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Abstract: The challenge in human–robot interaction is to build an agent that can act upon human
implicit statements, where the agent is instructed to execute tasks without explicit utterance. Under-
standing what to do under such scenarios requires the agent to have the capability to process object
grounding and affordance learning from acquired knowledge. Affordance has been the driving force
for agents to construct relationships between objects, their effects, and actions, whereas grounding
is effective in the understanding of spatial maps of objects present in the environment. The main
contribution of this paper is to propose a methodology for the extension of object affordance and
grounding, the Bloom-based cognitive cycle, and the formulation of perceptual semantics for the
context-based human–robot interaction. In this study, we implemented YOLOv3 to formulate visual
perception and LSTM to identify the level of the cognitive cycle, as cognitive processes synchronized
in the cognitive cycle. In addition, we used semantic networks and conceptual graphs as a method
to represent knowledge in various dimensions related to the cognitive cycle. The visual perception
showed average precision of 0.78, an average recall of 0.87, and an average F1 score of 0.80, indicating
an improvement in the generation of semantic networks and conceptual graphs. The similarity
index used for the lingual and visual association showed promising results and improves the overall
experience of human–robot interaction.

Keywords: cognitive robots; semantic memory; affordance; object grounding

1. Introduction

This paper proposes an affordance- and grounding-based approach for the formation
of perceptual semantics in robots for human–robot interaction (HRI). Perceptual semantics
play a vital role in ensuring a robot understands its environment and the implication
of its actions [1,2]. The challenge is to build robots with the ability to process their ac-
quired knowledge into perception and affordance [1–6]. In this context, the significance
of affordance can be rationalized by the following scenario taken from human–human
interaction (HHI): if we state the following information to another human “X” that “I am
feeling thirsty” rather than “I want to drink beverage using a red bottle”, the human “X” will
be able to understand the relationship between “drink” and “thirst”. The link between
these two terms is “thirst causes the desire to drink”. This ability to establish a relationship
between “drink” and “thirst” based on semantic analysis is called affordance. Consequently,
the human “X” will offer something to drink. Let us assume we have a robot with the
ability to process affordance and a similar situation is present in human–robot interaction;
then, it is expected that the robot may perform a similar action as the human “X” in HHI.
For robots, this type of interaction is currently a challenge, although there are various
contributions in this direction [5,6] with the focus on visual affordance. In the scenario
presented above, visual affordance is not sufficient for understanding of the relationship
between “thirst”, and “drink”. The robot also needs to ground the objects placed on the table.
Object grounding is an approach that allows the robot to profile objects in the environ-
ment [6] i.e., “How many objects belong to a drinkable category?” will be answered with the
response having the position of the object as “There is one drinkable object located at the left
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side of the table”. This challenge becomes even more complex when it is implemented for
cognitive robots, because their design rationale considers factors such as internal regular-
ization, control, and synchronization of autonomous processes through a cognitive cycle
(understanding, attending, and acting) [7–11]. A reference cognitive cycle may consist of
a variant of the phases of perception, understanding, and action [7,11]. In this study, we
adopted an extended version [12] of Bloom’s taxonomy as a cognitive cycle. The reason
for using the Bloom-based cognitive cycle is that it provides a map between the level of
cognitive processes and the type of knowledge domain. The detailed Bloom taxonomy
map is provided in a previous paper [12]. In addition, Bloom uses the action verbs to
steer the cognitive-knowledge-domain map [12]. The control structure used in this study
is shown in Figure 1, which is an extract from our previously reported work [13]. The
detailed utilization of the control structure in Figure 1 is discussed in Section 4.

Electronics 2021, 10, x FOR PEER REVIEW 2 of 23 
 

 

having the position of the object as “There is one drinkable object located at the left side of the 

table”. This challenge becomes even more complex when it is implemented for cognitive 

robots, because their design rationale considers factors such as internal regularization, 

control, and synchronization of autonomous processes through a cognitive cycle (under-

standing, attending, and acting) [7–11]. A reference cognitive cycle may consist of a vari-

ant of the phases of perception, understanding, and action [7,11]. In this study, we 

adopted an extended version [12] of Bloom’s taxonomy as a cognitive cycle. The reason 

for using the Bloom-based cognitive cycle is that it provides a map between the level of 

cognitive processes and the type of knowledge domain. The detailed Bloom taxonomy 

map is provided in a previous paper [12]. In addition, Bloom uses the action verbs to steer 

the cognitive-knowledge-domain map [12]. The control structure used in this study is 

shown in Figure 1, which is an extract from our previously reported work [13]. The de-

tailed utilization of the control structure in Figure 1 is discussed in Section 4. 

