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Abstract: Swarm intelligence techniques with incredible success rates are broadly used for various
irregular and interdisciplinary topics. However, their impact on ensemble models is considerably
unexplored. This study proposes an optimized-ensemble model integrated for smart home energy
consumption management based on ensemble learning and particle swarm optimization (PSO).
The proposed model exploits PSO in two distinct ways; first, PSO-based feature selection is per-
formed to select the essential features from the raw dataset. Secondly, with larger datasets and
comprehensive range problems, it can become a cumbersome task to tune hyper-parameters in a
trial-and-error manner manually. Therefore, PSO was used as an optimization technique to fine-tune
hyper-parameters of the selected ensemble model. A hybrid ensemble model is built by using
combinations of five different baseline models. Hyper-parameters of each combination model were
optimized using PSO followed by training on different random samples. We compared our proposed
model with our previously proposed ANN-PSO model and a few other state-of-the-art models.
The results show that optimized-ensemble learning models outperform individual models and the
ANN-PSO model by minimizing RMSE to 6.05 from 9.63 and increasing the prediction accuracy
by 95.6%. Moreover, our results show that random sampling can help improve prediction results
compared to the ANN-PSO model from 92.3% to around 96%.

Keywords: random sampling; ensemble learning; optimization; particle swarm optimization (PSO);
feature selection

1. Introduction

Due to the ever-escalating world’s population, energy consumption and its demand
have also increased at an accelerated rate over the past few years [1]. According to the
authors of [2], the energy demands for the residential building segment are expected to rise
by 70%. Additionally, in the U.S., industrial and domestic buildings collectively consumed
74% of the total electricity generated in 2015 [3]. However, efficient energy management
for households is of vital importance as this sector has a substantial possibility for energy
saving compared to other industries [4]. Efficient energy management refers to optimally
minimizing the energy consumption without affecting users’ comfort and daily tasks such
as cooling, heating, ventilating, and other operations.

Artificial intelligence (AI) based techniques have played a significant role in efficient
energy forecasting tasks. Many popular approaches have been considered previously,
such as Artificial Neural Networks (ANNs), Support Vector Regression (SVR), Long-Short
Term Memory networks (LSTMs), etc. Jain et al. used the SVM algorithm to predict multi-
family residential buildings’ energy consumption in urban environments [5]. Howard et al.
used multivariate linear regression to analyze the building energy end-use intensities in
New York City [6]. ANNs have also been applied in initial design stages to enhance the
prediction of energy utilization for residential buildings. In our previous study based on a
hybrid approach, ANN has a vital role in optimal energy consumption forecasting [7].
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Though established to bring few advancements and improvements over conventional
statistical approaches, AI models have their own inadequacies and drawbacks. For ex-
ample, issues like overfitting and local minima in ANN and sensitiveness to parameter
selection in both SVR and ANN models. Given the limitations of traditional techniques
and AI techniques for energy consumption forecasting, a novel approach is required for
challenging forecasting tasks with high volatility and irregularity.

In this paper, based on the concept of decomposition and ensemble introduced by
Yu [8], we have proposed a hybrid optimized-ensemble model that utilizes the strengths of
the Particle Swarm Optimization (PSO) algorithm. As the name suggests, decomposition
aims to simplify the complicated prediction tasks by dividing them into comparatively
manageable sub-tasks; ensemble, on the other hand, considers multiple models and for-
mulates prediction results. The proposed optimized-ensemble model aptly takes one step
further after developing different ensemble combinations to optimize the results and find
the optimal combination of models using PSO. We have performed random sampling on
data before using it for the training and generated different subsamples of data. Random
sampling was done to find the best sample size for training. To eliminate the risks of overfit-
ting and multi-collinearity, we performed a PSO-based feature selection before developing
the optimized-ensemble model and formulated an objective function for significant vari-
ables. We have used CatBoost, XGBoost, LightBoost, RandomForest, and GradientBoosting
for ensemble modeling in various combinations. To explain the proposed methodology’s
sufficiency, we analyzed the effects of feature selection and compared the predictive power
between the proposed ensemble models and individual models. The main contributions of
this study are as follows:

(i) The proposed optimized-ensemble model is a hybrid that consists of random sam-
pling, feature selection, and ensemble learning.

