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Abstract: Robotic manipulators inevitably encounter singular configurations in the process of move-
ment, which seriously affects their performance. Therefore, the identification of singular configu-
rations is extremely important. However, serial manipulators that do not meet the Pieper criterion
cannot obtain singular configurations through analytical methods. A joint angle parameterization
method, used to obtain singular configurations, is here creatively proposed. First, an analytical
method based on the Jacobian determinant and the proposed method were utilized to obtain their
respective singular configurations of the Stanford manipulator. The singular configurations obtained
through the two methods were consistent, which suggests that the proposed method can obtain
singular configurations correctly. Then, the proposed method was applied to a seven-degree-of-
freedom (7-DOF) serial manipulator and a planar 5R parallel manipulator. Finally, the correctness of
the singular configurations of the 7-DOF serial manipulator was verified through the shape of the
end-effector velocity ellipsoid, the value of the determinant, the value of the condition number, and
the value of the manipulability measure. The correctness of singular configurations of the planar 5R
parallel manipulator was verified through the value of the determinant, the value of the condition
number, and the value of the manipulability measure.

Keywords: Pieper criterion; Jacobian matrix; singular configurations; manipulability measure;
condition number

1. Introduction

It is well-known that the kinematics of robotic manipulators can be expressed on
the velocity level, and the relationship between the joint velocities and end-effector (EE)
velocities is described by a Jacobian matrix. Robotic manipulators that do not meet the
Pieper criterion [1] only obtain a numerical solution to the inverse kinematics, and the
Jacobian iteration algorithm is a commonly algorithm for numerical solution. However,
when robotic manipulators approach a singular configuration, the Jacobian matrix becomes
numerically unrealizable, and this is experienced in the form of high joint velocities, which
are not conducive to motion control. Therefore, the identification of singular configurations
is a key issue to avoid singularity. Singularity in robotic manipulators includes boundary
singularity and internal singularity [2]. Boundary singularity appears at the working
space boundary, and internal singularity is caused by the coincidence of two or more joint
axes. Robotic manipulators are divided into serial manipulators and parallel manipulators
from the perspective of mechanism [3]. Müller [4] roughly classified the singularities
of serial manipulators and parallel manipulators based on active and passive joints and
proposed an algorithm to determine the singularities of the mechanism. Most researchers
have performed singularity analysis on serial manipulators or parallel manipulators. The
following concerns parallel manipulators. Li [5] introduced a cell-division method for
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singularity analysis, which could be used to multi-loop mechanisms. The key principle was
replacing the singularity analysis of the original multi-loop mechanism with an equivalent
and simpler parallel mechanism. Han [6] proposed a simple and effective method to
determine the singularity of planar linkages. Chen [7] analyzed the singularities of the
3-UPU (U stands for the universal joint and the prismatic pair P is actuated) parallel
mechanism. Nayak [8] carried out a singularity analysis for a serial-parallel robot. Ma [9]
proposed a singularity analysis method for a 3/6-SPS Gough-Stewart parallel manipulator
based on geometric algebra, in which S represents the spherical joint and P represents the
prismatic pair. Wu [10] obtained singular configurations of three configurations of parallel
manipulators using an analytical method. However, this method does not necessarily
guarantee that it can be applied to other configurations of parallel manipulators. Ben-
Horin [11] solved the singularities of a general class of Gough-Stewart platforms through
Grassmann–Cayley algebra. Conconi [12] analyzed the causes of the singular events of
parallel kinematic chains and identified singular configurations. Pagis [13] transformed
near-singularities into a simplified dynamic model to allow parallel manipulators to cross
the type 2 singularity with the best trajectory.

We now look at serial manipulators that meet the Pieper criterion. For these manipu-
lators, three revolute axes intersect at a point, and singular configurations can be obtained
by solving the determinant so that it is zero. Li [14] analyzed singular configurations of
a six-degree-of-freedom (6-DOF) modular robotic manipulator. Yu [15] divided singu-
larity into forearm singularity and wrist singularity and took measures to avoid them.
Carmichael [16] only described the situation in which singular configurations occur when
the singular value is zero, and this is far away from singular configurations through a
virtual force. Furthermore, singular configurations of the manipulator were not obtained.
Kang [17] carried out singularity analysis of a 6-DOF anthropomorphic manipulator and
proposed two solutions to avoid boundary singularity and internal singularity. Xu [18]
determined singular configurations based on the Jacobian matrix of a non-spherical wrist
manipulator. However, the method is only suitable for a manipulator with a specific con-
figuration and has low applicability. Hijazi [19] analyzed the singularities of a planar robot
manipulator in redundant and non-redundant cases. Although singularity surfaces were
obtained, singular configurations were avoided through trajectory planning. Müller [20]
carried out high-order analysis of motion singularity for serial manipulators. However,
the derivation and calculation process were complex, which is not suitable for singularity
analysis of redundant manipulators. Oetomo [21] introduced singular configurations of the
PUMA 560 and analyzed the associated singular directions and the handling algorithm.