 

Figure 1. NiHA’s minimal architecture for a cognitive robot [13]. 

In this study, we proposed perceptual semantics based on extended-object ground-

ing and machine perception (visual and lingual). In this regard, we performed a table-top 

experiment using a Universal Robot (UR5). A dataset for affordance learning comprising 

7622 images (Section 4.1) was prepared for the training of a YOLOv3-based perception 

module (Section 4.1). A Bloom-based cognitive cycle identifier was also implemented for 

the identification of cognitive levels (see Section 4.2). The semantic memory was con-

structed from ConceptNet and WordNet having 1.47 million nodes and 3.13 million rela-

tionships (see Section 4.3). Our analysis of the experimental data/results (see Section 5) 

suggests that perceptual learning alone is not sufficient to access the environment; the 

inclusion of seed knowledge is important to understand the extended affordance features 

(i.e., the relationship between “drink” and “thirst”). Moreover, the inclusion of a cognitive 

cycle identifier helps the robot to choose between “what to reply”, “what not to reply”, “when 

to reply”, and “what would be the procedure”. The work reported in this paper is an effort to 

contribute to the advancement of building robots with a better understanding of the en-

vironment. 

2. Related Work 

There is a growing need for robots and other intelligent agents to have safe interac-

tions with partners, mainly human beings. In this regard, the need for perceptual seman-

tics formulated using affordance learning and object grounding is vital for human–robot 

interaction (HRI) [14–16]. 

Affordance is considered to be the catalyst in establishing a relationship between ac-

cessible objects, their effects, and actions carried out by robots [17,18]. Affordance capa-

bility can be induced in an agent through interaction, demonstration, annotation, heuris-

tics, and trails [19]. Most of the work undertaken in object affordance learning is based on 

visual perception [3,20–26], whereas lingual cues can also provide additional advantages 

Figure 1. NiHA’s minimal architecture for a cognitive robot [13].

In this study, we proposed perceptual semantics based on extended-object grounding
and machine perception (visual and lingual). In this regard, we performed a table-top
experiment using a Universal Robot (UR5). A dataset for affordance learning comprising
7622 images (Section 4.1) was prepared for the training of a YOLOv3-based perception
module (Section 4.1). A Bloom-based cognitive cycle identifier was also implemented
for the identification of cognitive levels (see Section 4.2). The semantic memory was
constructed from ConceptNet and WordNet having 1.47 million nodes and 3.13 million
relationships (see Section 4.3). Our analysis of the experimental data/results (see Section 5)
suggests that perceptual learning alone is not sufficient to access the environment; the
inclusion of seed knowledge is important to understand the extended affordance features
(i.e., the relationship between “drink” and “thirst”). Moreover, the inclusion of a cognitive
cycle identifier helps the robot to choose between “what to reply”, “what not to reply”, “when
to reply”, and “what would be the procedure”. The work reported in this paper is an effort
to contribute to the advancement of building robots with a better understanding of the
environment.

2. Related Work

There is a growing need for robots and other intelligent agents to have safe interactions
with partners, mainly human beings. In this regard, the need for perceptual semantics
formulated using affordance learning and object grounding is vital for human–robot
interaction (HRI) [14–16].

Affordance is considered to be the catalyst in establishing a relationship between
accessible objects, their effects, and actions carried out by robots [17,18]. Affordance
capability can be induced in an agent through interaction, demonstration, annotation,
heuristics, and trails [19]. Most of the work undertaken in object affordance learning is
based on visual perception [3,20–26], whereas lingual cues can also provide additional
advantages that can significantly improve affordance [19]. Therefore, in this study, we
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focused on both visual and lingual cues. In addition to visual and lingual cues, Breux
et al. [16] considered ontologies based on WordNet to extract the action cues and ground
the relationships between objects and features (properties). This improved the results and
HRI but covered only seven types of relationships (isA, hasA, prop, usedFor, on, linked-to,
and homonym), which limits the agent’s recognition and understanding capabilities to the
stated semantic associations. Implementation of semantic memory has also been reported
in the literature [3,27,28]. Antunes et al. [27] reported the use of semantic memory for HRI
and discussed the scenario of “make a sandwich” having explicit information objects and
their actions. This system [27] does not have the capabilities to cater to situations such
as “I am feeling hungry”, in which the robot understands that there is a need to make the
sandwich. This suggests that semantic memory is more like a knowledge repository.

