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Abstract: This paper considers the problem of remote state estimation in a linear discrete invariant
system, where a smart sensor is utilized to measure the system state and generate a local estimate. The
communication depends on an event scheduler in the smart sensor. When the channel between the
remote estimator and the smart sensor is activated, the remote estimator simply adopts the estimate
transmitted by the smart sensor. Otherwise, it calculates an estimate based on the available infor-
mation. The closed-form of the minimum mean-square error (MMSE) estimator is introduced, and
we use Gaussian preserving event-based sensor scheduling to obtain an ideal compromise between
the communication cost and estimation quality. Furthermore, we calculate a variation range of com-
munication probability, which helps to design the policy of event-triggered estimation. Finally, the
simulation results are given to illustrate the effectiveness of the proposed event-triggered estimator.

Keywords: networked control systems; event-triggered; estimation; Kalman filtering

1. Introduction

With the development and high efficiency requirements of communication engineer-
ing, control science, industrial automation and computer technology, networked control
systems (NCSs) have been gaining more attention and much research interest in recent
years. NCSs are widely used within many areas, such as public transportation, military
defense, health care, etc. [1]. A NCS often contains a huge communication network, where
sensors and actuators are linked together, and components in the communication network
transmit their updates to a fusion center. Such a communication network makes a NCS
work more efficiently. Due to NCSs’ high efficiency in industrial engineering, they have
been widely studied and explored in practice, but there are still many challenges to be
solved in the system design of NCSs.

One challenge is the estimation problem of NCSs. Since state estimation is completed
in a fusion center by using sensor data transmitted over communication networks, it leads
to a high cost. Moreover, a NCS often adopts remote sensors and actuators, making the
system transmission more efficient.

Previous results on event-based estimation have two lines. One line focuses on
the design of optimal-triggering policies. The optimal event-based sensor transmission
scheduling problem of a scalar system was studied in [2] with a finite horizon; the result was
extended to a vector system in [3], which significantly reduced the communication cost. For
the distributed estimation problem, Weimer and James in [4] proposed a distributed event-
triggered estimation algorithm. A model-based adaptive event-triggered control scheme
was also presented in [5] for a class of uncertain single-input and single-output nonlinear
continuous-time systems. Unlike the above results, adopting a deterministic event-based
schedule, in [6], an optimal stochastic event-triggered estimation policy was studied, and
the results were extended to a multi-sensors case in [7]. Furthermore, an optimal event-
triggered tracking control scheme was also proposed for completely unknown nonlinear
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systems under the adaptive dynamic programming (ADP) framework in [8]. For more
research in this line, see also [9–11]. In this field, researchers mainly study for an optimal
event-triggered policy, which may not run for an optimal estimation.

In addition to the optimal event policy, another line is to find the optimal estimation
for a given event-triggered schedule; many relevant studies have been carried out recently.
A stochastic state estimator, which is suitable for event-sampling strategies, was designed
in [12] without energy constraints. However, considering the fact that sensors are usually
with energy constraints in practical cases, an event-triggered estimation with energy
constraints was probed in [13], based on hidden Markov models. When sensors can harvest
energy to overcome energy constraints, Huang et al. applied an event-triggered estimator
to NCSs in [14]. The problem of real-time reachable set control for a class of singular
Markov jump networked cascade systems with time-delay, disturbance and non-zero
initial conditions, was considered in [15]. For subsequent results of similar studies, see
also [16–18]. Although an optimal estimation can be found in this way, an event-triggered
approach also needs to be studied for a better transmission effect.

In this work, the policy of an event-triggered system is studied to trade off between
the transmission cost and communication quality, and we find the system can improve the
estimation effect when the event is not triggered. The main contributions of this paper are
summarized as follows:

1. A periodic event-triggered transmitting policy is discussed to innovatively handle
the specific relationship between the communication cost and effect.

2. The transmission effect is also compared under different triggering probabilities.
When the transmission rate is improved, the error covariances of the estimates are
decreased. A fair comparative study is also presented to demonstrate the necessity of
considering a periodic transmitting policy in reality.

