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Abstract: Robotic manipulators inevitably encounter singular configurations in the process of move-

ment, which seriously affects their performance. Therefore, the identification of singular configura-

tions is extremely important. However, serial manipulators that do not meet the Pieper criterion 

cannot obtain singular configurations through analytical methods. A joint angle parameterization 

method, used to obtain singular configurations, is here creatively proposed. First, an analytical 

method based on the Jacobian determinant and the proposed method were utilized to obtain their 

respective singular configurations of the Stanford manipulator. The singular configurations ob-

tained through the two methods were consistent, which suggests that the proposed method can 

obtain singular configurations correctly. Then, the proposed method was applied to a seven-degree-

of-freedom (7-DOF) serial manipulator and a planar 5R parallel manipulator. Finally, the correctness 

of the singular configurations of the 7-DOF serial manipulator was verified through the shape of the 

end-effector velocity ellipsoid, the value of the determinant, the value of the condition number, and 

the value of the manipulability measure. The correctness of singular configurations of the planar 5R 

parallel manipulator was verified through the value of the determinant, the value of the condition 

number, and the value of the manipulability measure. 

Keywords: Pieper criterion; Jacobian matrix; singular configurations; manipulability measure;  

condition number 

 

1. Introduction 

It is well-known that the kinematics of robotic manipulators can be expressed on the 

velocity level, and the relationship between the joint velocities and end-effector (EE) ve-

locities is described by a Jacobian matrix. Robotic manipulators that do not meet the Pie-

per criterion [1] only obtain a numerical solution to the inverse kinematics, and the Jaco-

bian iteration algorithm is a commonly algorithm for numerical solution. However, when 

robotic manipulators approach a singular configuration, the Jacobian matrix becomes nu-

merically unrealizable, and this is experienced in the form of high joint velocities, which 

are not conducive to motion control. Therefore, the identification of singular configura-

tions is a key issue to avoid singularity. Singularity in robotic manipulators includes 

boundary singularity and internal singularity [2]. Boundary singularity appears at the 

working space boundary, and internal singularity is caused by the coincidence of two or 

more joint axes. Robotic manipulators are divided into serial manipulators and parallel 

manipulators from the perspective of mechanism [3]. Müller [4] roughly classified the 

singularities of serial manipulators and parallel manipulators based on active and passive 

joints and proposed an algorithm to determine the singularities of the mechanism. Most 
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researchers have performed singularity analysis on serial manipulators or parallel manip-

ulators. The following concerns parallel manipulators. Li [5] introduced a cell-division 

method for singularity analysis, which could be used to multi-loop mechanisms. The key 

principle was replacing the singularity analysis of the original multi-loop mechanism with 

an equivalent and simpler parallel mechanism. Han [6] proposed a simple and effective 

method to determine the singularity of planar linkages. Chen [7] analyzed the singulari-

ties of the 3-UPU (U stands for the universal joint and the prismatic pair P is actuated) 

parallel mechanism. Nayak [8] carried out a singularity analysis for a serial-parallel robot. 

Ma [9] proposed a singularity analysis method for a 3/6-SPS Gough-Stewart parallel ma-

nipulator based on geometric algebra, in which S represents the spherical joint and P rep-

resents the prismatic pair. Wu [10] obtained singular configurations of three configura-

tions of parallel manipulators using an analytical method. However, this method does not 

necessarily guarantee that it can be applied to other configurations of parallel manipula-

tors. Ben-Horin [11] solved the singularities of a general class of Gough-Stewart platforms 

through Grassmann–Cayley algebra. Conconi [12] analyzed the causes of the singular 

events of parallel kinematic chains and identified singular configurations. Pagis [13] trans-

formed near-singularities into a simplified dynamic model to allow parallel manipulators 

to cross the type 2 singularity with the best trajectory. 

We now look at serial manipulators that meet the Pieper criterion. For these manip-

ulators, three revolute axes intersect at a point, and singular configurations can be ob-

tained by solving the determinant so that it is zero. Li [14] analyzed singular configura-

tions of a six-degree-of-freedom (6-DOF) modular robotic manipulator. Yu [15] divided 

singularity into forearm singularity and wrist singularity and took measures to avoid 

them. Carmichael [16] only described the situation in which singular configurations occur 

when the singular value is zero, and this is far away from singular configurations through 

a virtual force. Furthermore, singular configurations of the manipulator were not ob-

tained. Kang [17] carried out singularity analysis of a 6-DOF anthropomorphic manipula-

tor and proposed two solutions to avoid boundary singularity and internal singularity. 