Object grounding based on either lingual or visual perception is used to profile the
object in the environment [6,29]. The grounding is mapped in terms of exact and relative
location(s) of the object(s), i.e., “left-of ” [16]. Oliveira et al. [3,4] discussed the importance of
semantic memory for HRI and interaction-based acquisition of knowledge. The mentioned
system uses object grounding without incorporating object affordance; therefore, it is
unable to process the feature-based lingual cues. The object grounding techniques used in
this paper are similar to that introduced in the Robustness by Autonomous Competence
Enhancement (RACE) project [1]. The table-top setup is represented as a grid having
nine positions, i.e., center, right, le f t, top, bottom, bottom− le f t, bottom− right, top−
right, top− le f t (see Section 4.4).

An agent by design has a control structure that can be as simple as a sense act [30]
or as complex as a cognitive architecture [8,13,31]. These control structures may be a
collection of memories, learnings, and other mental faculties depending on the architectural
complexity [8,13]. The systems with semantic memories are those that fall within the
domain of cognitive architecture [8,13,31]. These processes in these control structures
are regularized, controlled, and synchronized through a cognitive cycle. A reference
cognitive cycle consists of perception, understanding, and action [7–10]. A limitation of
these cognitive cycles is that they do not provide explicit guidelines to map the degree of
processing on various knowledge levels and dimensions [7–10]. This is a challenge in the
implementation of cognitive agents in the selection of appropriate cognitive processes and
knowledge dimensions from the lingual cues. Bloom’s taxonomy provides the method to
map lingual cues with the cognitive levels and knowledge dimensions [12], but it has not
yet been used as a cognitive cycle.

The analysis of the current work suggests that significant improvement in the state-of-
the-art can be made by increasing the number of semantic relationships, combining both
supervised and heuristic approaches for acquiring affordance and formulation of object
grounding. We proposed a semantic memory consisting of 53 types of relationships having
1.47 million nodes and 3.13 million relationships to enhance the benefits of affordance
learning (see Section 4.3).

The control structures and design of existing systems build a strong case for the
inclusion of architecture having semantic memory, perception, and other required modali-
ties [3,16,21,22,27,28,32–37]. We used the minimalistic design of the previously reported
Nature-inspired Humanoid Cognitive Architecture for Self-awareness and Consciousness
(NiHA) (see Figure 1) [13].

We incorporated Bloom’s taxonomy in a standard cognitive cycle to identify the
cognitive process and knowledge dimensionality based on the identification of action verbs
from lingual cues (see Section 4.2). The detailed comparison of the state-of-the-art with the
proposed method is symbolized in Table 1.
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Table 1. State-of-the-art comparison with the proposed method.

Work Platform Task Perception Data Source Control
Structure Grounding Affordance

Dataset
Knowledge

Base/Ontology
Evaluation

Metric/Method

[20] N/A Object
Manipulation Visual Demonstration No No 6 Categories/330

Views No Accuracy

[3] PR2 Object
Manipulation Visual Interaction RACE 10 Categories

/339 Views
Semantic
Memory Accuracy

[33] Toe Object
Manipulation Visual Labels

Robot
Imagination

System
Yes Geometric

Shapes No Token Test

[38] Toe Object
Manipulation Visual Labels Yes 10 Classes/30

Sign Symbols No Accuracy

[34] Khepera
III Navigation Visual Labels

Multi-robot
Control
System

No N/A No N/A

[39] PR2 Action Prediction Visuo-Spatial Interaction N/A N/A Graph N/A

[35] Atlas Manipulation
/Navigation Visual Labels Yes No 8 Classes N/A N/A

[27] iCub Object
Manipulation Visual Heuristic Yes Yes N/A Semantic

Memory N/A

[21] Bioloid Object
Manipulation Visual Labels C5M No

5 Classes/4
Affordance

Classes
N/A Accuracy

[22] NAO Action Predic-
tion/Navigation Visual Labels/Trail

& Error Yes No 8 Action Classes N/A Accuracy

[18] iCub Object
Manipulation Visual Heuristic No Yes N/A N/A Accuracy

[23] N/A Action Prediction Visual Heuristic/Labels No No 9 Classes/10
Object Categories N/A Weighted F

Measure

[24] N/A Object
Manipulation Visual Labels No No 7 Classes/105

Objects N/A Recognition
Accuracy

[36] Fanuc Object
Manipulation Visual Labels Yes No 13 Classes N/A Accuracy

[25] N/A Action Prediction Visual Labels No No
13 Classes/6

Action
Affordances

N/A Accuracy

[37] Valkyrie Object
Manipulation Visual Labels Yes No N/A N/A N/A

[28] PR2 Object
Manipulation Visual Labels Yes No N/A KnowRob N/A

[26] Walk
man Action Prediction Visual Labels No No

10 Object
Classes/

9 Affordance
Classes

No Weighted F
Measure

[16] Wheeled
Robot

Object
Manipulation Visual/Auditory Labels Yes Yes N/A Knowledge

Graph N/A

Ours UR5 Grasping/Object
Manipulation Visual/Auditory Labels/Heuristic NiHA Yes 7 Affordance

Classes
Semantic
Memory

F1 Mea-
sure/Semantic

Similarity

3. Problem Formulation

This study proposed a method for human–robot interaction (HRI). For this purpose,
semantic memory Sm for an agent from the atom of knowledge (Atom) is an essential first
step. The atom of knowledge is generated from visual and auditory sensory stimuli. The
human-centered environment consists of household items (objects) present on the table.