We organized the rest of this paper as follows: the problem formulation and the
system modal shown in Figure 1 are presented in Section 2, with the description of the local
sensor and remote state estimate. Section 3 presents the expression of the MMSE estimate,
and studies the relationship between the transmission cost and efficiency with a periodic
event-triggered policy. Section 4 provides some specific simulation results. The concluding
remarks are given at the end.

Figure 1. Event-triggered sensor scheduling diagram for remote state estimation.

Notations: Let Z denote the set of all integers, and N the positive integers. Sn
+ and

Sn
++ are the sets of n× n positive semi-definite and positive definite matrices. For example,

when X ∈ Sn
+, we write X > 0 (X > 0, if X ∈ Sn

++ ). Similarly, if X − Y ∈ Sn
+, we obtain

X > Y. R is the set of real numbers, and Rn the n-dimensional Euclidean space. Tr(·) stands
for the trace of a matrix. Pr(·) refers to the probability of a random event. E[·] represents
the expectation of a random event, and det(·) is the determinant of a matrix.

∧
denotes

taking the larger value. For functions h, h1, h2 with appropriate domains, h1 ◦ h2(x) is the
composite function h1(h2(x)), and hn(x) , h

(
hn−1(x)

)
, with h0(x) , x, where n ∈ N.

2. Estimation Setup

Consider the linear time-invariant (LTI) system as follows:

xk+1 = Axk + wk, (1)

yk = Cxk + vk. (2)
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where k ∈ N. In the system, xk ∈ Rnx stands for the state vector at time k, and yk ∈ Rny

refers to the measurement received from the sensor. Then, wk ∈ Rnx and vk ∈ Rny represent
zero-mean independent and identically distributed Gaussian noises, with E

[
wkw′j

]
=

δkjQ(Q > 0), E
[
vk
(
vj
)′]

= δkjR(R > 0), E
[
wk
(
vj
)′]

= 0, ∀j, k ∈ N, where δij is the Dirac

delta function, i.e., if i = j, δij is equal to 1, and 0 otherwise. For pair (A, C) and
(

A, Q1/2
)

,
the former is assumed to be detectable and the latter is stabilizable.

The initial state x0 of this LTI system with covariance Θ0 > 0, which is uncorrelated
with wk and vk, is a zero-mean Gaussian random vector.

2.1. Sensor Local Estimate

In the network estimation scheme, sensors are usually embedded in the on-board
processor to improve the utilization of computing capabilities, which can promote the
system performance significantly as explained in [19]. A number of previous studies,
such as [20,21], have focused on the “smart sensor” in the system. It runs a Kalman filter
locally at each time k and calculates the MMSE estimate of the state xk, according to all the
measurement results up to time k. The sensor firstly collects the value of estimate locally,
and then sends to the remote estimator.

For further calculation, we denote the MMSE state estimate of local sensor as x̂s
k:

x̂s
k = E[xk | y1, y2, . . . , yk], (3)

Let es
k and Ps

k stand for the corresponding estimation error and respective error covari-
ance, which are given by the following:

es
k = xk − x̂s

k, (4)

Ps
k = E

[
(xk − x̂s

k)(xk − x̂s
k)
′ | y1, y2, . . . , yk

]
. (5)

The recursive standard Kalman filter equations in [14] are shown as follows:

x̂s
k|k−1 = Ax̂s

k−1, (6)

Ps
k|k−1 = APs

k−1 A′ + Q, (7)

Ks
k = Ps

k|k−1C′
[
CPs

k|k−1C′ + R
]−1

, (8)

x̂s
k = Ax̂s

k−1 + Ks
k
(
yk − CAx̂s

k−1
)
, (9)

Ps
k = (I − Ks

kC)Ps
k|k−1. (10)

where the recursion starts from Ps
0 = Θ0 > 0 with x̂s

0 = 0.
As is shown in some previous studies, such as the standard Kalman filter analysis

in [16], Ps
k in (10), which denotes the estimation error covariance, converges to a steady

state value by an exponential rate.
To facilitate the discussion, the following operators h and g̃ are proposed, which satisfy