However, there are also serial manipulators that do not meet the Pieper criterion.
The determinant of the Jacobian matrix is especially complex and cannot be simplified
effectively, so it is difficult to obtain singular configurations through analytical methods.
Rebouças Filho [22] used a genetic algorithm to identify and solve singular problems along
the trajectory of a robotic manipulator. However, the method identified singular regions
rather than specific singular configurations. In [23], the singularity of a 6-DOF painting
robot with a non-spherical wrist was decomposed into position singularity and attitude
singularity by introducing a virtual wrist center. Due to the virtual wrist center, the D-H
parameters di of the 7R 6-DOF manipulator changed, so an error was introduced to the
position of the EE. Dimeas [24] determined the position singularity through the distribution
curve of the manipulability, the minimum singular value, and the local condition index.
However, this method ignored attitude singularity.

Serial manipulators that meet the Pieper criterion can obtain singular configurations
through an analytical method. However, for serial manipulators that do not meet the Pieper
criterion, most studies on the subject focus on singularities of special manipulators or on
avoiding singular regions. Singular configurations when a singular value is zero are less
commonly studied. Therefore, a joint angle parameterization method to obtain singular
configurations is here proposed. The remainder of this paper is organized as follows: The
kinematics of robotic manipulators is briefly reviewed in Section 2. Singular configurations
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of a Stanford manipulator are obtained through an analytical method in Section 3.1. In
Section 3.2, a joint angle parameterization method is proposed to identify singular con-
figurations and applied to the Stanford manipulator, a 7-DOF serial manipulator, and a
planar 5R parallel manipulator. In Section 4, the correctness of the singular configurations
of the 7-DOF serial manipulator obtained by the proposed algorithm is verified through the
shape of the EE velocity ellipsoid, the value of the determinant, the value of the condition
number, and the value of the manipulability measure. The correctness of the singular
configurations of the planar 5R parallel manipulator obtained by the proposed algorithm
is verified through the value of the determinant, the value of the condition number, and
the value of the manipulability measure. Finally, the conclusions and direction for future
work are presented in Section 5.

2. Related Work

The forward kinematics on the velocity level can be described as follows:

.
x = J

.
q (1)

where
.
x ∈ Rm is the velocity vector of the EE,

.
q ∈ Rn represents the velocity vector of

the joint, and J ∈ Rm×n is a Jacobian matrix.
The inverse kinematics on the velocity level for non-redundant manipulators is:

.
q = J−1 .

x (2)

and for redundant manipulators it is

.
q = J+

.
x = JT

(
JJT
)−1 .

x (3)

Equations (2) and (3) hold when J−1 or J+ exists, and Equation (3) provides a least-norm
solution.

Singularity occurs when the determinant of the Jacobian matrix is zero:

det(J) = 0 (4)

det
(

JJT
)
= 0 (5)

Singular value decomposition [25,26] can explain the effect of singularity more clearly.

With J ranked r, J is described as J =UΣVT =
m
∑

i=1
σiuivT

i , where U is the m×m matrix of

the output singular vectors ui and V is the n× n matrix of the input singular vectors vi.

Σ =

[
diag(σ1, σ2, · · ·, σr)r×r 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]
(6)

σ1 ≥ σ2 ≥ · · · ≥ σr > 0, σr+1 = · · · = σm = 0. Hence, J−1 and J+ can be represented as
follows:

J−1 = VΣ−1UT =
m

∑
i=1

1
σi

viuT
i (7)

J+= JT V
(

Σ
)−1 U T

= JT
m

∑
i=1

1
σi

v i u T
i (8)

Thus, Equations (2) and (3) can be described as:

.
q =

m

∑
i=1

1
σi

viuT
i

.
x (9)
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.
q = JT

m

∑
i=1

1
σi

viuT
i

.
x (10)

When robotic manipulators approach a singular configuration, the Jacobian (pseudo-)
inverse values become numerically unstable and unrealizable. Therefore, the identification
of singular configurations of robotic manipulators is the key to solving the singularity
problem.