Let the items that exist in the workspace be presented as I = {i1, i2, i3, . . . ., in}, and the
properties of the item Ip be represented as Ip = {name, a f f ordance, location, direction}.
The affordance of the item is defined as Ipa f f ordance = {callable, cleanable, drinkable, edible,
playable, readable, writable} and the location as Iplocation : item→ R×R gives the pa-
rameters concerning the visual frame. The direction of the items is presented according to
the center of the visual frame as Ipdirection : Item× Item→ [center, right, le f t, top, bottom,
bottom− le f t, bottom− right, top− right, top− le f t].

Let the auditory stream be based on m number of words as W = {N, Adj, V}. The
word W can be recognized as noun node N = {NN, NNS, NNP, NNPS}, adjective node
Adj = {J J, J JR, J JS} and the verb node can as V = {VB, VBD, VBP, VBN, VBG, VBZ}.
The noun, adjective, and verb are checked with an a priori knowledge base of con-
cepts and features. The concept is defined as C = {c1, c2, c3 . . . .ck}, whereas feature
F = { f1, f2, f3 . . . . fk}. The atom of knowledge is represented as Atom = {〈c, c〉, 〈c, f 〉}.
The semantic memory of the system is the collection of k atoms of knowledge
Sm = {Atom1, Atom2, Atom3 . . . .Atomk}. Let the cognitive cycle based on Bloom’s re-
vised taxonomy be selected as cognitive level Coglevel = [Perception, Understanding −
Comprehensions, Execution−Control, Post−Execution−Analysis, Evaluation, Synthesis].
The knowledge dimension KnowledgeDimension = [Factual, Conceptual, Procedural, Meta−
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Cognition] can be selected based on action verbs proposed in revised Bloom’s taxonomy.
The two-dimensional array, i.e., matrix can be represented as BCogmatrix = Coglevel ×
KnowledgeDimension. The selected cognitive cycle is an instance of a matrix as BCogcycle =
(Cogleveli , KnowledgeDimensioni ).

4. Methodology

This section explains the methodology for the development of artifacts highlighted
in the problem formulation. These artifacts include perception (i.e., visual, and lingual),
working memory (i.e., object grounding and semantic similarity analysis), and construction
of semantic memory (seed knowledge and explicit knowledge). The lingual perception
is further divided into knowledge representation, cognitive cycle identifier, and natural
language processing module. The core architecture is depicted in Figure 2.
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Figure 2. System overview.

4.1. Visual Perception

The visual perception module is based on multiple levels. The first level is based on
affordance learning and the next is based on item name identification.

Affordance Learning: The affordance module is trained on a dataset [40] consisting of
objects used commonly in the household. The 30 items chosen to date can be on categorized
as callable, cleanable, drinkable, edible, playable, readable, writable, and wearable [6]. A
total of 8538 images were taken by a Samsung Galaxy 7 camera. The system (see Figure 2)
was trained to recognize seven classes, i.e., callable, cleanable, drinkable, edible, playable,
readable, and writable. The number of total images used for training purposes was 7622
excluding the wearable category. The system trained on YOLOv3 [41] to identify the items
placed on the table-top setup with 18,000 iterations having an average loss of 0.1176 (see
Appendix A, Figure A1). The architecture of YOLOv3 with its configuration is shown in
Figure 3. The detailed configuration of the training pipeline is presented in Table A1 in
Appendix A.

Item Name Identification: The items classified based on affordance learning are
further assigned names, i.e., Drinkable as Bottle or Cup. For the said purpose, a pre-trained
YOLOv3 classifier [42] was used to identify the name of the commonly used household
items. This module uses the position of the image determined by the YOLOv3 classifier
to localize the detected object in the table-top setup. The system returns the item sets as
I = {i1, i2, i3, . . . , in}, and the properties of items are classified as Ip = {name, a f f ordance,
location, direction}.
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4.2. Lingual Perception

We developed a rule-based chatbot for the acquisition of perceptual semantics from
the auditory stream. The co-worker (i.e., human) communicates with the robot through a
speech engine based on Google Speech-to-Text API. The stream is then sent to the Natural
Language Processing module for tokenization, part-of-speech tagging, name entity tagging,
and basic dependency tagging. Further processing is done in Knowledge Representation
for the formation of the conceptual graph and semantic network, whereas Cognitive Cycle
Identifier modules are used for the classification of cognitive processes in the cycle.