Sn
+ → Sn

+:
h(X) , AXA′ + Q, (11)

g̃(X) ,X− XC′
[
CXC′ + R

]−1CX, (12)

hk(X) , h ◦ h ◦ · · · ◦ h ◦ h︸ ︷︷ ︸
k times

(X). (13)

The Kalman filter on the sensor side will enter a steady state value, that is:

Ps
k = P̄, k > 0, (14)
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where P̄ is denoted as the steady-state error covariance, i.e., g̃ ◦ h(P̄) = P̄.

2.2. Remote State Estimation

In this work, a novel policy is presented for a control system with a smart sensor case.
To describe the state estimation, we consider the Gaussianity-preserving communication
scheduling policy ∆̂, where the sensor randomly generates a uniformly distributed random
variable ξk ∈ [0, 1] at each time k, i.e.,

γk =

{
0, if ξk ≤ s(zk, Γ),
1, otherwise.

(15)

where zk stands for the information related with the transmission probability, which is
described specifically later. For (15), we define s(x, Γ) as

s(x, Γ) = e−
1
2 x′Γ−1x,

where x ∈ Rn, and Γ ∈ Sn
+ is designed to be a weight matrix.

As is shown in (15), if the value of s(zk, Γ) is smaller, the probability of γk is lower
at each time k. Under this situation, the communication between sensor and estimator is
more likely to be triggered.

Since the event trigger is stochastical, it is possible that the communication may not
be activated for a long time. In order to enhance the robustness of the system, we define
λk(T) as the event-triggered period, i.e.,

λk(T) =
{

1, k mod T = 1,
0, otherwise.

(16)

then, we have the following:
γ̄k = γk

∧
λk, (17)

where, if γ̄k = 1, the communication x̂s
k is sent; otherwise, x̂s

k is not sent.
Ik is defined to stand for the set of all the information, which is available to the remote

estimator up to time k, that is, the following:

Ik = {γ̄1 x̂s
1, γ̄2 x̂s

2, . . . , γ̄k x̂s
k} ∪ {γ̄1, γ̄2, . . . , γ̄k}. (18)

To better introduce this policy, we let zk represent the information sent by the local
sensor, which is also the incremental innovative information of x̂s

k:

zk , x̂s
k − Aτk−1 x̂s

Nk−1
, (19)

where Nk , max
{

j : γ̄j = 1, 1 ≤ j ≤ k
}

and τk , k− Nk + 1. Nk stands for the most recent
sending instance before time k, while τk denotes the distance between time k + 1 and Nk,
both of which are measurable to Ik.

In order to obtain the MMSE estimate at the remote estimator, x̂k is denoted as the re-
mote estimator’s own MMSE state estimate, which is based on Ik, and Pk the corresponding
error covariance, i.e.,

x̂k = E[xk | Ik], (20)

Pk = E
[
(xk − x̂k)(xk − x̂k)

′ | Ik

]
. (21)

Once the remote estimator successfully receives the estimate by the local sensor’s side,
using the system model (1) and (2), it synchronizes its own estimate with that of the sensor.
Otherwise, if the estimate is not transmitted, the estimator just predicts xk recursively based
on its available information.
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3. Online Sensor Schedule

In this section, a further discussion about the online sensor schedule is carried out.
We show the MMSE estimate of the state at each time k, investigate the upper and lower
bounds of no transmission probability, and adopt a periodic communication strategy, which
can trade off between the cost and efficiency of the system.

3.1. MMSE Estimation

In the following lemma, ∆̂ in (15) is used to illustrate a computation method. Without
loss of generality, if the communication is absent at time k, the conditional distribution of
xk still keeps its Gaussianity, which is elementary for calculating the MMSE estimate and
the corresponding estimation error covariance.