(ii) In the proposed study, the use of PSO is two-fold; it both helps in feature selection and
for achieving optimal prediction results among different ensemble combinations by
using it to optimize hyper-parameters. We refer to it as an optimized-ensemble model.

(iii) The effectiveness of the proposed optimized-ensemble model is compared to dif-
ferent individual models, varying models of the ensemble, and the previously pro-
posed method, i.e., ANN-PSO. The results show that optimized ensemble has better
performance than non-optimized ensemble, individual models, and previously pre-
sented models.

The remainder of this paper is organized as follows: Section 2 discusses the related
works; Section 3 reviews the overall proposed methodology, and Section 4 presents imple-
mentation setup. The experiment results are presented in Section 5; Section 6 discusses the
significant findings and limitations and concludes.

2. Related Works

This section presents related literature studies and is further divided into subsections.
Section 2.1 presents and compares some general studies that have focused on energy
consumption prediction using three different approaches. Section 2.2 presents a literature
review of PSO-based feature selection approaches and Section 2.3 highlights approaches to
tune and optimize hyper-parameters of different models.

2.1. Energy Consumption Forecasting Techniques

The methods used for forecasting involve different approaches such as machine
learning-based approaches, non-machine learning-based approaches, ensemble machine
learning-based approaches, etc. In Table 1, we have presented a summary of the pros
and cons of each type of approach used for energy consumption forecasting. In the case
of the non-machine learning model, the most frequently used techniques include linear
regression [9], statistical methods [10], rule-based approaches [11], etc. However, due to
their limitations, these approaches might not yield satisfactory results for energy forecasting
in smart buildings. For optimal energy consumption forecasting, there is a need to train
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large, multi-dimensional, and historical data. That is why deep learning approaches are
considered to yield satisfactory results in such scenarios.

Table 1. Common characteristics of classical (non-machine learning-based), individual, and ensemble ML models.

Techniques Strengths Weakness

Classical
Methods

- Traditional and well known in the literature.
- Can offer statistical implications of prediction.
- Generally, these methods can measure

uncertainty or ambiguity in predictions.
- Provide easy and quick implementation for any

problem at hand.

- These models can poorly perform in predicting
short-term time series.

- Element of unreliability exists due to reliance
upon different assumptions.

- These prediction models possess a restricted
capacity to deal with supplementary variables.

- The curse of dimensionality exists.

Individual
Machine
Learning
Methods

- No assumptions are required for variables.
- Show better performance and flexible nature to

handle time series.
- Additional variables can be accommodated

easily in time-series predictions.
- As compared to classical models, these models

have effective generalization capability.

- It might have a higher computational cost as
compared with classical methods.

- Lack of understanding and explanation of fitting
nature of different models.

- The curse of dimensionality also exists.
- Characteristic uncertainty in the learning and

training, though observing and dealing with
similar patterns.

Ensemble
Machine
Learning
Methods

- Highly flexible and best fitting approaches.
- Show higher stability in performance individual

ML models.
- Uncertainty can be explained.
- Effectively minimizes the curse

of dimensionality.

- It is a comparatively new approach.
- It might be computationally costly in some cases.
- It is still developing for

regression-related problems.
- Careful consideration is required to apply

generic models to a specific field of study.