Natural Language Processing: The Natural Language Processing module consists of
four submodules: Tokenization, Part of Speech (POS) tagger, Name Entity (NE) tagger and Basic
Dependency (BD) (see Figure 4). The input stream (sentence) is tokenized in the Tokenization
module and further tagged using the Part of Speech (POS) tagger. The stream is then
classified into noun N = {NN, NNS, NNP, NNPS}, adjective Adj = {J J, J JR, J JS}, and
verb V = {VB, VBD, VBP, VBN, VBG, VBZ} using NLTK (Natural Language Toolkit).
Detail about the POS tags can be found at [43]. Furthermore, CoreNLP is used to identify
BD and NE tags for the formulation of atom of knowledge elements (concepts, relations,
and features).
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Knowledge Representation: Knowledge Representation module consists of Triplet Ex-
traction, Semantic Association and Atom of Knowledge (see Figure 5). Knowledge is con-
structed after the NLP module has processed the stream. The Knowledge Representation
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module extracts the triplets (i.e., predicate, object, and subject) from the processed sentences.
The predicate is extracted from the previously processed verb set V, whereas the subject is
extracted from the noun set N. The last triplet is assigned based on the last of the adjective
set Adj or noun. The association between concepts is created using an a priori knowledge
base by searching the concept nodes for similarities based on relationship types such as
“InstanceOf”, “IsA”, “PartOf”, “DerivedFrom”, “Synonym”, “CreatedBy”, “HasProperty”,
“UsedFor”, “HasA”, “FormOf”, and “RelatedTo”. Based on these associations, the atom of
knowledge is constructed.
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Cognitive Cycle Identifier: The sensory stimuli based on sentences are evaluated
in Bloom’s taxonomy-based cognitive module. The module is constructed on a system
trained on Long-Short-Term Memory (LSTM) with an improvised dataset based on Yahya’s
model with 300 epochs and a cost function of 1.903 × 10−6 [44]. The cognitive level
is determined as Coglevel = [Perception, Understanding− Comprehensions, Execution−
Control, Post−Execution − Analysis, Evaluation, Synthesis]. The cognitive levels are
dataset classes. The stream is then tokenized and parsed using the Natural Language
Toolkit (NLTK). The knowledge domain is further classified based on the action verbs of
Bloom’s revised taxonomy [12] to determine the instance of BCogmatrix. The instance then
initiates the designated cognitive process applicable for potential knowledge dimension
and action.

4.3. Semantic Memory

Semantic Memory is constituted in an a priori and an a posteriori manner. The seed
knowledge is developed from ConceptNet and WordNet, whereas the posterior knowledge
is constructed when the agent interacts with the environment and stored in the Explicit
Knowledge repository.

Seed Knowledge: Seed knowledge is constituted based on atoms of knowledge from
WordNet and ConceptNet. The knowledge base has 1.47 million nodes and 3.13 mil-
lion relationships (53 relationship types, i.e., AlsoSee, Antonym, AtLocation, Attribute, Ca-
pableOf, Cause, Causes, etc.). The nodes consist of 117,659 Synsets (WordNet Nodes),
1.33 million Concept (ConceptNet), and 157,300 Lemma nodes. The Lemma nodes are
extracted from Concept nodes based on “root words”. These nodes are partially or
fully matchable with Synset nodes. The semantic memory-based seed (tacit) knowl-
edge is represented as Sm = {Atom1, Atom2, Atom3 . . . .Atomk} and atoms as Atom =
{〈concept, concpet〉, 〈concept, f eature〉}. The transformation of ConceptNet and Word-
Net ontologies to the proposed seed knowledge, i.e., semantic memory can be seen in
Tables 2 and 3.

Explicit Knowledge: Explicit Knowledge is constructed based on the semantic net-
work [45] and conceptual graph [46] drawn from working memory. These graphs are
constructed in the Knowledge Representation module.
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Table 2. ConceptNet to semantic memory node and edge transformation detail.

ConceptNet to Semantic Memory

Items Original Terms Attached to Adopted Terms Attached to

Unit of Knowledge Edge or Assertion ConceptNet Concept Node Graph-Based Ontology
Attributes Fields Assertions Properties Nodes/Edges

Attribute_1 Uri Assertion conceptUri Node
Attribute_2 rel Assertion RelationShip Type Edge
Attribute_3 start (Concept) Assertion Concept Node Node
Attribute_4 end (Concept) Assertion Concept Node Node
Attribute_5 weight Assertion weight Edge
Attribute_6 sources Assertion - -
Attribute_7 license Assertion - -
Attribute_8 dataset Assertion dataset Edge
Attribute_9 surfaceText Assertion Name Node

- - pos (Extracted frm Uri) Node
- - Id (Extracted frm Uri) Node

<id> (Graph Index) Node/Edge

Table 3. WordNet to semantic memory nodes and edge transformation detail.