3. A Novel Singularity Identification Method

First, singular configurations of a Stanford manipulator are obtained through an
analytical method based on the Jacobian determinant. Then, a singular configuration
identification method based on joint angle parameterization is proposed and applied to the
Stanford manipulator. Singular configurations obtained through the proposed method are
compared with the results through the analytical method, which verifies the correctness
of the proposed method. Furthermore, the proposed method is applied to a 7-DOF serial
manipulator and a planar 5R parallel manipulator.

3.1. Determining Singular Configurations of a Stanford Manipulator through an Analytical Method

The Stanford manipulator [27] is a classic industrial manipulator that meets the Pieper
criterion. Singular configurations of this manipulator can be obtained through an analytical
method. The coordinate system and standard DH parameters are shown in Figure 1 and
Table 1.
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Figure 1. The coordinate system of the Stanford manipulator. 
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Figure 1. The coordinate system of the Stanford manipulator.

Table 1. Standard DH parameters of the Stanford manipulator.

i αi (rad) ai (m) di (m) qi (rad) [qimin,qimax]

1 −π/2 0 0.08 q1 [−π,π](rad)
2 π/2 0 0.06 q2 [−π,π](rad)
3 0 0 d3 0 [−0.5, 0.5](m)
4 −π/2 0 0 q4 [−π,π](rad)
5 π/2 0 0 q5 [−π,π](rad)
6 0 0 0.08 q6 [−π,π](rad)
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The J obtained by the differential transformation method is

J =
[

J11 0
J21 J22

]
(11)

where J11, J21, and J22 are reflected in Appendix A. It is easy to calculate |J11|= − d2
3 sin q2,

|J22|= − sinq5. Using Equation (4), it is not difficult to see that singular configurations
occur in q2 = 0, ±π; d3 = 0 ; and q5 = 0 , ±π.

3.2. A Singular Configuration Identification Method Based on Joint Angle Parameterization

This section and Section 4 were developed using the MATLAB R2015a tool, and an
Intel Core™ i5-2450M CPU @ 2.50 GHz and 2 GB RAM control platform was used to run it.

In view of the fact that singular configurations of robotic manipulators appear when
a joint angle is 0, ± π/2, ±π, or more, the joint angles are here considered to be 0, ± π/2,
±π. A joint angle parameterization method to determine singular configurations based on
these special angles is proposed. The method steps are as follows:

(1) A group of joint positions to be applied in the subsequent steps are arbitrarily chosen
to satisfy det(J) 6= 0;

(2) First, all joint positions are set to 0, ± π/2, ±π, respectively, and substituted into
Equation (4) or Equation (5). If the determinant is not zero, it means that this group of
joint positions will not produce singularity, and these joint positions can be ignored
in the subsequent steps. Then, on the basis of the set of joint positions in step 1,
a joint position is selected and set to 0, ± π/2, ±π. From the remaining joints, a
joint is selected and varied within its range, and the other joint positions remain
unchanged. Finally, the distribution of the minimum singular value with the change
in a joint position is obtained. For example, for a 6-DOF manipulator, q1 = 0 ,
q3 = q4 = q5 = q6 = π/3, and q2 ∈ [−π,π] are set. Finally, the distribution of the
minimum singular value with the change in q2 is obtained. In the same way, the
distributions of the minimum singular values with the changes of q3, q4, q5, and q6
are also obtained;

(3) On the basis of the set of joint positions in step 1, two joint positions are selected
one by one and set to 0, ± π/2, ±π. From the remaining joints, a joint is selected
and varied within its range, and the other joint positions remain unchanged. Finally,
the distribution of the minimum singular value with the change in a joint position is
obtained. For example, for a 6-DOF manipulator, q1 = q2= 0 , q4 = q5 = q6 = π/3,
and q3 ∈ [−π,π] are set. Finally, the distribution of the minimum singular value
with the change in q3 is obtained. In the same way, the distributions of the minimum
singular values with the changes in q4, q5, and q6 are also obtained;

(4) The rest may be deduced by analogy: the distributions of the minimum singular
values with the changes in all combined joint positions are obtained. When the
minimum singular value is zero, singular configurations occur.

It can be seen that the proposed method does not need to calculate det(J) = 0 to obtain
singular configurations. In other words, the proposed method eliminates the more complex
mathematical derivation. Especially for redundant manipulators that do not meet the
Pieper criterion, it is very difficult to obtain singular configurations through determinant
transformation. Fortunately, the minimum singular value distribution curve obtained
through the proposed method can clearly show some singular configurations.