Xu [18] determined singular configurations based on the Jacobian matrix of a non-spher-

ical wrist manipulator. However, the method is only suitable for a manipulator with a 

specific configuration and has low applicability. Hijazi [19] analyzed the singularities of a 

planar robot manipulator in redundant and non-redundant cases. Although singularity 

surfaces were obtained, singular configurations were avoided through trajectory plan-

ning. Müller [20] carried out high-order analysis of motion singularity for serial manipu-

lators. However, the derivation and calculation process were complex, which is not suit-

able for singularity analysis of redundant manipulators. Oetomo [21] introduced singular 

configurations of the PUMA 560 and analyzed the associated singular directions and the 

handling algorithm. 

However, there are also serial manipulators that do not meet the Pieper criterion. The 

determinant of the Jacobian matrix is especially complex and cannot be simplified effec-

tively, so it is difficult to obtain singular configurations through analytical methods. Re-

bouças Filho [22] used a genetic algorithm to identify and solve singular problems along 

the trajectory of a robotic manipulator. However, the method identified singular regions 

rather than specific singular configurations. In [23], the singularity of a 6-DOF painting 

robot with a non-spherical wrist was decomposed into position singularity and attitude 

singularity by introducing a virtual wrist center. Due to the virtual wrist center, the D-H 

parameters di of the 7R 6-DOF manipulator changed, so an error was introduced to the 

position of the EE. Dimeas [24] determined the position singularity through the distribu-

tion curve of the manipulability, the minimum singular value, and the local condition in-

dex. However, this method ignored attitude singularity. 

Serial manipulators that meet the Pieper criterion can obtain singular configurations 

through an analytical method. However, for serial manipulators that do not meet the Pie-

per criterion, most studies on the subject focus on singularities of special manipulators or 

on avoiding singular regions. Singular configurations when a singular value is zero are 
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less commonly studied. Therefore, a joint angle parameterization method to obtain singu-

lar configurations is here proposed. The remainder of this paper is organized as follows: 

The kinematics of robotic manipulators is briefly reviewed in Section 2. Singular configu-

rations of a Stanford manipulator are obtained through an analytical method in Section 

3.1. In Section 3.2, a joint angle parameterization method is proposed to identify singular 

configurations and applied to the Stanford manipulator, a 7-DOF serial manipulator, and 

a planar 5R parallel manipulator. In Section 4, the correctness of the singular configura-

tions of the 7-DOF serial manipulator obtained by the proposed algorithm is verified 

through the shape of the EE velocity ellipsoid, the value of the determinant, the value of 

the condition number, and the value of the manipulability measure. The correctness of the 

singular configurations of the planar 5R parallel manipulator obtained by the proposed 

algorithm is verified through the value of the determinant, the value of the condition num-

ber, and the value of the manipulability measure. Finally, the conclusions and direction 

for future work are presented in Section 5. 

2. Related Work 

The forward kinematics on the velocity level can be described as follows: 

 x = Jq  (1)

where mx R  is the velocity vector of the EE, nq R  represents the velocity vector of 

the joint, and m nJ R   is a Jacobian matrix. 

The inverse kinematics on the velocity level for non-redundant manipulators is: 

-1q = J x   (2)

and for redundant manipulators it is 

 
-1

+ T Tq = J x = J JJ x    (3)

Equations (2) and (3) hold when -1J  or +J  exists, and Equation (3) provides a least-norm 

solution. 

Singularity occurs when the determinant of the Jacobian matrix is zero: 

 det 0J  (4)

 Tdet 0JJ  (5)

Singular value decomposition [25,26] can explain the effect of singularity more 

clearly. With J  ranked r , J  is described as T T

=1

J =  
m

i i i
i

u vUΣV , where U  is the 

m m  matrix of the output singular vectors 
i

u  and V  is the n n  matrix of the in-

put singular vectors 
i

v . 

   

     

1 2
diag 0

0 0

××

×

=
, , ,

r r n - rr r

m - r r m - r n - r

  



   
 
 
 

Σ  (6)

1 2
0

r
         , 

+1
0

r m
       . Hence, -1J  and +J  can be represented 

as follows: 

-1 -1 T T

1

1
J  =  = 




m

i i
i i

v uVΣ U  (7)
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-1+ T T T T

1

1
J  = J  = J




m

i i
i i

v uV Σ U  (8)

Thus, Equations (2) and (3) can be described as: 

T

1

1
q = x




m

i i
i i

v u   (9)

T T

1

1m

q = J x


 i i
i i

v u   (10)

 When robotic manipulators approach a singular configuration, the Jacobian (pseudo-

)inverse values become numerically unstable and unrealizable. Therefore, the identifica-

tion of singular configurations of robotic manipulators is the key to solving the singularity 

problem. 

3. A Novel Singularity Identification Method 

First, singular configurations of a Stanford manipulator are obtained through an an-

alytical method based on the Jacobian determinant. Then, a singular configuration identi-

fication method based on joint angle parameterization is proposed and applied to the 

Stanford manipulator. Singular configurations obtained through the proposed method 

are compared with the results through the analytical method, which verifies the correct-

ness of the proposed method. Furthermore, the proposed method is applied to a 7-DOF 

serial manipulator and a planar 5R parallel manipulator. 