WordNet to Semantic Memory

Items Adopted Terms Attached to

Hyponym IsA Edge
Hypernym IsA Edge

Member Homonym PartOf Edge
Substance Holonym PartOf Edge

Part Holonym PartOf Edge
Member Meronym PartOf Edge

Substance Meronym PartOf Edge
Part Meronym PartOf Edge
Topic Domain Domain Edge

Region Domain Domain Edge
Usage Domain Domain Edge

Attribute Attribute Edge
Entailment Entailment Edge

Causes Causes Edge
Also See AlsoSee Edge

Verb Group VerbGroup Edge
Similar To SimilarTo Edge

4.4. Working Memory

Working memory acts as an executive control in the proposed system, whose primary
responsibility is to formulate object grounding and semantic similarity analysis.

Object Grounding: The localization is further used to determine the accessibility
coordinates of the robotic arm. We started with the simplest approach by dividing the
table-top setup into a 3 × 3 grid as shown in Figure 6.
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Figure 6. Image grid (3 × 3).

The grid is divided into several directions as defined in Idirection : Item × Item →
[center, right, le f t, top, bottom, bottom− le f t, bottom− right, top− right, top− le f t]. This
approach is workable to determine the exact position of the item. However, we want to
know the relative positions of the items. The grid is further described based on a reference
point, i.e., center in Figure 7.
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This reference point consideration is further extended to position the item relative to
others as shown in Figure 8.
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Semantic Analysis: The semantic similarity between atoms of knowledge constructed
from words W coming from Lingual Perception and atoms of knowledge constricted from
Ipa f f ordance coming from Visual Perception is evaluated.

S
(

AtomW , AtomIpa f f ordance

)
=

∣∣∣AtomW ∩ AtomIpa f f ordance

∣∣∣∣∣∣AtomW ∪ AtomIpa f f ordance

∣∣∣ (1)

The S maximum scores indicate the similarity between AtomW and AtomIpa f f ordance
.

5. Results

To validate the proposed methodology, we conducted multiple experiments. The
experimental results are based on human collaborator interaction with the agent. In the
first phase, visual perception analysis is discussed, and the subsequent phases are based
on object grounding, cognitive, and semantic analysis.

5.1. Visual Perception

We trained the agent on YOLOv3 and tested it to validate the proposed methods on
160 video frames comprising a collection of 783 different household objects (see Figure 9 for
a subset of video frames). The categorization of objects placed on the table-top scenarios is
based on callable, cleanable, drinkable, edible, playable, readable, and writable affordance
classes. Each frame contains an average of nine objects placed on various areas of the table
to identify and relate the location with spoken commands.
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The results are shown in confusion matrices in Figure 10. The results indicate that
for cleanable affordance the negative predictions were mostly callable and writeable. This
happens in the case of duster (cleanable) and spunch (cleanable) because their shape is similar
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to that of a cellphone (callable). In some cases, the yellow spunch was misclassified as sticky-
note (writable). Furthermore, the toys (playable) were misclassified as drinkable objects in
12 instances due to geometric similarities. Moreover, performance metrics were calculated
for affordance recognition and can be seen in Table 4.

Precision =
True Positives

True Positives + f alse positives
(2)

Recall =
True Positives

True Positives + f alse negatives
(3)

F1 Score = 2 ∗ Precision ∗ Recall
Precision + Recall

. (4)Electronics 2021, 10, x FOR PEER REVIEW 13 of 23 
 

 

 
 

(a) Confusion Matrix (b) Normalized Confusion Matrix 

Figure 10. Affordance recognition–confusion matrices. 

Table 4. Performance metrics: precision, recall, F1 score. 

 True Posi-

tive 

False Posi-

tive 

False Nega-

tive 

True Nega-

tive 
Precision Recall 

F1 

Score 

Playable 65 28 16 674 0.699 0.802 0.747 

Readable 80 4 0 699 0.952 1.000 0.976 

Writeable 81 53 5 644 0.604 0.942 0.736 

Callable 28 47 0 708 0.373 1.000 0.544 

Cleanable 191 4 101 487 0.979 0.654 0.784 

Drinkable 89 14 17 663 0.864 0.840 0.852 

Edible 98 1 12 672 0.990 0.891 0.938 

Average     0.78 0.87 0.80 

  

Figure 10. Affordance recognition–confusion matrices.