3.2.1. Singular Analysis of the Stanford Manipulator Based on the Proposed Method

Analyzing the proposed method steps, in step (1), by setting q1 = q2 = q4 = q5 =
q6 = π/3 and d3 = 0.3, and by using Equation (7), σmin = 0.1447; this set of joint positions
is applied to the subsequent steps in this section.

In step (2), by setting q1 = q2 = q4 = q5 = q6 = π/2, d3 = 0.3, and by using
Equation (7), σmin = 0.209; this shows that singularity does not occur. Furthermore, by
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setting q1 = q2 = q4 = q5 = q6 = 0, ±π, d3 = 0.3, and by using Equation (7), σmin = 0; this
shows that singular configurations occur (one or more joints are 0, ±π). In addition, it can
be seen in Figure 2 that the minimum singular value does not change with the change in q1
and q6. Therefore, q1 and q6 can be ignored when using the proposed method to obtain
singular configurations.

Electronics 2021, 10, 2189 6 of 20 
 

 

with the change in 3q  is obtained. In the same way, the distributions of the mini-
mum singular values with the changes in 4q , 5q , and 6q  are also obtained; 

(4) The rest may be deduced by analogy: the distributions of the minimum singular val-
ues with the changes in all combined joint positions are obtained. When the mini-
mum singular value is zero, singular configurations occur. 

It can be seen that the proposed method does not need to calculate ( )det 0J =  to 
obtain singular configurations. In other words, the proposed method eliminates the more 
complex mathematical derivation. Especially for redundant manipulators that do not 
meet the Pieper criterion, it is very difficult to obtain singular configurations through de-
terminant transformation. Fortunately, the minimum singular value distribution curve 
obtained through the proposed method can clearly show some singular configurations. 

3.2.1. Singular Analysis of the Stanford Manipulator Based on the Proposed Method 
Analyzing the proposed method steps, in step (1), by setting 

1 2 4 5 6= π 3q q q q q= = = =  and 3 0.3d = , and by using Equation (7), 

min 0.1447σ = ; this set of joint positions is applied to the subsequent steps in this section. 
In step (2), by setting 1 2 4 5 6= π 2q q q q q= = = = , 3 0.3d = , and by using 

Equation (7), min 0.209σ = ; this shows that singularity does not occur. Furthermore, by 
setting 1 2 4 5 6= 0q q q q q= = = = , π± , 3 0.3d = , and by using Equation (7), 

min 0σ = ; this shows that singular configurations occur (one or more joints are 0 , π± ). 
In addition, it can be seen in Figure 2 that the minimum singular value does not change 
with the change in 1q  and 6q . Therefore, 1q  and 6q  can be ignored when using the 
proposed method to obtain singular configurations. 

 
Figure 2. The distributions of the minimum singular values with the changes in 1q  and 6q . 

On the basis of the set of joint positions in step 1, a joint position is selected and set 
to 0 , π± rad. From the remaining joints, a joint is selected and varied within its range, 
and the other joint positions remain unchanged. The distributions of the minimum singu-
lar values with the changes in 2q , 4q , and 5q  can then be obtained, as shown in Figure 
3. The distribution of the minimum singular value with the change in 3d  can also be ob-
tained, as shown in Figure 4. 

Figure 2. The distributions of the minimum singular values with the changes in q1 and q6.

On the basis of the set of joint positions in step 1, a joint position is selected and set to
0, ±π rad. From the remaining joints, a joint is selected and varied within its range, and
the other joint positions remain unchanged. The distributions of the minimum singular
values with the changes in q2, q4, and q5 can then be obtained, as shown in Figure 3. The
distribution of the minimum singular value with the change in d3 can also be obtained, as
shown in Figure 4.
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As only q2, d3, q4, and q5 need to be analyzed, there is no need to continue with the
subsequent steps of the proposed method. Figures 3 and 4 show that, when q2 = 0, ±π;
d3 = 0 ; and q5 = 0 , ±π, singular configurations occur. The results are the same as the
singular configurations obtained through the analytical method in Section 3.1. This shows
that the proposed method is correct.

3.2.2. Singular Analysis of a 7-DOF Serial Manipulator Based on the Proposed Method

This section involves a 7-DOF serial manipulator developed by us for laparoscopic
surgery that does not meet the Pieper criterion. The coordinate system is established as
shown in Figure 5 and the modified DH parameters are shown in Table 2.

According to the proposed method steps, in step (1), by setting q2 = q3 = q4 = q5 =
q6 = q7 = π/3 and d1 = 0.3, and by using Equation (8), σmin = 0.000472; this set of joint
positions is applied to the subsequent steps in this section.

