposed algorithm gives a
better convergence rate and is precise. The said algorithm is compared with Artificial
Bee Colony (ABC), Grey Wolf Optimizer (GWO), and Particle Swarm Optimization (PSO)
and validates the performance in terms of accuracy and speed. Amruta Rout et al. [196]
presented the kinematics and dynamics constraints of robotic trajectory. Parameters such
as torque and jerks affect the trajectory of robots. Therefore, for smooth path planning,
it is required that these parameters be tuned to eliminate the positional error. So to
solve this problem, an improved multi-objective AntLion Algorithm is proposed to obtain
the optimal trajectory with mitigating the torque and jerk movement rate for a six-axis
Kawasaki RS06L industrial robot. The implementation of said algorithm improves the
trajectory optimization and reduces the total time involved.

5.3. Application to Underwater Vehicles

Carlos Miguel et al. [197] worked on underwater glider (UWG) vehicles to ensure
their mission success and safety. UWG is considered energy-efficient vehicles, and for per-
forming journeys, they are equipped with sensors that collect data from their surroundings.
For a safe journey underwater, the vehicles need to maneuver with a low speed and cater
to strong ocean waves, which require extensive path planning. Gliders are often involved
in multi-objective functions, e.g., shortest path, obstacle avoidance, energy efficiency, etc.
The proposed method involves the non-dominated sorting genetic algorithm II (NSGA-II)
to support the motion of gliders in a 3D environment. Glider kinematic simulators coupled
with NSGA-II were used to perform experiments for controlling multiple control parame-
ters to perform trajectory optimization. The authors were able to configure the parameters
for the desired trajectory and proved to perform a real-time experiment in the ocean.

Yan Ma et al. [198] worked on an underwater vehicle system for path planning by
improving the traditional Ant Colony Algorithm with Fireworks. In the first step, the Lamb
vortex creates a 2D environment model with a random distribution of obstacles; in the
second step, a mathematical model is established for calculating time, distance, and energy
consumption cost. At last, the Fireworks-Ant Colony Algorithm is employed for solving
a non-linear optimization problem. The simulation results obtained from the proposed
algorithm compared with the traditional ABC algorithm give improved results and can
quickly find an optimal solution.

Lisu Huo et al. [199] worked on path planning and task assignment of multiple UAVs.
To effectively balance the task for producing feasible solutions, the author developed
the task assignment approach for balancing the UAV’s objectives involving an in-flight
journey. Virtual nodes are added in the vehicle routing problem (VRP) to obtain temporal
constraints results. To simplify and convert temporal-based results into spatial constraints,
a Swap-and-Judge Simulated Annealing (SJSA) algorithm is introduced to improve the
efficiency of generating feasible solutions. Extensive demonstrations on experiments
have been done to procure results for checking the feasibility of the proposed algorithm.
The obtained solutions also resolve the combinatorial discrete optimization problems
involved in population-based algorithms.

Ni et al. [200], to enhance the computational capability, introduced the neural network
target attraction scheme. Xudong et al. [201] incorporated the Ant Colony Optimization
technique to simulate the dynamic obstacles and improve the path length.
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5.4. Summary Bio-Inspired Techniques

A summary of Bio-inspired techniques involved in aerial, ground, and underwater
vehicles are referenced in Table 5 for the speedy convenience of readers.

Table 5. The Impact of the Fuzzy Logic Controller Involved in Aerial and Ground Vehicles.

Method Contribution Environment
Modeling Nature Environment Source

GSA-ACO with two
fuzzy logic

Castillo et al. used type-2 fuzzy logic in
two different bio-inspired techniques: (i)
Gravitational Search Algorithm GSA and
(ii) Ant Colony Optimization ACO.
The parameters such as elapsed rate and
percentage of iterations involved in each
of these algorithms are fine-tuned by
using a type-2 fuzzy logic controller.
By which the behavior of a model can be
controlled to perform a local/global
search task. To check the feasibility of said
controller, benchmark functions are used
where fuzzy controllers minimize the
error occurring in simulations.