3.1. Determining Singular Configurations of a Stanford Manipulator through an Analytical 

Method 

The Stanford manipulator [27] is a classic industrial manipulator that meets the Pie-

per criterion. Singular configurations of this manipulator can be obtained through an an-

alytical method. The coordinate system and standard DH parameters are shown in Figure 

1 and Table 1. 

Table 1. Standard DH parameters of the Stanford manipulator. 

i i
  (rad) 

i
a  (m) 

i
d

 
(m)

 i
q  (rad) 

imin imax
q q[ , ]  

1 - π 2  0 0.08 1
q  π π ( )[ , ] rad  

2 π 2  0 0.06 2
q  π π ( )[ , ] rad  

3 0 0 3
d  0 0.5 0.5 (m)[ , ]  

4 - π 2  0 0 4
q  π π ( )[ , ] rad  

5 π 2  0 0 5
q  π π ( )[ , ] rad  

6 0 0 0.08 6
q  π π ( )[ , ] rad  

The J  obtained by the differential transformation method is 

11

21 22

0J
J =

J J

 
 
  

 (11)

where 
11

J , 
21

J , and 
22

J  are reflected in Appendix A. It is easy to calculate 

2

11 3 2
= - d sinqJ , 

22 5
= - sinqJ . Using Equation (4), it is not difficult to see that singular 

configurations occur in 
2

 0q  , π ; 
3

0 d  ; and 
5

0 q  , π . 
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Figure 1. The coordinate system of the Stanford manipulator. 

3.2. A Singular Configuration Identification Method Based on Joint Angle Parameterization 

This section and Section 4 were developed using the MATLAB R2015a tool, and an 

Intel Core™ i5-2450M CPU @ 2.50 GHz and 2 GB RAM control platform was used to run 

it. 

In view of the fact that singular configurations of robotic manipulators appear when 

a joint angle is 0 ,  π 2 , π , or more, the joint angles are here considered to be 0 , 

 π 2 , π . A joint angle parameterization method to determine singular configurations 

based on these special angles is proposed. The method steps are as follows: 

(1) A group of joint positions to be applied in the subsequent steps are arbitrarily chosen 

to satisfy  det 0J  ; 

(2) First, all joint positions are set to 0 ,  π 2 , π , respectively, and substituted into 

Equation (4) or Equation (5). If the determinant is not zero, it means that this group 

of joint positions will not produce singularity, and these joint positions can be ig-

nored in the subsequent steps. Then, on the basis of the set of joint positions in step 

1, a joint position is selected and set to 0 ,  π 2 , π . From the remaining joints, a 

joint is selected and varied within its range, and the other joint positions remain un-

changed. Finally, the distribution of the minimum singular value with the change in 

a joint position is obtained. For example, for a 6-DOF manipulator, 
1

0 q  , 

3 4 5 6
= π 3q q q q   , and 

2
π, πq [ ]   are set. Finally, the distribution of the 

minimum singular value with the change in 
2

q  is obtained. In the same way, the 

distributions of the minimum singular values with the changes of 
3

q , 
4

q , 
5

q , and 

6
q  are also obtained; 

(3) On the basis of the set of joint positions in step 1, two joint positions are selected one 

by one and set to 0 ,  π 2 , π . From the remaining joints, a joint is selected and 

varied within its range, and the other joint positions remain unchanged. Finally, the 

distribution of the minimum singular value with the change in a joint position is ob-

tained. For example, for a 6-DOF manipulator, 
1 2

= 0 q q , 
4 5 6

π 3q q q  

, and 
3

π, πq [ ]   are set. Finally, the distribution of the minimum singular value 

with the change in 
3

q  is obtained. In the same way, the distributions of the mini-

mum singular values with the changes in 
4

q , 
5

q , and 
6

q  are also obtained; 
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(4) The rest may be deduced by analogy: the distributions of the minimum singular val-

ues with the changes in all combined joint positions are obtained. When the mini-

mum singular value is zero, singular configurations occur. 

It can be seen that the proposed method does not need to calculate  det 0J   to 

obtain singular configurations. In other words, the proposed method eliminates the more 

complex mathematical derivation. Especially for redundant manipulators that do not 

meet the Pieper criterion, it is very difficult to obtain singular configurations through de-

terminant transformation. Fortunately, the minimum singular value distribution curve 

obtained through the proposed method can clearly show some singular configurations. 

3.2.1. Singular Analysis of the Stanford Manipulator Based on the Proposed Method 

Analyzing the proposed method steps, in step (1), by setting 

1 2 4 5 6
= π 3q q q q q     and 

3
0.3d  , and by using Equation (7), 

min
0.1447  ; this set of joint positions is applied to the subsequent steps in this section. 