In step (2), by setting q2 = q3 = q4 = q5 = q6 = q7 = π/2 and d1 = 0.3, and by using
Equation (8), σmin = 0.000442; this shows that singularity does not occur when all joint
positions are π/2. Furthermore, by setting q2 = q3 = q4 = q5 = q6 = q7 = 0, ±π and
d1 = 0.3, and by using Equation (8), σmin = 0; this shows that singular configurations
occur (one or more joints are 0, ±π). In addition, it is found that the minimum singular
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value does not change with the change of d1 and q7 through Figure 6. Also, the order of
magnitude of the minimum singular value varying with q6 is 10−6. Therefore, d1, q6, and
q7 can be ignored when using the proposed method to obtain singular configurations.
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Table 2. Modified DH parameters of the 7-DOF serial manipulator.

i αi (rad) ai(m) di(m) qi (rad) [qimin,qimax]

1 0 0 d1 0 [−0.1, 0.1](m)
2 π/2 0.02 0 q2 [−π,π](rad)
3 0 0.05 0 q3 [−π,π](rad)
4 π/2 0.05 0 q4 [−π,π](rad)
5 π/2 0 0.1 q5 [−π,π](rad)
6 π/2 0 0 q6 [−π,π](rad)
7 π/2 0.02 0 q7 [−π,π](rad)

On the basis of the set of joint positions in step 1, a joint position is selected and set to
0, ±π rad. From the remaining joints, a joint is selected and varied within its range, and
the other joint positions remain unchanged. The distributions of the minimum singular
values with the changes in q2, q3, q4, and q5 can then be obtained, as shown in Figure 7.

In step (3), on the basis of the set of joint positions in step 1, two joint positions are
selected one by one and set to 0, ±π rad. From the remaining joints, a joint is selected and
varied within its range, and the other joint angles remain unchanged. The distributions of
the minimum singular values with the changes in q2, q3, q4, and q5 can then be obtained, as
shown in Figure 8.
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gram is shown in Figure 10. 1A  and 2A represent the drive pair, and the other end of the 
drive link is represented by 1B  and 2B . The common intersection point of the two 

branch chains is represented by P( , )x y  as the output point. The origin of the coordinate 
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distributions of the minimum singular values with the changes in q2 and q4; (f) setting q4 = q5 = 0,±π rad, the distributions
of the minimum singular values with the changes in q2 and q3.

In step (4), on the basis of the set of joint positions in step 1, three joint positions are
selected one by one and set to 0, ±π rad. From the remaining joints, a joint is selected and
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varied within its range, and the other joint angles remain unchanged. The distributions of
the minimum singular values with the changes in q4 and q5 can then be obtained, as shown
in Figure 9.
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Figures 7–9 show that when q2 = q3 = q4 = 0, ±π; q2 = q3 = 0 , ±π, and q5 = ±π/2;
q4 = q5 = 0 , ±π, singular configurations occur.

3.2.3. Singular Analysis of a Planar 5R Parallel Robot Based on the Proposed Method

To verify that the proposed method is also suitable for parallel manipulators, a planar
5R parallel manipulator [28] was taken as an example for analysis. The mechanism diagram
is shown in Figure 10. A1 and A2 represent the drive pair, and the other end of the drive
link is represented by B1 and B2. The common intersection point of the two branch chains
is represented by P(x, y) as the output point. The origin of the coordinate system is at the
center of A1A2, x is along the direction of A1A2, and the y-axis is perpendicular to A1A2.
OA1 = OA2 and PB1 = PB2. Under the premise that the output pose is X and the drive is
q, the robot’s input–output relationship is:

f (q, X) = 0 (12)
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The relationship on the velocity level is as follows [29]:

Jx
.

X + Jq
.
q = 0 (13)
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where Jx =

[
y cos q1 − (x + r3) sinq1 0

0 y cos q2 + (−x + r3) sinq2

]
∗ r1 is the configu-

ration Jacobian matrix and Jq =

[
x + r3 − r1 cos q1 y− r1 sin q1
x− r3 − r1 cos q2 y− r1 sin q2

]
is the mechanism

Jacobian matrix. e = r1(sin q1−sin q2)
2r3+r1 cos q2−r1 cos q1

, f = r1r3(cos q1+cos q2)
2r3+r1 cos q2−r1 cos q1

, d = 1 + e2,

g = 2(e f − er1 cos q1 + er3 − r1 sin q1), h = f 2− 2 f (r1 cos q1 − r3)− 2r1r3 cos q1 + r2
3 + r2

1−

r2
2, x = ey + f , y =

√
g2−4dh−g

2d , A1B1 = A2B2 = r1 = 1.2 m, B1P = B2P = r2 = 1 m,
OA1 = r3 = 0.8 m.