Table 4. Performance metrics: precision, recall, F1 score.

True
Positive

False
Positive

False
Negative

True
Negative Precision Recall F1 Score

Playable 65 28 16 674 0.699 0.802 0.747

Readable 80 4 0 699 0.952 1.000 0.976

Writeable 81 53 5 644 0.604 0.942 0.736

Callable 28 47 0 708 0.373 1.000 0.544

Cleanable 191 4 101 487 0.979 0.654 0.784

Drinkable 89 14 17 663 0.864 0.840 0.852

Edible 98 1 12 672 0.990 0.891 0.938

Average 0.78 0.87 0.80

Table 4 contains false positive, false negative, true positive, and true negative parame-
ters. Based on these parameters’ precision, recall, and f1 score are calculated for all seven
affordance classes. The results indicate that the precision is good in the case of the cleanable
object but the recall has a low value, whereas callable has good recall but has low precision.
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Moreover, the f1 score of callable is lowest amongst the remainder of the classes. The
affordance learning is compared with the current state-of-the-art in Table 5. Furthermore,
the objects were classified using a pre-trained COCO model for object grounding and
knowledge representation. The knowledge is represented using both a conceptual graph
and a semantic network. The conceptual graph is used for further action selection and the
semantic network becomes part of the semantic memory.

Table 5. State-of-the-art comparison with proposed affordance learning.

Work Affordance/Objects Robotic Task Size of Dataset Evaluation Metrics

[47] 9 Classes/10 Object Categories Action Prediction 8835 RGB Images Weighted F Score = 73.35

[48] 7 Classes/105 Objects Object Manipulation 30,000 RGB-D Image Pairs Recognition Accuracy = 95.0%

[6] 7 Classes/42 Objects Object Grasp 8960 RGB Images Recognition Accuracy = 100%

[49] 28 Homes/24 Offices/17 Classes Action Prediction 550 RGB-D Views Max Precision = 88.40

[50] 17 Classes Action Prediction 250 RGB-D Videos Time Saving Accuracy

[51] 9 Objects Object Manipulation RGB-D Images Confidence Level

[52] 7 Classes/17 Categories/105 Objects Object Manipulation 28k+ RGB-D Images Weighted F Measure

Ours 7 Classes/26 Objects (Originally 8
Classes/30 Objects) Object Grasp 7622 (Originally 8538) RGB

Images Average F Score = 0.80

5.2. Lingual Perception and Object Grounding

This section is based on the object grounding results, formation of the conceptual
graph, and semantic network. To display the formulation of the conceptual graph, one of
the previously discussed video frames is used (Figure 9a). In this phase, the information
extracted from video frames is used to address the affordance of an object and position
with respect to the center of the frame and the position of other objects. This information is
further transformed using the COCO model as “The cellphone is located at the bottom left side
of the table” (see Figure 11). For this purpose, two types of graphs were generated, i.e., a
conceptual graph (CG) and a semantic network (SN). CG is generated separately for each
instance in the frame. CG is composed of two nodes, i.e., conceptNode (cellphone, located,
side, table, bottom, left) and relationNode (object, at, attr, of ), whereas the empty relation is
represented as “Link” (see Figure 11a). This type of graph helps the agent to check the
dependency factor. In the case of “The frog is located on the left side of the table” the nodes are
slightly different, i.e., conceptNode (frog, located, side, table, left) and relationNode (agent, at, attr,
of ) (see Figure 11c). Both examples have two relationNodes distinct nodes, i.e., “cellphone” is
represented as “object” whereas “frog” is represented as an “agent”. This information helps
understand the nature of the item, its role, and placement.
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The semantic network (SN) for a video frame (Figure 9a) is constructed to be stored
in the semantic memory for future processing (see Figure 12). SN is composed of the
ConceptNode and relationship in the form of edges. The edges for “LocatedAt” and
“LocatedOn” indicate the path towards the position of the item, whereas “NEXT” is an
empty relationship that points towards the succeeding node(s).

If the item in the frame is not recognized based on affordance (see Figure 9a), i.e.,
“Rubik’s cube” (as playable) and “pen” (as writeable), then the agent will not be able to ground
the position and direction of an item. The grounding is formulated after the affordance
recognition in the form of sentences and then as a conceptual graph (see Figure 11) and a
semantic network (see Figure 12).
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5.3. Cognitive Cycle Identifier

This section is based on the results from the Bloom-based Cognitive Cycle Identifier.
In this phase, the verbal sensory stimuli are analyzed for the action selection, i.e., “How
many items are present on the table?”, “How many objects belong to a drinkable category?”,
“Which object is used to reduce the hunger?”, and “Which item is used to reduce the intensity
of thirst?”. The action verbs are further accessed for the identification of the “cognitive
domain”, as described in Bloom’s revised taxonomy [12]. After the identification of the
“cognitive domain,” the agent chooses its actions as “Blob Detection and Counting”, “Affordance
Recognition”, and “Jaccard Semantic Similarity” (see Figures 13–18). The results shown here
are encouraging and represent an important step towards an advancement in perceptual
semantics in cognitive robots.
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The Universal Robot (UR5)-based demonstrations can be accessed through Table 6.