In step (2), by setting 
1 2 4 5 6

= π 2q q q q q    , 
3

0.3d  , and by using 

Equation (7), 
min

0.209  ; this shows that singularity does not occur. Furthermore, by 

setting 
1 2 4 5 6

= 0q q q q q    , π , 
3

0.3d  , and by using Equation (7), 

min
0  ; this shows that singular configurations occur (one or more joints are 0 , π ). 

In addition, it can be seen in Figure 2 that the minimum singular value does not change 

with the change in 
1

q  and 
6

q . Therefore, 
1

q  and 
6

q  can be ignored when using the 

proposed method to obtain singular configurations. 

 

Figure 2. The distributions of the minimum singular values with the changes in 
1

q  and 
6

q . 

On the basis of the set of joint positions in step 1, a joint position is selected and set 

to 0 , π rad. From the remaining joints, a joint is selected and varied within its range, 

and the other joint positions remain unchanged. The distributions of the minimum singu-

lar values with the changes in 
2

q , 
4

q , and 
5

q  can then be obtained, as shown in Figure 

3. The distribution of the minimum singular value with the change in 
3

d  can also be ob-

tained, as shown in Figure 4. 
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(a) (b) 

 
(c) 

Figure 3. (a) Setting 
2

= 0q , π rad, the distributions of the minimum singular values with the changes in 
4

q  and 
5

q ; 

(b) setting 
4

= 0q , π rad, the distributions of the minimum singular values with the changes in 
2

q  and 
5

q ; (c) setting 

5
= 0q , π rad, the distributions of the minimum singular values with the changes in 

2
q  and 

4
q . 

As only 
2

q , 
3

d , 
4

q , and 
5

q  need to be analyzed, there is no need to continue with the 

subsequent steps of the proposed method. Figures 3 and 4 show that, when 
2

 0q  , π ; 

3
0 d  ; and 

5
0 q  , π , singular configurations occur. The results are the same as the 

singular configurations obtained through the analytical method in Section 3.1. This shows that 

the proposed method is correct. 

  
(a) (b) 



Electronics 2021, 10, 2189 8 of 20 
 

 

 
(c) 

Figure 4. (a) Setting 
2

= 0q , π  rad, the distribution of the minimum singular value with the change in 
3

d ; (b) setting 

4
= 0q , π  rad, the distribution of the minimum singular value with the change in 

3
d ; (c) setting 

5
= 0q , π  rad, the 

distribution of the minimum singular value with the change in 
3

d . 

3.2.2. Singular Analysis of a 7-DOF Serial Manipulator Based on the Proposed Method 

This section involves a 7-DOF serial manipulator developed by us for laparoscopic 

surgery that does not meet the Pieper criterion. The coordinate system is established as 

shown in Figure 5 and the modified DH parameters are shown in Table 2. 

 

Figure 5. The coordinate system of the 7-DOF serial manipulator.  
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Table 2. Modified DH parameters of the 7-DOF serial manipulator. 

i i
  (rad) 

i
a (m) 

i
d (m)

 i
q  (rad) 

imin imax
q q[ , ]  

1 0 0 1
d  0 ( )[ ]0.1, 0.1 m   

2 π 2  0.02 0 2
q  π π ( )[ , ] rad  

3 0 0.05 0 3
q  π π ( )[ , ] rad  

4 π 2  0.05 0 4
q  π π ( )[ , ] rad  

5 π 2  0 0.1 5
q  π π ( )[ , ] rad  

6 π 2  0 0 6
q  π π ( )[ , ] rad  

7 π 2  0.02 0 7
q  π π ( )[ , ] rad  

According to the proposed method steps, in step (1), by setting 

2 3 4 5 6 7
= π 3q q q q q q      and

1
0.3d  , and by using Equation (8), 

min
0.000472  ; this set of joint positions is applied to the subsequent steps in this sec-

tion. 

In step (2), by setting 
2 3 4 5 6 7

= π 2q q q q q q      and 
1

0.3d  , and by 

using Equation (8), 
min

0.000442  ; this shows that singularity does not occur when all 

joint positions are π 2 . Furthermore, by setting 
2 3 4 5 6 7

= 0q q q q q q     , 

π  and 
1

0.3d  , and by using Equation (8), 
min

0  ; this shows that singular config-

urations occur (one or more joints are 0 , π ). In addition, it is found that the minimum 

singular value does not change with the change of 
1

d  and 
7

q  through Figure 6. Also, the 

order of magnitude of the minimum singular value varying with 
6

q  is 10-6. Therefore, 

1
d , 

6
q , and 

7
q  can be ignored when using the proposed method to obtain singular con-

figurations. 

  
(a) (b) 

Figure 6. (a) The distribution of the minimum singular value with the change in 
1

d  and (b) the distributions of the min-

imum singular values with the changes in 
6

q  and 
7

q . 