We can analyze the configuration Jacobian matrix according to the proposed method
steps. In step (1), by setting q1 = π/3,q2 = π/3, and by using Equation (8), σmin = 0.4714;
this set of joint positions is applied to the subsequent steps in this section. In step (2), on
the basis of the set of joint positions in step 1, a joint position is selected and set to π/3 rad.
From the remaining joints, a joint is selected and varied within its range, and the other joint
positions remain unchanged. The distributions of the minimum singular values with the
changes in q1 and q2 can then be obtained, as shown in Figure 11a.
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We can also analyze the mechanism Jacobian matrix according to the proposed method
steps. In step (1), by setting q1 = π/3,q2 = π/3, and by using Equation (8), σmin = 0.8485;
this set of joint positions is applied to the subsequent steps in this section. In step (2),
on the basis of the set of joint positions in step 1, a joint position is selected and set to
π/3 rad. From the remaining joints, a joint is selected and varied within its range, and
the other joint positions remain unchanged. The distributions of the minimum singular
values with the changes in q1 and q2 can then be obtained, as shown in Figure 11b. It
can be seen that there is no mechanism singularity and when q1 = π/3 rad q2= 1.40924 rad;
q1 = π/3 rad, q2= 2.70535 rad; q1 = π/3 rad, q2= 1.96856 rad; and q1 = 0.86476 rad
q2 = π/3 rad, internal singularities appear.

4. Method Verification
4.1. Singularity Configurations of the 7-DOF Serial Manipulator Verified through the EE
Velocity Ellipsoid

The flexibility of robotic manipulators is the key aspect of research in kinematics, and
the manipulability measure is an evaluable index. Yoshikawa [30] defined the manipulabil-
ity measure as follows:

ω(q) =
√

det(JJT) (14)
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Corke [31] further proposed the EE velocity ellipsoid on the basis of the manipula-
bility measure, as shown in Figure 12. This ellipsoid describes the flexibility of robotic
manipulators’ motion at the geometric level more vividly, and it defines the joint velocities
of robotic manipulators as a unit sphere; i.e.,

‖ .
q‖2

=
.
q2

1 +
.
q2

2 + · · ·+
.
q2

n ≤ 1 (15)

where n represents the number of joints. ‖ .
q‖2 is mapped to the ellipsoid of the task space

through the Jacobian matrix J; i.e.,

.
x T

(JJT)
−1 .

x ≤ 1 (16)
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Figure 12. The EE translational velocity and rotational velocity ellipsoids. (a) Translational velocity ellipsoid (b) Rotational
velocity ellipsoid.

The direction of each axis of the ellipsoid is consistent with the eigenvector of (JJT)
−1.

The length of each axis is equal to the reciprocal of the square root of its eigenvalue, and it
is also equal to the singular value of J. When robotic manipulators approach a singular
configuration, ω(q) = 0 and the elliptical plate has almost zero thickness [31].

The translational velocity ellipsoid and rotational velocity ellipsoid of the EE cor-
responding to the singular configurations of the 7-DOF serial manipulator obtained in
Section 3.2.2 are shown in Figures 13–15. To illustrate the singular configurations, the
7-DOF serial manipulator is returned to a nominal configuration and the corresponding
translational velocity and rotational velocity ellipsoids are computed, as shown in the
Figure 16. Figure 16 clearly indicates that the EE translational velocity and rotational veloc-
ity ellipsoids are both standard ellipsoids. However, Figures 13b, 14b and 15b illustrate
that the translational velocity ellipse evolves into an elliptical plate with a thickness of zero,
indicating that the manipulability measure of the 7-DOF serial manipulator is zero, i.e., the
7-DOF serial manipulator approaches singular configurations. It is thus verified that the
singular configurations of the 7-DOF serial manipulator obtained by the proposed method
are correct.
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velocity ellipsoid; the ellipsoid is an elliptical plate. (b) Rotational velocity ellipsoid.
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Figure 14. The EE velocity ellipsoid with d1 = 0.3, q5 = q4 = 0 (±π), and q2 = q3 = q6 = q7 = π/3. (a) Translational
velocity ellipsoid; the ellipsoid is an elliptical plate. (b) Rotational velocity ellipsoid.
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4.2. Singularity Configurations of the 7-DOF Serial Manipulator and the Planar 5R Parallel
Manipulator Verified through an Analytical Method

In Equation (6), σ1 and σr are the maximum and minimum singular values, respectively.
The condition number is defined as follows [32]:

K(q) =
σ1

σr
(17)

It is used to define whether a Jacobian matrix is “good” or “ill-conditioned”. When
K(q) = 1 , the flexibility of the manipulator’s movement is optimal. When K(q) is infinite,
the manipulator is in a singular configuration.