Lemma 1. Let p∆̂ represent a probability density. Whenever the transmission is successful, the
conditional distribution of xk keeps the Gaussianity as given Ik, i.e.,

p∆̂(xk, x | Ik) ∼
{
N
(
x̂s

k, Ps
k
)
, if γ̄k = 1,

N
(

Aτk−1 x̂s
Nk

, Ps
k + Ψk

)
, if γ̄k = 0,

where Ψk is calculated by the recursive equations as follows:

Σk = (1− γ̄k−1)AΨk−1 A′ + h
(

Ps
k−1
)
− Ps

k (22)

Ψk =
(

Σ−1
k + Γ−1

)−1
(23)

with initial value Ψ0 = 0.

Proof of Lemma 1. The proofs are straightforward from Lemma 1. We define z̃k = x̂s
k −

Ax̂s
k−1. Evidently, from (19), we have zk = ∑k

j=Nk−1+1 Ak−j z̃j. As a result, the lemma can be
readily set up from [22].

Furthermore, some properties of the incremental innovative information z̃k are critical
for the proof of Lemma 1, which are also indicated in the following lemmas. Γ−1, like the
Fisher information matrix shown in Lemma 1, stands for the side state information.

Lemma 2. If the transmission is absent, the probability is shown as follows:

Pr(γ̄k = 0 | Ik−1) = det
(

ΨkΣ−1
k

)1/2
. (24)

Lemma 3. The following statements on z̃k hold: (a). z̃k is zero-mean Gaussian with E
[
z̃k z̃′k

]
=

h
(

Ps
k−1

)
− Ps

k ; (b). The sequence of z̃k, i.e., z̃1, z̃2, . . . , z̃k are independent.

Proof of Lemma 2 and Lemma 3. At first, theoretical proofs are given for the Gaussianity
of p∆̂(zk, z | Ik−1). For k = 1, we have z1 = x̂s

1− Ax̂s
0 and z̃1 ∼ N (0, Σ1) by Lemma 3, where

Σ1 = h
(

Ps
0
)
− Ps

1 . Assume p∆̂(zk | Ik−1) ∼ N (0, Σk) and define Υk =
{

Σ1/2
k x : x ∈ Rn}.

Regarding to the Lebesgue measure on Υk, we obtain the following:

p∆̂(zk, z | Ik−1) =
1

(2π)nx/2(det Σk)
1/2 exp

(
−1

2
z′Σ−1

k z
)

.
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The probability Pr(γ̄k = 0 | Ik−1) can be computed as follows:

Pr(γ̄k = 0 | Ik−1)

=
∫

Υk

exp
(
−1

2
z′Γ−1z

)
p∆̂(zk, z | Ik−1)dz

=
∫

Υk

exp
(
−1

2
z′
(

Ψ−1
k − Σ−1

k

)
z
)

p∆̂(zk, z | Ik−1)dz

=
∫

Υk

1

(2π)nx/2(det Σk)
1/2 exp

(
−1

2
z′Ψ−1

k z
)

dz

=det
(

ΨkΣ−1
k

)1/2
,

(25)

which completes the proof of Lemma 2.
On the one hand, if γ̄k = 0, the equation of probability density is shown as follows:

p∆̂(zk, z | Ik−1, γ̄k = 0) =
Pr(γ̄k = 0 | zk = z)p∆̂(zk, z | Ik−1)

Pr(γ̄k = 0 | Ik−1)

=
1

(2π)nx/2(det Ψk)
1/2 exp

(
−1

2
z′Ψ−1

k z
)

,
(26)

that is, p∆̂(zk, z | Ik−1, γ̄k = 0) ∼ N (0, Ψk). Because of zk+1 = Azk + z̃k+1 shown in
Lemma 3, we obtain the following:

p∆̂(zk+1, z | Ik−1, γ̄k = 0) ∼ N (0, Σk+1),

where Σk+1 = AΨk A′ + h
(

Ps
k
)
− Ps

k+1.
On the other hand, if γ̄k = 1, x̂s

k is transmitted to the estimator successfully. Condi-
tioned on Ik, zk can be calculated by zk+1 = x̂s

k+1 − Ax̂s
k = z̃k+1. For Σk+1 = h

(
Ps

k
)
− Ps

k+1,
we have p∆̂(zk+1, z | Ik−1, γ̄k = 1) ∼ N (0, Σk+1).