Simulation-based 2D ground vehicle [202]

Fuzzy Controller

Lagunes et al. works on optimizing a
fuzzy controller by using bio-inspired
techniques. The inputs used are linear
and angular velocity error and torque
1 and 2 to map the desired trajectory.
For optimization purposes, the fireflies
algorithm is integrated with a
fuzzy system.

Simulation-based 2D (ground vehicles) [203]

SMC Controller

Yu et al. combined two controllers,
Sliding Mode Controller and Fuzzy
Controller, to regulate the robotic dolphin.
The SMC controller checks the line of
sight for the robot, and for checking the
stability of the algorithm, the Lyapunov
function is incorporated to check the
convergence properties system.
The experimental results show that the
said control strategy perfectly steers the
mobile robot towards the goal direction.

Simulation-based 2D ground vehicles [204]

PID and Fuzzy Logic
Controller

Soliman et al. presented the comparison
of the Omni wheel robot to achieve desire
maneuverability. The kinematics model of
the mobile robot is implemented on
control algorithms, such as PID and Fuzzy
Logic Controller. The author tested the
proposed integration of controllers on
hardware and validated the results
obtained from simulations.

Simulation-based 2D ground vehicles [205]

Fuzzy Logic
Controller

Li et al. presented the Fuzzy Logic
Controller based on robotic path planning.
The referenced location of the obstacle
and the formation of the angle between
target and robot position are considered
input parameters for driving fuzzy
control and determining the accurate
movement of the mobile robot.

Simulation-based 2D ground vehicles [206]
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6. Hybrid Algorithms

This section presents the relevant data related to hybridized algorithms for path
planning and trajectory optimization for ground, aerial, and underwater vehicles.

6.1. Application to Aerial Vehicle

Author Li et al. [207] discussed the engineering problems with the help of the Im-
proved Moth Flame Optimization. The proposed algorithm is implemented on a Levy
flight trajectory formation. Harun Ilango et al. [208] presented the comparison of the Moth
Flame Optimization, Bats Optimization Algorithm, and Artificial Bee Colony Algorithm for
the landing stage involved in UAV. The objective lies in determining the optimal landing
path for UAVs in a minimum amount of time. The empirical results obtained from the Moth
Flame Optimization Algorithm take less time to find the optimal path than the other algo-
rithms. Rehan Tariq et al. [209] presented the Intelligent Moth Flame Optimization-Based
Clustering (IMOC) for drone assistance. The technique is used for maximum coverage
using the cluster head approach, which helps find the optimal route. The comparison was
made with Ant Colony Optimization (ACO), Grey Wolf Optimization (GWO), and Com-
prehensive Learning Particle Swarm Optimization (CLPSO). When compared with these
algorithms, the proposed algorithm IMOC outperforms the other algorithms in improving
the path criterion for UAVs.

Abdelhamied et al. [210] presented the offloading algorithm for UAVs for the execu-
tion of intensive tasks. The authors developed two tasks: (i) the air-offloading method
and (ii) ground-offloading. The first method, UAV, can offload the computational tasks to
surroundings UAVs with available energy resources. The second method involves offload-
ing tasks to an edge cloud server. The proposed method is latency and energy-aware. It
selects its execution device based on energy constraints. The simulation results verify the
effectiveness of the proposed algorithm.

Haibin Duan et al. [211] proposed the hybrid particle swarm optimization and genetic
algorithm (HPSOGA) to solve the multi-UAV optimization problem. The hybridization of
algorithms helps in finding time-optimal solutions. The proposed method was then com-
pared with the standard PSO algorithm with a series of experiments to prove the feasibility.

Sotirios Goudos et al. [212] proposed the prediction of received signals (RSS) based on
Artificial Neural Networks (ANNs). The data are acquired at multiple altitudes. Then sev-
eral evolutionary algorithms (EAs) and the Levenberg–Marquardt (LM) backpropagation
algorithm for training ANNs and dynamically tuning population size are implemented.
The hybrid method was integrated with differential evolution (DE). The training meth-
ods obtain better performance to ANN weight, and it exhibits better results. Zhuoning
Dong et al. [213] proposed the UAV path re-planning based on the hybrid virtual force
and A-star algorithm (HVFA). The formulation of UAV path planning with virtual force is
presented. The method is computationally analyzed through simulations.