For the 7-DOF serial manipulator, the values for det(J(q)), ω(q), and K(q) correspond-
ing to the singular configurations obtained through the proposed method can be calculated
using Equations (5), (14), and (17), as shown in Table 3. It can be seen that the corresponding
values for det(J(q)) and ω(q) for the first to the third rows are zero, and the corresponding
values for K(q) tend to infinity. This further indicates that the singular configurations
obtained by the proposed method are correct. In addition, det(J(q)) and ω(q) for the
fourth to the thirteenth row are near zero, and the corresponding values for K(q) are very
large. The larger the K(q), the closer the configuration is to a singular configuration. This
indicates that the flexibility of the manipulator is very poor, so configurations with singular
values of zero or approximately zero should be avoided in the actual motion of robotic
manipulators.

Table 3. det(J(q)), ω(q), and K(q) with singularity and approximate singularity.

Joint Position det(J(q)) ω(q) K(q)

d1 = 0.3, q2 = q3 = q4 = 0 (±π), q5 = q6 = q7 = π/3 0 0 ∞
d1 = 0.3, q5 = q4 = 0 (±π), q2 = q3 = q6 = q7 = π/3 0 0 ∞

d1 = 0.3, q2 = q3 = 0 (±π), q5 = ±π/2, q4 = q6 = q7 = π/3 0 0 ∞
d1 = 0.3, q2 = 0 (±π), q3 = −0.1571, q4 = q5 = q6 = q7 = π/3 0.00000027 0.000523 613,002
d1 = 0.3, q2 = 0 (±π), q3 = 2.9845, q4 = q5 = q6 = q7 = π/3 0.00000000215 0.0000464 8,500,392

d1 = 0.3, q2 = 0 (±π), q4 = −0.3142, q3 = q5 = q6 = q7 = π/3 0.0000000248 0.0001575 4,423,851
d1 = 0.3, q2 = 0 (±π), q5 = −0.3142, q3 = q4 = q6 = q7 = π/3 0.00000000147 0.0000383 113,310,832
d1 = 0.3, q4 = 0 (±π), q2 = −2.3562, q3 = q5 = q6 = q7 = π/3 0.0000000463 0.000215 2,410,219
d1 = 0.3, q4 = 0 (±π), q2 = 1.2566, q3 = q5 = q6 = q7 = π/3 0.0000000324 0.00018 2,364,066
d1 = 0.3, q4 = 0 (±π), q3 = 1.5708, q2 = q5 = q6 = q7 = π/3 0.0000000155 0.0001246 2,777,778
d1 = 0.3, q4 = 0 (±π), q3 = 2.513, q2 = q5 = q6 = q7 = π/3 0.000000001 0.0000314 20,703,933

d1 = 0.3, q2 = q5 = 0 (±π), q3 = ±2.3562, q4 = q6 = q7 = π/3 0.000000001 0.0000308 77,294,250
d1 = 0.3, q3 = q4 = 0 (±π), q2 = ±1.7279 , q5 = q6 = q7 = π/3 0.0000002081 0.000456 705,496
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Furthermore, for the planar 5R parallel manipulator, the values for det(J(q)), ω(q),
and K(q) corresponding to the singular configurations obtained through the proposed
method can be calculated using Equations (5), (14) and (17), as shown in Table 4. It can be
seen that the corresponding values for det(J(q)) and ω(q) are zero, and the corresponding
values for K(q) tend to infinity. This further indicates that the singular configurations
obtained by the proposed method are correct.

Table 4. det(J(q)), ω(q), and K(q) with singularity.

Joint Position det(J(q)) ω(q) K(q)

q1 = π/3 , q2 = 1.40924 0 0 ∞
q1 = π/3 , q2 = 2.70535 0 0 ∞
q1 = π/3 , q2 = 1.96856 0 0 ∞
q1 = 0.86476 , q2 = π/3 0 0 ∞

Finally, the proposed method is compared with the analytical method in terms of
three aspects: the complexity of the determinant transformation, whether they are able
to solve det(J(q)) = 0, and whether they are able to obtain singular configurations, as
shown in Tables 5 and 6. The results show that the proposed method can obtain some
singular configurations of serial manipulators and parallel manipulators and that it is able
to eliminate complex determinant transformation and obtain the solution of det(J(q)) = 0.