From the optimal filtering theory, xk − x̂s
k is orthogonal to zk. Since xk − x̂s

k and zk are
jointly Gaussian and xk − x̂s

k ∼ N
(
0, Ps

k
)
, which reaches the conclusion.

Then, two theorems are put forward in the following discussions to explain that
remote estimators compute their own estimate and the covariance of the corresponding
estimation error recursively, under schedule ∆̂. An efficient but simple recursion comes
from the Gaussianity of the a posteriori distribution.

Before introducing two theorems, we recall that x̂s
k and Ps

k are updated at the sensor
side locally, by using a standard Kalman filter. We define the MMSE estimator as E∗.

Theorem 1. Consider ∆̂ given in (15). The value of x̂k in two different cases is studied, i.e.,

x̂k =

{
x̂s

k, if γ̄k = 1,
Ax̂k−1, if γ̄k = 0,

(27)

with x̂0 = 0. Under this schedule, a positive semi-definite matrix for a concise notation can
be denoted as follows:

Φk , (1− γ̄k)Ψk (28)

Then, Φk is computed according to (22), (23) and (28).

Proof of Theorem 1. Theorem 1 can be directly obtained from Lemma 1 and
Lemma 3.

Theorem 2. According to the MMSE estimator E∗ considered in Theorem 1 and ∆̂ given in (15).
We can calculate the estimator’s estimation error covariance Pk as follows:
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Pk = Ps
k + Φk. (29)

Proof of Theorem 2. The proof of Theorem 2 is readily from Lemma 1 and Lemma 3 and,
thus, is omitted.

The above two theorems describe that, if γ̄k = 1, (x̂k, Pk) is updated as
(
x̂s

k, Ps
k
)
; when

γ̄k = 0, Ψk stands for the remote estimator’s lost performance since the communication
is absent. In fact, Ps

k denotes the estimation error of the sensor’s local Kalman filter, as is
shown in Theorem 2, and Pk is simply a sum of Ps

k . Compared with open-loop predictions,
Γ−1 in Ψk can be interpreted as supplementary information, obtained from the absence of
transmission. By using this method, if the local sensor satisfies the capability of running
a Kalman filter, the remote estimator updates its estimate at each time k, and gains the
associated estimation error covariance in a simple and efficient way.

3.2. The Bounds of the Probability of No Transmission

In order to study the property of communication schedules, we further explore the
transmission probability. Since it is difficult to find the exact value of the probability
Pr(γ̄k = 0 | Ik−1), we try to obtain its upper and lower bounds.

Theorem 3. The upper bound and lower bound of Pr(γ̄k = 0 | Ik−1) can be calculated as follows:

(
1 + trace

(
ΣkΓ−1

))1/2
≤ det

(
ΨkΣ−1

k

)1/2
≤ exp

(
1
2

trace
(

ΨkΣ−1
k

))
. (30)

Before proving the Theorem 3, Lemma 4 and Lemma 5 are given as follows.

Lemma 4. When P ∈ Sn
++, ∃M ∈ Sn

++, s.t. M2 = P, M = MT.

Lemma 5. Assume det P = ∏n
i=1 αi, P ∈ Sn

++, where αi is the eigenvalue of P, we have
the following:

det(I + P) =
n

∏
i=1

(αi + 1) = 1 +
n

∑
i=1

αi + · · · > 1 + trace P.

Proof of Theorem 3. Consider Ψk given in (23). We have the following:

(
ΨkΣ−1

k

)−1
=

((
Σ−1

k + Γ−1
)−1

Σ−1
k

)−1
= Σk

(
Σ−1

k + Γ−1
)
= I + ΣkΓ−1 (31)

For the first inequality given in (30), Σk ∈ Sn
++, assuming Σk = M2, we have the

following:

det
(

ΨkΣ−1
k

)
= det

(
I + MΓ−1MT

)
> 1 + trace

(
MΓ−1MT

)
= 1 + trace

(
ΣkΓ−1

)
.