On the basis of the set of joint positions in step 1, a joint position is selected and set 

to 0 , π  rad. From the remaining joints, a joint is selected and varied within its range, 

and the other joint positions remain unchanged. The distributions of the minimum singu-

lar values with the changes in 
2

q , 
3

q , 
4

q , and 
5

q  can then be obtained, as shown in 

Figure 7. 
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In step (3), on the basis of the set of joint positions in step 1, two joint positions are 

selected one by one and set to 0 , π  rad. From the remaining joints, a joint is selected 

and varied within its range, and the other joint angles remain unchanged. The distribu-

tions of the minimum singular values with the changes in 
2

q , 
3

q , 
4

q , and 
5

q  can then 

be obtained, as shown in Figure 8. 

In step (4), on the basis of the set of joint positions in step 1, three joint positions are 

selected one by one and set to 0 , π  rad. From the remaining joints, a joint is selected 

and varied within its range, and the other joint angles remain unchanged. The distribu-

tions of the minimum singular values with the changes in 
4

q  and 
5

q  can then be ob-

tained, as shown in Figure 9. 

Figures 7–9 show that when 
2 3 4

0q q q   , π ; 
2 3

0 q q  , π , and 

5
π 2q   ; 

4 5
0 q q  , π , singular configurations occur. 

  
(a) (b) 

  
(c) (d) 

Figure 7. (a) Setting 
2

= 0q , π rad, the distributions of the minimum singular values with the changes in 
3

q , 
4

q , and 

5
q ; (b) setting 

3
= 0q , π rad, the distributions of the minimum singular values with the changes in 

2
q , 

4
q , and 

5
q ; 

(c) setting 
4

= 0q , π rad, the distributions of the minimum singular values with the changes in 
2

q , 
3

q , and 
5

q ; (d) 

setting 
5

= 0q , π rad, the distributions of the minimum singular values with the changes in 
2

q , 
3

q , and 
4

q . 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 8. (a) Setting 
2 3

= 0q q  , π rad, the distributions of the minimum singular values with the changes in 
4

q  and 

5
q ; (b) setting 

2 4
= 0q q  , π rad, the distributions of the minimum singular values with the changes in 

3
q  and 

5
q ; 

(c) setting 
2 5

= 0q q  , π rad, the distributions of the minimum singular values with the changes in 
3

q  and 
4

q ; (d) 

setting 
3 4

= 0q q , π rad, the distributions of the minimum singular values with the changes in 
2

q  and 
5

q ; (e) set-

ting 
3 5

= 0q q  , π rad, the distributions of the minimum singular values with the changes in 
2

q  and 
4

q ; (f) setting 

4 5
= 0q q  , π rad, the distributions of the minimum singular values with the changes in 

2
q  and 

3
q . 
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(a) (b) 

Figure 9. (a) Setting 
2 3 4

= 0q q q  , π rad, the distribution of the minimum singular value with the change in 5
q ; 

(b) setting 
2 3 5

= 0q q q  , π rad, the distribution of the minimum singular value with the change in 4
q . 

3.2.3. Singular Analysis of a Planar 5R Parallel Robot Based on the Proposed Method 

To verify that the proposed method is also suitable for parallel manipulators, a planar 

5R parallel manipulator [28] was taken as an example for analysis. The mechanism dia-

gram is shown in Figure 10. 1A
 

and
 2A represent the drive pair, and the other end of 

the drive link is represented by 1B
 

and
 2B

.
 The common intersection point of the two 

branch chains is represented by P( , )x y  as the output point. The origin of the coordinate 

system is at the center of 1 2A A , x is along the direction of 1 2A A , and the y-axis is per-

pendicular to 1 2A A . 1 2A AO O  and 1 2PB PB . Under the premise that the output 

pose is X  and the drive is q , the robot’s input–output relationship is: 

( ) 0f ,q X  (12)

The relationship on the velocity level is as follows [29]: 

0J X J q 
x q
   (13)

where 
1 3 1

1

2 3 2

cos ( )sin 0

0 cos ( )sin
x

y q x r q
r

y q x r q

  
  

    
J  is the configuration Ja-

cobian matrix and 3 1 1 1 1

3 1 2 1 2

cos sin

cos sin
J

   
  

    
q

x r r q y r q

x r r q y r q
 

is the mechanism Jacobian ma-

trix.
 

1 1 2

3 1 2 1 1

(sin sin )

2 cos cos

r q q
e

r r q r q




 
, 1 3 1 2

3 1 2 1 1

(cos cos )

2 cos cos

r r q q
f

r r q r q




 
, 21 d e ,

1 1 3 1 1
2( cos sin )g ef er q er r q    , 2 2 2 2

1 1 3 1 3 1 3 1 2
2 ( cos ) 2 cosh f f r q r r r q r r r       , 

x ey f  ,
 

2 4

2

 


g dh g
y

d
,
 

1 1 2 2 1
A B A B 1.2m  r ,

 1 2 2
B P B P 1m  r ,

 

1 3
OA 0.8m r . 