Table 6. Links to demonstration videos.

Human Cues Video

I am feeling thirsty https://youtu.be/A16Q0Od7vg4
(Accessed on 8 September 2021)

I am hungry, I need something to eat. https://youtu.be/YJe9CCo1z-M
(Accessed on 8 September 2021)

Give me anything to play a video game. https://youtu.be/R46WCwMzryc
(Accessed on 8 September 2021)

I am hungry (unsuccessful) https://youtu.be/f2vJswBkpZs
(Accessed on 8 September 2021)

6. Conclusions

In this work, we proposed perceptual and semantic processing for human–robot inter-
action in the agent. The contribution of the proposed work is the extension of affordance

https://youtu.be/A16Q0Od7vg4
https://youtu.be/YJe9CCo1z-M
https://youtu.be/R46WCwMzryc
https://youtu.be/f2vJswBkpZs
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learning, Bloom’s taxonomy as a cognitive cycle, object grounding, and perceptual seman-
tics. The experiments were conducted on the agent using 160 video frames with household
objects in a table-top scenario and human cues that contained implicit instructions. The
results suggest that the overall HRI experience was improved due to the proposed method
and the agent was able to address implicit lingual cues (see Table 6).
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Appendix A

Table A1. Layer configurations.

Layer Type Layer Filters Concatenation Size/Strd(dil) Output

0

Convolutional

conv 32 3 × 3/ 1 608 × 608 × 32
1 conv 64 3 × 3/ 2 304 × 304 × 64
2 conv 32 1 × 1/ 1 304 × 304 × 32
3 conv 64 3 × 3/ 1 304 × 304 × 64

4 Residual Shortcut Layer 304 × 304 × 64

5
Convolutional

conv 128 3 × 3/ 2 152 × 152 × 128

2 ×
conv 64 1 × 1/ 1 152 × 152 × 64
conv 128 3 × 3/ 1 152 × 152 × 128

11 Residual Shortcut Layer 152 × 152 × 128

12
Convolutional

conv 256 3 × 3/ 2 76 × 76 × 256

8 ×
conv 128 1 × 1/ 1 76 × 76 × 128
conv 256 3 × 3/ 1 76 × 76 × 256

36 Residual Shortcut Layer 76 × 76 × 256

37
Convolutional

conv 512 3 × 3/ 2 38 × 38 × 512

8 ×
conv 256 1 × 1/ 1 38 × 38 × 256
conv 512 3 × 3/ 1 38 × 38 × 512

61 Residual Shortcut Layer 38 × 38 × 512

62
Convolutional

conv 1024 3 × 3/ 2 19 × 19 × 1024

4 ×
conv 512 1 × 1/ 1 19 × 19 × 512
conv 1024 3 × 3/ 1 19 × 19 × 1024

74 Residual Shortcut Layer 19 × 19 × 1024

3 ×
Convolutional

conv 512 1 × 1/ 1 19 × 19 × 512
80 conv 1024 3 × 3/ 1 19 × 19 × 1024
81 conv 39 1 × 1/ 1 19 × 19 × 39

82 Detection yolo

83 route 79 ->
84 Convolutional conv 256 1 × 1/ 1 19 × 19 × 256

85 Upsampling upsample 2x 38 × 38 × 256

86 route: 85 -> 61 85 61 38 × 38 × 768

3 ×
Convolutional

conv 256 1 × 1/ 1 38 × 38 × 256
92 conv 512 3 × 3/ 1 38 × 38 × 512
93 conv 39 1 × 1/ 1 38 × 38 × 39
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Table A1. Cont.

Layer Type Layer Filters Concatenation Size/Strd(dil) Output

94 Detection yolo

95 route 91 ->
96 Convolutional conv 128 1 × 1/ 1 38 × 38 × 128

97 Upsampling upsample 2 x 76 × 76 × 128

98 route: 97 -> 36 97 36 76 × 76 × 384

3 ×
Convolutional

conv 128 1 × 1/ 1 76 × 76 × 128
104 conv 256 3 × 3/ 1 76 × 76 × 256
105 conv 39 1 × 1/ 1 76 × 76 × 39

106 Detection yolo
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