Then, because of βi + 1 ≤ exp(βi), it is not hard to obtain the following:

det(I + P) =
n

∏
i=1

(βi + 1) > exp

(
n

∑
i=1

βi

)
= exp(trace P).

which completes the proof.

3.3. Periodic Sending Strategy

Since the probability of communication is not an exact value, we try to explore a
schedule to better compromise the system cost and efficiency by constraining the probability
v(γ̄k = 0 | Ik−1) and study the transmission process.



Electronics 2021, 10, 2215 8 of 12

Consider the MMSE estimator E∗, which is given in Theorem 1, and the corresponding
estimation error covariance Pk given in Theorem 2. We introduce another operator g: Sn

+ →
Sn
+ to facilitate the discussion:

g(X) , A(X−1 + Γ−1)−1 AT + h(P̄)− P̄. (32)

Denote the set of Σk during a period as Λ = {Σk} =
{

Σ̄, g(Σ̄), . . . , gT−1(Σ̄)
}

, in order
to describe the transmission situation at different moments.

Remark 1. At time k, when γ̄k = 0 in (18), an iterative calculation is required. For example,
if γ̄k = 0, Σk is denoted as Σk = g(Σ̄k−1), and Σk = Σ0 if γ̄k = 1, with Σ0 = Σ̄. The worst
case is that the information is only sent once as γ̄λk(T)=1 = γ̄(k mod T=1) = 1, in one period, with
ΣT−1 = gT−1(Σ̄) = gT−1(Σ0).

It is not difficult to see that when Γ is determined, the probability of transmission is
related to the variance of z̃k, which is defined as βk. Assuming Pk is set, we introduce an
operator η : Sn

+ → Sn
+, then we have the following:

βk = Pr(γ̄k = 0 | g(Σ̄)) = ηk(Σk, Γ) = ηΓ(Σk), Σk ∈ Λ. (33)

Theorem 4. Let β0 = η̄
(
Σ̃
)
, βi = η̄[gi(Σ̃)], i = 1, 2, . . . , T − 1. According to (33), a Markov

matrix, as follows, can describe the transmission probability:

Θ =



1− β0 β0 0 . . . 0

1− β1 0 β1
. . .

...
...

...
. . . . . . 0

1− βT−2 0 . . . 0 βT−2
1 0 0 0 0


T×T

,

v̄ = (I −Θ)−1(I −ΘT), where v̄ is the transmission probability during a period T.

Proof of Theorem 4. When Γ is fixed, the transmission probability v̄ in a period can be
calculated as follows:

v̄ =I + Θ1 + Θ2 + · · ·+ ΘT−1. (34)

For v̄ in (34), multiply (I −Θ), we obtain the following:

(I −Θ)(I + Θ1 + Θ2 + · · ·+ ΘT−1) = I + Θ1 + · · ·+ ΘT−1 −Θ1 − · · · −ΘT = I −ΘT .

It can be concluded that v̄ is (I −Θ)−1(I −ΘT).

We further compare the transmission probabilities with different Γ.

Lemma 6. Given Γ1 ≤ Γ2 in (15), it follows that we have the following:

v̄(Γ1) > v̄(Γ2). (35)

where v̄(Γk) stands for the transmission probability during a period T with Γk.

Proof of Lemma 6. If A > B > 0, let A = D2, then D−1BD−T > 0, we have the following:

A− B = D2−B = D(I − D−1BD−1)DT > 0,

I − D−1BD−T > 0.

Because of 1 > det(I − D−1BD−1) > 0, we have the following:

det B
det A

=
det B

det DDT = det D−1BD−T < 1,
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so det A > det B.
Similarly, for Γ−1 > 0, Γ−1 = S−2, ∃P > Q > 0, s.t. det(I + PS2) = det(I + SPST) >

det(I + SQST), that is det(I + PΓ−1) > det(I + QΓ−1). For Ψk in (33), it is trivial that
ηΓ(P) < ηΓ(Q) and gk1(Σ̄) > gk2(Σ̄) with k1 > k2. The Lemma can be concluded.