6.2. Application to Ground Vehicles

Hao Wang et al. [214] presented the integration of the Artificial Neural Network with
Fuzzy Logic for path planning. The fuzzy neural network can process data in parallel
form and can process fuzzy inference functions according to the need for planning the
mobile robotics trajectory. The simulations were performed in an unknown environment
with static obstacles. The results obtained from simulations show a fast convergence and
high efficiency for finding the optimal path. Pengchao Zhang et al. [215] proposed that
the integration of the traditional algorithm with the heuristic programming algorithm
based on AI has beneficial results. The traditional rapidly exploring random tree algo-
rithm is incorporated with a neural network to tune path smoothness and path planning
functions. The simulations were performed in real-time to check the feasibility of the
improved algorithm, which shows the improved results for handling navigation problems.
Buddhadeb Pradhan et al. [216] investigates the problem of multi-robots for finding the
goal point. Each robot’s motion is controlled by the Particle Swarm Optimization, which
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the Feeds Forward Neural Network tunes. The coordination algorithm is implemented
by a coordinated, cooperative algorithm that maintains the step count of all robots. In the
first step, the Artificial Neural Network (ANN) is hybridized with PSO to find the easiest
path using acceleration and velocity constraints; the second step, the first and second-order
stability analysis, is employed to carry out the convergence. The experiments performed
with the proposed algorithm show efficacy and demonstrated promising results. Same as
ground vehicles, researchers have also worked on autonomous underwater vehicles.

Faiza et al. [74] also worked on the hybridization of GWO with the PSO algorithm
by adding frequency control parameters for GWO. Evolutionary programming was also
integrated to smooth out the path for agents involved in searching for prey (food). Simula-
tion results were performed to check the feasibility of the proposed algorithm and validate
the algorithm.

Shuguang Zhang et al. [217] worked on the path planning of power, which quickly
falls into the local optima problem. To avoid this behavior, a tabu algorithm with simulated
annealing coefficients is utilized for redefining the concept of survival of the fittest from
the genetic algorithm. This improved version of SA helps in the convergence problem, and
the simulation results validate the algorithm’s results in different environments.

Asita Kumar Rath et al. [178] presented the research on robotics navigation. The au-
thors incorporated a Fuzzy Logic Controller (FL) with GA to solve the trajectory optimiza-
tion problem. The simulations performed on the proposed method validate the results.
Azzeddine Bakdi et al. [179] presented a two-wheel indoor mobile robot using a Kinect
camera system for planning the trajectory. The information acquired from the surrounding
is done through the image processing technique, and GA is used for generating an optimal
path to join the start position with the target-defined location. Furthermore, to smooth the
path, a Piecewise Cubic Hermite Interpolating Polynomial is incorporated with GA. At last,
an Adaptive Fuzzy Logic Controller is incorporated to keep track of vehicle movements of
the left and right wheel velocities. Parallelly, the Kinect camera and odometry sensor work
to estimate the current position of the vehicle. The complete proposed integrated concept
is implemented on RobuTER to check the feasibility of the algorithm and controller.

Dongshu Wang et al. [218] have presented the enhanced performance of the neural
network by refining the training samples using an artificial potential field. They accom-
plished this task in two steps: (i) defining the global safe area and (ii) dangerous local
area. In the safe region, the robot receives the attraction force from the goal and attracts
towards it, whereas, in a dangerous area, it receives the repulsive force from obstacles.
This repulsive force and angle between the target and obstacle are used as inputs for the
fuzzy inferencing system, and the deflection from the robot is taken as output. The final
direction taken by the robot is determined by calculating the sum of the deflection angle
and direction of attraction force. The coordinates of obstacle and target and the navigation
of robot constitute the training samples of neural network. This precise and refined direc-
tion acquired from the fuzzy artificial potential field technique gives the neural network
an accurate optimization capability to navigate trajectory formation. The simulation and
experimental work prove the feasibility of the proposed algorithm.