Electronics 2021, 10, 2189 13 of 20 
 

 

 

Figure 10. The planar 2-DOF 5R parallel manipulator. 

We can analyze the configuration Jacobian matrix according to the proposed method 

steps. In step (1), by setting 
1

π 3q ,
2

= π 3q , and by using Equation (8), 

min
0.4714  ; this set of joint positions is applied to the subsequent steps in this section. 

In step (2), on the basis of the set of joint positions in step 1, a joint position is selected and 

set to π / 3 rad. From the remaining joints, a joint is selected and varied within its range, 

and the other joint positions remain unchanged. The distributions of the minimum singu-

lar values with the changes in 
1

q  and 
2

q  can then be obtained, as shown in Figure 11a. 

We can also analyze the mechanism Jacobian matrix according to the proposed 

method steps. In step (1), by setting 
1

π 3q  ,
2

= π 3q , and by using Equation (8), 

min
0.8485  ; this set of joint positions is applied to the subsequent steps in this section. 

In step (2), on the basis of the set of joint positions in step 1, a joint position is selected and 

set to π / 3 rad. From the remaining joints, a joint is selected and varied within its range, 

and the other joint positions remain unchanged. The distributions of the minimum singu-

lar values with the changes in 
1

q  and 
2

q  can then be obtained, as shown in Figure 11b. 

It can be seen that there is no mechanism singularity and when 

2
π 3rad = 1.40924radq = , q

1
;
 2

π 3rad = 2.70535radq = , q
1

; 
2

π 3rad = 1.96856radq = , q
1

;
 

and 2
0.86476rad = π 3radq = , q

1
, internal singularities appear. 

  
(a) (b) 

Figure 11. (a) The distributions of the minimum singular values of the configuration Jacobian matrix with the changes in 
1

q  and 

2
q ; (b) the distributions of the minimum singular values of the mechanism Jacobian matrix with the changes in 

1
q  and 

2
q . 
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4. Method Verification 

4.1. Singularity Configurations of the 7-DOF Serial Manipulator Verified through the EE 

Velocity Ellipsoid 

The flexibility of robotic manipulators is the key aspect of research in kinematics, and 

the manipulability measure is an evaluable index. Yoshikawa [30] defined the manipula-

bility measure as follows: 

T( ) det( )q JJ   (14)

Corke [31] further proposed the EE velocity ellipsoid on the basis of the manipulabil-

ity measure, as shown in Figure 12. This ellipsoid describes the flexibility of robotic ma-

nipulators’ motion at the geometric level more vividly, and it defines the joint velocities 

of robotic manipulators as a unit sphere; i.e., 

2 2 2 2
1 2 1q       nq q q     (15)

where n represents the number of joints. 
2

q  is mapped to the ellipsoid of the task space 

through the Jacobian matrix J ; i.e., 

T T -1( ) 1x JJ x    (16)

The direction of each axis of the ellipsoid is consistent with the eigenvector of T 1( )JJ 

. The length of each axis is equal to the reciprocal of the square root of its eigenvalue, and 

it is also equal to the singular value of J . When robotic manipulators approach a singular 

configuration, ( ) 0q   and the elliptical plate has almost zero thickness [31]. 

The translational velocity ellipsoid and rotational velocity ellipsoid of the EE corre-

sponding to the singular configurations of the 7-DOF serial manipulator obtained in Sec-

tion 3.2.2 are shown in Figures 13–15. To illustrate the singular configurations, the 7-DOF 

serial manipulator is returned to a nominal configuration and the corresponding transla-

tional velocity and rotational velocity ellipsoids are computed, as shown in the Figure 16. 

Figure 16 clearly indicates that the EE translational velocity and rotational velocity ellip-

soids are both standard ellipsoids. However, Figures 13b–15b illustrate that the transla-

tional velocity ellipse evolves into an elliptical plate with a thickness of zero, indicating 

that the manipulability measure of the 7-DOF serial manipulator is zero, i.e., the 7-DOF 

serial manipulator approaches singular configurations. It is thus verified that the singular 

configurations of the 7-DOF serial manipulator obtained by the proposed method are cor-

rect. 

 

(a)                                         (b) 

Figure 12. The EE translational velocity and rotational velocity ellipsoids. 
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(a) (b) 

Figure 13. The EE velocity ellipsoid with 
1

= 0.3d , 
2 3 4

= = 0 ( π)q q q  , and 
5 6 7

= = π 3q q q . (a) Translational 

velocity ellipsoid; the ellipsoid is an elliptical plate. (b) Rotational velocity ellipsoid. 