Lemma 6 shows that the transmission probability varies with different Γs within one
period. Specifically, it becomes smaller when Γ increases, reducing the communication cost
and improving the transmission quality of the system at the same time, which deserves to
be used in the design of event-triggered systems.

4. Simulation Examples

It is important to have accurate and efficient communication models of the data
transmission networks for the design of event-triggered wireless control systems. Yi et
al. proposed an event-triggered consensus protocol and a triggering law in [23], which
do not require any a priori knowledge of global network parameters. The Markov deci-
sion process and Markov game frameworks were also studied to investigate the optimal
transmission strategies for the sensors in [24], developing several structural results on the
optimal solutions.

In order to illustrate the estimation quality with bounded states, a stable system is
simulated as follows:

A =

 0.5 0.3 0.4
0.1 0.7 0.1
0.3 −0.5 0.6

, C =

 0.5 1 2
1 3 0.4

1.5 0.4 2.5

,

Q =

 0.4 0.2 0.1
0.2 0.5 0.3
0.1 0.3 0.5

, R =

 0.1 0.03 0.05
0.03 0.1 0.02
0.05 0.02 0.1

.

The error covariances of real states, remote and local estimates are calculated with a

finite time-horizon T. We first set Σ−1
1̄ =

 5 0 0
0 5 0
0 0 5

 and Σ−1
2̄ =

 2 0 0
0 2 0
0 0 2

, observing

the implementing results and communication times.
Under Σ−1

1̄ , the local estimates, remote estimates and real states are approximately the
same, as the transmission rate is about 0.45, shown in Figure 2.

Figure 2. Estimation performance of state with Σ−1
1̄ .

Under Σ−1
2̄ , the transmission rate is improved to about 0.55, shown in Figure 3,

changing between 0.4 and 0.6 generally.
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Figure 3. Estimation performance of state with Σ−1
2̄ .

Looking at the figures above, it can be concluded that although the probability of
transmission is changed by Σ, there are few impacts on the state estimation. The local
estimates, remote estimates and real states are still roughly the same, as the three different
lines in each figure are basically coincident.

We then carry out a fair comparative study with an existing method, considering a
case without the periodic transmission schedule. By changing a suitable Σ, we try to set
the transmission rate to about 0.59, shown in Figure 4.

Figure 4. Estimation performance of state without the periodic transmission schedule.

The error covariances of the basic simulations and the comparative study are calcu-
lated and shown in Table 1, with the above results.

Table 1. The values of error covariances in the above situations.

Time, k x1 x2 x3

Error Covariance 1(Σ−1
1̄ ) 0.9710 0.8287 0.9210

Error Covariance 2(Σ−1
2̄ ) 0.7268 0.6579 0.8620

Error Covariance 3 (Without the periodic transmission schedule) 0.7795 0.6516 0.6902

To better test the differences between the two cases, we compare the error covariances
in different situations. According to the basic simulations, the error covariances will
decrease with a slightly higher transmission rate if the Σ increases. The error covariances
for the comparative study without the periodic transmission schedule are better than
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our basic simulations, theoretically, while the event-triggered policy with the periodic
communication schedule can guarantee the transmission rate in the system to avoid
extreme situations in reality. The innovative periodic transmission schedule in this study
helps the system develop the communication quality to a certain extent.

5. Conclusions

In this paper, a remote state estimation problem in a LTI system was studied, where a
smart sensor was utilized to measure the system state and generate a local estimate. The
Gaussian preserving event-based sensor scheduling and the corresponding closed-form of
MMSE estimator were investigated. The variation range of transmission probablity was
calculated, which helps to better design the policy of event-triggered estimation. Finally,
the effectiveness of proposed estimator was shown through the simulation results.
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