6.3. Application to Underwater Vehicles

Daqi Zhu et al. [219] have demonstrated the autonomous underwater vehicles (AUV)
in two steps by proposing Glasius Bio-inspired Neural Network (GBNN): (i) the con-
struction of a grid map is done via discretization of 2D environment, (ii) then the neural
network is constructed on the grid map. At the final stage, a full path is converged using
GBNN, and obstacles are avoided using path templates. The simulations show that AUV
can fully cover the environment and shows exceptional maneuverability when stuck in
a deadlock situation without delay. The results also demonstrate a low overlapping rate
with minimum path planning time when using the proposed algorithm.

Sangeeta Kumari et al. [220] proposed a Moth Flame Optimization Algorithm for
fault resilient issues in autonomous underwater vehicles (AUVs). Communication is a
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great problem in AUVs, so an efficient network is needed to transfer packets towards
the base station. A novel fitness function is created for MFO to overcome the failure
problem. Performance evaluation shows the effectiveness of the proposed algorithm
for AUVs. Wenjie Chen et al. [221] presented the solution to acquire quality images for
localization underwater, as already presented algorithms such as SLAM (Simultaneous
Localization and Mapping) do not have feature-based extraction quality, which often leads
to blurry images. To cater to this issue, a new technique, visual SLAM using Generative
Adversarial Networks (GANs), to improve the quality of images by evaluation metrics was
introduced. This improves the efficiency of SLAM and provides better localization and
accuracy. The proposed method was evaluated on different images using different levels of
turbidity in the water. Experiments were carried out on the Raritan River and Carnegie
Lake in Princeton, New Jersey, USA.

6.4. Summary of Hybrid Techniques

A summary of few more hybrid techniques involved in aerial, ground, and underwater
vehicles are referenced in Table 6 for the speedy conveniences of readers.

Table 6. Impact of Hybrid Methods Involve in Ground and Aerial Vehicles

Contribution Hybrid Method Source

Neuro-Fuzzy Method Many researchers have worked on the obstacle avoidance for mobile robot. [222–229]

Neuro-Fuzzy Inference System

Authors proposed the adaptive neuro-fuzzy inference system (ANFIS) for
ground vehicle navigation and obstacle avoidance. Khepera simulator (KiKs)
was used for simulation purposes. Experimental works were done to check
the feasibility of the controller.

[230]

Multiple Adaptive Neuro-Fuzzy
Inference System

The authors developed the adaptive fuzzy controller with two output
parameters and four input parameters. Each adaptive fuzzy controller acts
as a single Takagi-Sugeno type fuzzy inference system, where output is the
velocity from the left and right wheels, and left and right obstacle distances
with heading angle act as input parameters. The robustness of said controller
is validated on the simulation platform.

[231]

Hybrid Intelligent System (HIS)

Alves and Lopes proposed the integration of ANN with FL for controlling
robot navigation and mitigating the noise production in the system when
collecting data from sensors. According to the authors, the integration
provides calibration and tuning of parameters not present in the neuro-fuzzy
system. Simulations were performed to validate the results successfully.

[232]

Dynamic Self-Generated Fuzzy
Q-learning (DSGFQL)

The method was proposed for obstacle avoidance. The method was
compared with dynamic fuzzy Q-learning (DFQL) and fuzzy Q-learning
(FQL), and the Q-value clustering scheme was compared with the Genetic
algorithm. The proposed method is said to produce the desired output and
perform well when tested in simulations.

[233–235]

7. Challenges Involved in Path Planning Methods

Though many researchers have studied the path planning for ground, aerial, and un-
derwater vehicles, no algorithm/technique can guarantee 100% results; moreover, the ten-
dency to get stuck in local/global optima or the incapability to judge the obstacle in front
may lead to numerous challenges involved with these techniques. These drawbacks sig-
nificantly affect the performance of the autonomous guided vehicle. Some challenges are
mentioned below:

The most used approach for detecting obstacles or planning a path is the deployment
of sensors or cameras around any vehicle [236,237]. However, these sensors’ readings are
neither accurate nor reliable as they are integrated with noise, temperature, and system
oscillations, etc. This leads to uncertainty in the system output, which causes unintentional
error in the output of the algorithm [238]. The vehicle may produce oscillations and noise,
which affect the real-time efficiency related to the data acquired from the environment [239].
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Plenty of research has been performed to mitigate and cater the noise occurrence in the
vehicle system; however, this is still a challenge. These problems and plenty others
widely disturb the implementation of any algorithm in real-time [240]. In vision-based
algorithms, the problem lies in identifying pairs of points in the same dimension [241].
This causes ambiguity in identifying points, which results in inconsistent interpretation of
any image [242].