  
(a) (b) 

Figure 14. The EE velocity ellipsoid with 
1

= 0.3d , 
5 4

= 0 ( π)q q  , and 
2 3 6 7

= = = π 3q q q q . (a) Translational 

velocity ellipsoid; the ellipsoid is an elliptical plate. (b) Rotational velocity ellipsoid. 

  
(a) (b) 

Figure 15. The EE velocity ellipsoid with 
1

= 0.3d , 
2 3

= 0 ( π)q q   , 
5

= π 2q  , and 
4 6 7

= = π 3q q q . (a) Trans-

lational velocity ellipsoid; the ellipsoid is an elliptical plate. (b) Rotational velocity ellipsoid. 
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(a) (b) 

Figure 16. The EE velocity ellipsoid with 
1

= 0.3d  and 
2 3 4 5 6 7

= = = = π 3q q  = q q q q . (a) Translational velocity 

ellipsoid; (b) rotational velocity ellipsoid. 

4.2. Singularity Configurations of the 7-DOF Serial Manipulator and the Planar 5R Parallel 

Manipulator Verified through an Analytical Method 

In Equation (6), 
1

  and 
r

  are the maximum and minimum singular values, re-

spectively. The condition number is defined as follows [32]: 

1( )
r

q



K  (17)

It is used to define whether a Jacobian matrix is “good” or “ill-conditioned”. When 

( ) = 1qK , the flexibility of the manipulator’s movement is optimal. When ( )qK  is infi-

nite, the manipulator is in a singular configuration. 

For the 7-DOF serial manipulator, the values for det( ( ))J q , ( )q
,
 and ( )qK  corre-

sponding to the singular configurations obtained through the proposed method can be 

calculated using Equations (5), (14), and (17), as shown in Table 3. It can be seen that the 

corresponding values for det( ( ))J q  and ( )q  for the first to the third rows are zero, and 

the corresponding values for ( )qK
 
tend to infinity. This further indicates that the singu-

lar configurations obtained by the proposed method are correct. In addition, det( ( ))J q  

and ( )q  for the fourth to the thirteenth row are near zero, and the corresponding values 

for ( )qK
 
are very large. The larger the ( )qK , the closer the configuration is to a singular 

configuration. This indicates that the flexibility of the manipulator is very poor, so config-

urations with singular values of zero or approximately zero should be avoided in the ac-

tual motion of robotic manipulators. 

Furthermore, for the planar 5R parallel manipulator, the values for det( ( ))J q , ( )q

,
 and ( )qK  corresponding to the singular configurations obtained through the proposed 

method can be calculated using Equations (5), (14) and (17), as shown in Table 4. It can be 

seen that the corresponding values for det( ( ))J q  and ( )q  are zero, and the corre-

sponding values for ( )qK
 
tend to infinity. This further indicates that the singular config-

urations obtained by the proposed method are correct. 
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Table 3. det( ( ))J q , ( )q , and ( )qK  with singularity and approximate singularity. 

Joint Position det( ( ))J q  ( ) q  ( )K q  

1 2 3 4 5 6 7
= 0.3 = = 0 ( π)   = = π 3d , q q q q q q，    0 0   

1 5 4 2 3 6 7
= 0.3 = 0 ( π),  = = = π 3d , q q q q q q    0 0   

1 2 3 5 4 6 7
= 0.3 = 0 ( π) = π 2 = = π 3d , q q q , q q q,     0 0   

1 2 3 4 5 6 7
= 0.3,  = 0 ( π) 0.1571,  = = = π 3d q , q q  q q q-    0.00000027 0.000523 613,002 

1 2 3 4 5 6 7
= 0.3,  = 0 ( π) 2.9845,  = = = π 3d q , q q  q q q    0.00000000215 0.0000464 8,500,392 

1 2 4 3 5 6 7
= 0.3,  = 0 ( π) 0.3142,  = = = π 3d q , q q  q q q-    0.0000000248 0.0001575 4,423,851 

1 2 5 3 4 6 7
= 0.3,  = 0 ( π) 0.3142,  = = = π 3d q , q q  q q q-    0.00000000147 0.0000383 113,310,832 

1 4 2 3 5 6 7
= 0.3,  = 0 ( π) 2.3562,  = = = π 3d q , q q  q q q-    0.0000000463 0.000215 2,410,219 

1 4 2 3 5 6 7
= 0.3,  = 0 ( π) 1.2566,  = = = π 3d q , q q  q q q    0.0000000324 0.00018 2,364,066 

1 4 3 2 5 6 7
= 0.3,  = 0 ( π) 1.5708,  = = = π 3d q , q q  q q q    0.0000000155 0.0001246 2,777,778 

1 4 3 2 5 6 7
= 0.3,  = 0 ( π) 2.513,  = = = π 3d q , q q  q q q    0.000000001 0.0000314 20,703,933 

1 2 5 3 4 6 7
= 0.3 = 0 ( π) = 2.3562 = = π 3d , q q q , q q q,     0.000000001 0.0000308 77,294,250 

1 3 4 2 5 6 7
= 0.3 = 0 ( π)   = 1.7279,  = = π 3d , q q q q q q，     0.0000002081 0.000456 705,496 

Table 4. det( ( ))J q , ( )q , and ( )qK  with singularity. 