Table 5. Results for the proposed method.

Manipulator Type The Complexity of
Determinant Transformation Capable of Solving det(J(q)) = 0 Capable of Obtaining

Singular Configurations

Serial manipulators satisfying
the Pieper criterion

No determinant
transformation No Yes

Serial manipulators not
satisfying the Pieper criterion

No determinant
transformation No Yes

Parallel manipulators No determinant
transformation No Yes

Table 6. Results for the analytical method.

Manipulator Type The Complexity of
Determinant Transformation Capable of Solving det(J(q)) = 0 Capable of Obtaining

Singular Configurations

Serial manipulators satisfying
the Pieper criterion Average complexity Yes Yes

Serial manipulators not
satisfying the Pieper criterion Very complex Yes No

Parallel manipulators Average complexity Yes Yes

5. Conductions and Future Work

For serial manipulators that do not meet the Pieper criterion, it is difficult to obtain sin-
gular configurations through the analytical method. A joint angle parameterization method
to be used to obtain singular configurations for robotic manipulators was here proposed.
First, an analytical method was used to analyze singular configurations of the Stanford
manipulator. Then, the singular configurations of the Stanford manipulator were obtained
through the proposed method and compared with the results obtained with the analytical
method. The correctness of the proposed method was verified. Next, the proposed method
was applied to a 7-DOF serial manipulator and a planar 5R parallel manipulator. Finally,
the translational velocity ellipsoid of the EE under singular configurations of the 7-DOF
serial manipulator obtained through the proposed method was found to be a plane, and the
values for det(J(q)) = 0, ω(q) = 0, and K(q)→ ∞ corresponding to singular configura-
tions were calculated. The correctness of the proposed method was verified from these two
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aspects. For the planar 5R parallel manipulator, by calculating the values for det(J(q)) = 0,
ω(q) = 0, and K(q)→ ∞ corresponding to singular configurations, the correctness of the
proposed method was verified. This showed that the proposed method can be applied
to both serial manipulators and parallel manipulators and that it can eliminate complex
determinant transformation and obtain the solution of det(J(q)) = 0.

The proposed method can only obtain singular configurations of robotic manipu-
lators at a specific angle, but cannot obtain singular configurations of multiple angles
satisfying a certain equation. For example, one singular configuration of PUMA 560 is
d4 sin(q2 + q3) + a2 cos(q2) + a3 cos(q2 + q3) = 0, and one singular configuration of ABB
IRB 1400 is a3 sin(q2 + q3)− d4 cos(q2 + q3) + a2 sin(q2)− a1 = 0. As there are countless
combination angles satisfying these two equations, the proposed method fails. Although
the proposed method cannot be guaranteed to find all singular configurations, in reality,
singular configurations obtained with the proposed method can be set in the initial pa-
rameters of manipulators to avoid the corresponding configurations, which is similar to
avoiding predetermined fixed obstacles in the working environment. Otherwise, these
singular configurations can only be solved by the singularity avoidance algorithm, which
reduces the pose accuracy of the EE and makes the calculation more complex. In addition,
in the fourth to thirteenth rows of Table 3 (as a few examples; in fact, there are many
similar situations), the determinants and the manipulability measures are near zero, and
the corresponding condition numbers are very large. In these cases, the velocities of some
joints are also very high, which can seriously affect the motion performance. We plan
to solve the problem of joint velocities caused by these two situations using a damped
least square algorithm in the future. On this basis, we will continue to work on inverse
kinematics analysis and trajectory planning.
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Appendix A

J11 =

 −d2 cos q1 − d3 sin q1 sin q2 d3 cos q1 cos q2 cos q1 sin q2
−d2 sin q1 + d3 cos q1 sin q2 d3 sin q1 cos q2 sin q1 sin q2

0 −d3 sin q2 cos q2



J21 =

− 0 − sinq1 0
0 cos q1 0
1 0 0



J22 =

 cos q1 sin q2 − cosq1 cos q2 sin q4 − sin q1 cos q4 (cos q1 cos q2 cos q4 − sin q1 sin q4) sin q5 + cos q1 sin q2 cos q5
sin q1 sin q2 − sinq1 cos q2 sin q4 + cos q1 cos q4 (sin q1 cos q2 cos q4 + cos q1 sin q4) sin q5 + sin q1 sin q2 cos q5

cos q2 sin q2 sin q4 − sinq2 cos q4 sin q5 + cos q2 cos q5


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