Another problem lies in some algorithms that rely on the surrounding environment
map for the vehicle to make any decision for navigation. This leads to unnecessary halts
in the motion of the vehicle. Baldoni et al. [243] demonstrated this challenge through
simulations and shows that the generation of the optimal path for any vehicle is com-
plex, and even if the vehicle reaches the desired destination point, it does not produce
smooth navigation.

ANN may have a lot of advantages, as stated earlier, but they require an extensive
data set of the surrounding area for the adjustment of hidden layers [244]. The famous
backpropagation algorithm has its disadvantages, as it quickly converges to the local
minima problem [245]. Table 7 depicts the challenges involved in path planning.

Table 7. Challenges involved in Path Planning.

Cause Challenges Source

Sensors/camera
The readings form these sensors are not accurate nor reliable as they are integrated with
noise, temperature, and system oscillations, etc. This arises uncertainty in the system
output, which causes unintentional error in the output of the algorithm.

[236–238]

Noise occurrence
Plenty of research has been performed to mitigate and cater the noise occurrence in the
vehicle system; however, this is still a challenge. These problems and plenty others widely
disturb the implementation of any algorithm in real-time.

[240]

Vision-Based The problem lies in identifying pairs of points in the same dimension. This causes
ambiguity in identifying points, which results in inconsistent interpretation of any image. [241,242]

ANN
This algorithm has numerous advantages, but they require a large data set of the
surrounding area for the adjustment of hidden layers. The famous backpropagation
algorithm has its own disadvantages, as it easily converges to the local minima problem.

[244,245]

7.1. Proposed Solutions

Trajectory planning is the most researched area in the field of ground vehicles, espe-
cially robotics. Numerous deterministic and non-deterministic algorithms are available
for solving the trajectory formation. After the DARPA challenge, different algorithms
were introduced for path planning (determining shortest path) and obstacle avoidance,
namely A*, Dijkstra, APF, PRM, and Rolling window algorithm [246]. Researchers further
improved these algorithms and made them compatible for multiple purposes, such as time
efficiency. For A* and D*, numerous modifications were done in APF and PRM. However,
no single algorithm can provide all the benefits. A significant revival was initiated when
nature-inspired algorithms come into play, also known as bio-inspired algorithms; the
most prominent algorithms are PSO, ABC, ACO, GWO, WOA, AO, etc. They are designed
based on how they behave in nature. Their natural traits are modeled into the form of
an algorithm. Developers also modify these algorithms according to the requirements.
Motion control is another essential aspect of trajectory finding. Controllers, such as PID,
Sliding mode, Linear quadratic regulator, and adaptive control, can also be integrated with
a bio-inspired algorithm to enhance the functionality and performance of the vehicle. Be-
cause of this, a hybridization, which is the combination of two or more techniques, is used
to further aggravate the merits by utilizing the strengths and, at the same time, mitigating
the disadvantages and drawbacks of each technique. For example, proper integration of
different methods can improve oscillations and reduce noise and data uncertainties due to
the local minima problem associated with the APF method [247–249].
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7.2. Way Forward

To give the reader insight into possible research areas for trajectory formation and
optimization, a bio-inspired technique (Whale Optimizer) is presented integrated with a
deterministic method (multi-coordinated robot exploration, CME). The process is called
the integration of the deterministic method with the bio-inspired algorithm. Readers may
find it interesting to incorporated these methods for space exploration or path planning.
Instead of using one robot, the coordination of multiple robots can be employed.