Joint Position det( ( ))J q  ( ) q  ( )K q  

1 2
= π 3 1.40924q q,   0 0   

1 2
= π 3 2.70535q q,   0 0   

1 2
= π 3 1.96856q q,   0 0   

1 2
0.86476, = π 3q q  0 0   

Finally, the proposed method is compared with the analytical method in terms of 

three aspects: the complexity of the determinant transformation, whether they are able to 

solve det( ( )) 0J q
,
 and whether they are able to obtain singular configurations, as shown 

in Tables 5 and 6. The results show that the proposed method can obtain some singular 

configurations of serial manipulators and parallel manipulators and that it is able to elim-

inate complex determinant transformation and obtain the solution of det( ( )) 0J q . 

Table 5. Results for the proposed method. 

Manipulator Type 
The Complexity of Determinant 

Transformation 

Capable of Solving 

det( ( )) 0J q  
Capable of Obtaining Sin-

gular Configurations 

Serial manipulators satisfying 

the Pieper criterion 
No determinant transformation No  Yes 

Serial manipulators not satisfy-

ing the Pieper criterion 
No determinant transformation No  Yes 

Parallel manipulators No determinant transformation No  Yes 
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Table 6. Results for the analytical method. 

Manipulator Type 
The Complexity of Determinant 

Transformation 

Capable of Solving 

det( ( )) 0J q  
Capable of Obtaining Sin-

gular Configurations 

Serial manipulators satisfying 

the Pieper criterion 
Average complexity Yes Yes 

Serial manipulators not satisfy-

ing the Pieper criterion 
Very complex Yes No 

Parallel manipulators Average complexity Yes Yes 

5. Conduction and Future Work 

For serial manipulators that do not meet the Pieper criterion, it is difficult to obtain 

singular configurations through the analytical method. A joint angle parameterization 

method to be used to obtain singular configurations for robotic manipulators was here 

proposed. First, an analytical method was used to analyze singular configurations of the 

Stanford manipulator. Then, the singular configurations of the Stanford manipulator were 

obtained through the proposed method and compared with the results obtained with the 

analytical method. The correctness of the proposed method was verified. Next, the pro-

posed method was applied to a 7-DOF serial manipulator and a planar 5R parallel manip-

ulator. Finally, the translational velocity ellipsoid of the EE under singular configurations 

of the 7-DOF serial manipulator obtained through the proposed method was found to be 

a plane, and the values for det( ( )) 0J q  , ( ) 0q  , and ( )K  q
 
corresponding to 

singular configurations were calculated. The correctness of the proposed method was ver-

ified from these two aspects. For the planar 5R parallel manipulator, by calculating the 

values for det( ( )) 0J q  , ( ) 0q  , and ( )K  q
 
corresponding to singular configu-

rations, the correctness of the proposed method was verified. This showed that the pro-

posed method can be applied to both serial manipulators and parallel manipulators and 

that it can eliminate complex determinant transformation and obtain the solution of 

det( ( )) 0J q . 

The proposed method can only obtain singular configurations of robotic manipula-

tors at a specific angle, but cannot obtain singular configurations of multiple angles satis-

fying a certain equation. For example, one singular configuration of PUMA 560 is 

4 2 3 2 2 3 2 3d sin( ) a cos( ) a cos( ) 0    q q q q q , and one singular configuration of ABB IRB 

1400 is 3 2 3 4 2 3 2 2 1a sin( ) cos( ) a sin( ) a 0     q q d q q q . As there are countless combina-

tion angles satisfying these two equations, the proposed method fails. Although the pro-

posed method cannot be guaranteed to find all singular configurations, in reality, singular 

configurations obtained with the proposed method can be set in the initial parameters of 

manipulators to avoid the corresponding configurations, which is similar to avoiding pre-

determined fixed obstacles in the working environment. Otherwise, these singular con-

figurations can only be solved by the singularity avoidance algorithm, which reduces the 

pose accuracy of the EE and makes the calculation more complex. In addition, in the fourth 

to thirteenth rows of Table 3 (as a few examples; in fact, there are many similar situations), 

the determinants and the manipulability measures are near zero, and the corresponding 

condition numbers are very large. In these cases, the velocities of some joints are also very 

high, which can seriously affect the motion performance. We plan to solve the problem of 

joint velocities caused by these two situations using a damped least square algorithm in 

the future. On this basis, we will continue to work on inverse kinematics analysis and 

trajectory planning. 
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