Here, we present the proof of the methodology mentioned above. Using multi-
robot(s), exploration of the environment is accomplished utilizing multi-coordinated robot
exploration (CME) to evaluate cost values of neighboring cells. We are evaluating every
cell for the presence of obstacles so that, while surfing the space, the mobile robots have
pre-knowledge of obstacles and can define their track for navigation. Then, the Whale
Optimizer is utilized for evaluating the next step of a robot; refer to Figure 8. References can
be found in [250]. A possible algorithm for the methodology mentioned above is presented
in Algorithm 1, and a possible literature survey is jotted down in Table 8. For a similar
approach, another possible direction with the same concept but different optimization
technique can be found in [251].

Algorithm 1 Coordinated Multi-robot exploration with WOA.

1: Initialize the total number of robots nRbt, initial position (Sp) and iterations (iter),
sensor range (SR)

2: while t < iter do
3: for all nRbt do
4: Set coordinates of Vc
5: Calculate cost of Vc
6: Perform subtraction, Ugc

j and Vc
7: Adjust the frequency function
8: Find best whale (refer to Figure 6 [63])
9: Find leader whale (refer to Figure 6 [63])

10: Find X(t+1), i.e., distance to leader whale
11: Change robot position X(t+1)
12: Reduce the utility value Ugc

j
13: end for

Evaluate Frequency function ’f’
14: end while

(a) Multi robot exploration of environment (b) Multi robot trajectory finding and optimization

Figure 8. Multi-robot Exploration using Whale Optimization.
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Table 8. Literature Survey of all Possible Path Planner.

Approach Comments Local/Global Improvement Off/On Line Environment Dimension Simulation/Experiment

Dijkstra (a) Low efficiency
(b) Robust and efficient success rate Global/Local / off 2D Simulation

A-star

(a) Low cost
(b) Easy implementation and efficient
(c) Involves interruption and
susceptible to slow convergence

Global/Local / off 2D Simulation

PRM

(a) Precise Results and easy
implementation
(b) Search path is may not be the
optimal path

Global/Local / on 2D/3D Simulation/ Experiment

D-star
(a) Stable
(b) Proven effective in obstacle
avoidance

Local / off 2D Simulation

D-star-Lite
(a) Fast and Robust
(b) Proven effective for dynamic path
planning

Local / off 2D/3D Simulation/ Experiment

APF
(a) Simple and easy to implement
(b) Fall into local minima problem Local

Optimization path,
improved stability,
avoiding local minima

on/off 2D/3D Simulation/ Experiment
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8. Conclusions

Trajectory planning is often required in autonomous vehicles. Over the last decade,
a lot of research has been performed to address the strengths and challenges involved in
autonomous vehicles. This paper comprehensively discussed and summarized the numeri-
cal techniques and optimization techniques involved in ground, aerial, and underwater
vehicles. Some strengths and challenges are mentioned in Table 9. The most pertinent
conclusion points are summarized as follows:

1. Consolidation of available information: A detailed review of the trajectory plan-
ning and optimization is presented from the application point of view on ground,
aerial, and underwater vehicles. The DARPA challenge 2007 related to robotics, Lord
Rayleigh work related to dynamic soaring in 1883, and some extensions related to
the underwater vehicle are elaborated. Algorithms, i.e., numerical techniques for
implementing the path planning, are discussed.

2. Survey of trajectory optimization techniques: A comprehensive overview related
to optimization algorithms and numerical techniques that have been utilized for
performing trajectory formation and its optimization.

3. Problem formulation and generation of optimal trajectories: An explanation of
how different algorithms can be integrated to build a mathematical model for plan-
ning and the formation of trajectory components can be achieved presented with a
literature survey.

4. Limitations and a way forward: Though numerous works review robotics, aerial
and underwater vehicle systems have been presented together with optimization
techniques and numerical methods, and it has been observed no single algorithm
produces desired results or accurate output; therefore, a hybridization of different
algorithms has been used by researchers. Two optimization algorithms or two nu-
merical methods together can be integrated, or a mix and match of techniques can be
achieved for obtaining the desired characteristics results.
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Table 9. Strengths and Challenges Involved in Hybrid Methods for Ground & Aerial Vehicles.

Algorithms Strengths Challenges Implementation Time Complexity

Fuzzy Logic
(a) The fuzzy rules can be tuned for desirable requirement [3]
(b) Control logic implementation is easy [252]
(c) Can be easily integrated with bio-inspired algorithms [3]

(a) Difficult to create membership
functions Real-time and simulation T ≥ 0(n2)

Neural Network

(a) Works best in real-time
(b) Imitate human control logic easily
(c) Use of backpropagation results in a local minimum
problem [253]
(d) Acquiring a large data set in real-time is difficult [244]

(a) Difficult to handle buried
neuron layers in the network [244]
(b) Increase in layers increases
complexity [244]

Real-time and simulation T ≥ 0(n2)

Genetic Algorithm

(a) Faster convergence rate and optimization capability [46]
(b) Combine well with other algorithms [46]
(c) Because of easy implementation integrate well with other
algorithms [181]

(a) Get stuck in local minima
problem when environment
complexity increase [254]
(b) Produce oscillations in
system [255]

Simulation T ≥ 0(n2)

ABC

(a) Requires fewer control parameters [151]
(b) Requires less computational time [181]
(c) Because of easy implementation integrate well with other
algorithms [181]

(a) Slow convergence rate [256] Simulation T ≥ 0(n2)

Simulated Annealing (a) Good at approximating global optimum [161] (a) Slow convergence rate [161] Simulation T ≥ 0(n2)

GWO
(a) Fast convergence rate [183]
(b) Lesser variable involvement [183]
(c) Easily integrated with other algorithms [184]

(a) Implementation gets tricky
when complex scenarios
arise [185]

Simulation T ≥ 0(n2)

Moth Flame
(a) Compared to other algorithms, it produces good solutions in
complex scenarios [192]

(a) Has premature convergence
rate [191] Simulation T ≥ 0(n2)

WOA (a) Easy implementation with fast convergence rate [194] (a) Difficult to handle in a complex
environment [141] Simulation T ≥ 0(n2)

AntLion (a) Produces good results in complex environment [195]

(a) Involvement of a lot of
variables makes it difficult to
handle when integrated with
different algorithms [74,196]

Simulation T ≥ 0(n2)



Electronics 2021, 10, 2250 28 of 38

Author Contributions: Conceptualization, F.G. and I.M.; methodology, F.G.; software, F.G.; valida-
tion, F.G., I.M., L.A. and A.F.; formal analysis, P.S.; investigation, F.G.; resources, F.G.; data curation,
F.G., I.M. and L.A.; writing—original draft preparation, F.G.; writing—review and editing, F.G. and
L.A; visualization, F.G., I.M., L.A. and A.F.; supervision, I.M., L.A.; project administration, I.M., L.A.;
funding acquisition, A.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: Not Applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

UAV Unmanned Aerial Vehicles
AUV Autonomous Underwater Vehicles
UGVs Unmanned Ground Vehicles
SLAM Simultaneous Localization and Mapping
sUAV Small Unmanned Aerial Vehicle
UAAV Unmanned Aerial-Aquatic Vehicle
ROS Robot Operating System
UUV Unmanned Underwater Vehicle
iCab Intelligent Campus Auto-mobile
TEB Time Elastic Band
GP Gaussian Process
NED North-West-Down
FRU Front-Right-Up
NLP Non-Linear Programming
GESOP Graphical Environment for Simulation and Optimization
ALTOS Aerospace Launch Trajectory Optimization Software
IDVD Inverse Dynamics in Virtual Domain
PSOPT Pseudo Spectral Optimizer
SAK Smart Adaption Kit
GCM Guidance and Control Module
CEP Circular Error Probable
GPS Global Positioning System
LBL Long Base Line
DVL Doppler Velocity Log
IMU Inertial Measurement Unit
EM Electromagnetic Field
MEMS Micro-Electromechanical Systems
AHRS Attitude Heading Reference System
RBO-TMA Reverse Bearing Only Target Motion Analysis
SDC State-Dependent Coefficient
IN Inertial Navigation
PSO Particle Swarm Optimization
GWO Grey Wolf Optimization
ANN Artificial Neural Network
GA Genetic Algorithm
ALO Ant Lion Optimization
WOA Whale Optimization
CNN Convolutional Neural Network
SLI Sylvester Law of Inertia
NSGA II Non-dominated sorting genetic algorithm II
UWG Underwater Glider
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