Several studies have suggested deep learning-based solutions for energy prediction,
such as using SVMs [12], ANNs [13], Decision Trees (DTs) [14], LSTM [15], etc. Numerous
studies have proved that machine learning models can substantially outperform state-of-
the-art statistical models [16]. Salgado in [17] has proposed a DT-based hybrid approach
to predict energy load. The model uses climate information to calculate the load. In [18],
Li et al. have established an SVM-based prediction method for energy usage prediction
in domestic buildings. In addition, in [19], SVMs and ANN-based models are reviewed
for household energy consumption prediction. In a more specific study [20], an ANN-
based forecasting tool is implemented to predict energy forecasts in a building. Here,
nine different scenarios are considered, and different ANNs are developed according
to a scenario. Despite many machine learning models in household energy prediction,
there are still some challenges, such as misleading patterns. Therefore, specific model’s
optimization can generate distinct patterns indicating that such unstable behaviors might
negatively affect the generalization capability of ML models if there are different patterns or
conditions observed in the training and validation data. Comparatively, ensemble learning
happens to be a widely appreciated improvement to standard ML approaches. Thus, it is
recommended over an extensive range of applications in different research studies [21–23].

Compared to individual models, the primary benefits of utilizing an ensemble model
are portrayed in their enhanced generalization capability and adaptable, functional map-
ping among the system’s variables. The ensemble models are of two different kinds;
homogenous models are usually an ensemble of similar processes; heterogeneous models
consist of an ensemble of other techniques and are also known as hybrid models.

Ensemble learning is getting popular in the energy forecast domain as well. In [24], an
ensemble bagging tree approach (EBT) is presented to forecast building electricity demand.
Yang in [25] has proposed a deep ensemble learning-based load forecasting model, an
end-to-end probabilistic model. It is a least absolute shrinkage and selection operator-based
quantile prediction approach for deep ensemble learning framework.
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2.2. PSO-Based Feature Selection

Feature selection is a critical preprocessing task in classification that eliminates irrele-
vant, redundant, and noisy features. Improving the model’s performance, decreasing the
computational cost, and adjusting the “curse of dimensionality” are the key advantages of
the feature selection task.

Optimal feature selection can play a significant role in accurate forecasting as using raw
features may lead to an inefficient result. Therefore, many approaches use different feature
selection methods to prepare their data to train the model. In [26], a new process is proposed
where threshold based binary PSO is used for feature selection to enhance the performance
of the face-recognition system. In another study [27], a PSO-based hybrid approach selects
relevant features from raw features. A study in [28] presents the exploratory aftereffect
of organization irregularity discovery utilizing PSO for feature selection and ensemble
learning-based model that uses tree-based classifiers (C4.5, Random Forest, and CART)
for classification. The proposed recognition model shows a promising outcome with
recognition precision and a lower positive rate than existing ensemble methods. Another
variation of the PSO-based feature selection technique is presented in [29] that utilizes
features frequency for feature elitism. In [30], a new PSO-based multi-objective feature
selection technique is presented. In this technique, raw features are considered a graph
model, and the centralities for all the nodes are calculated, and a PSO-based search process
is performed to select the final set of features.

2.3. PSO for Hyper-Parameter Optimization

Hyper-parameter tuning has been of great importance for learning algorithms as it
can extensively affect their model optimization. Initially, hyper-parameter tuning was per-
formed by using simple yet exhaustive approaches e.g., grid search and random search [31].
Unfortunately, these methods suffer from issues such as search space complexity and high
variance [32]. Besides this, some other strategies for optimization were proposed such as
sequential model-based optimization [33] and Bayesian optimization [34]. This has been a
significant obstacle in deep neural networks (DNNs). Many studies have been proposed
that use PSO to optimize hyper-parameters of DNNs. In [35], PSO proves to generate
promising classification accuracy by efficiently exploring the solution space. In [36], a
parallel method is introduced where the PSO’s population is evolved in parallel to their
fitness evaluation. A novel variation of PSO named as cPSO-CNN in [37], aims to enhance
CNN hyper-parameter tuning process and utilize a normal distribution-based confidence
function. Similarly, several other works [38,39] are performed for DNNs to optimize the
hyper-parameters. However, for ensemble models this task is quite challenging and with
different settings and objectives the optimization goal of a model can change. In a recent
study [40] a stacked ensemble model for software effort estimation used both GA and
PSO are optimized hyper-parameters. In [41], a cascade swarm intelligence algorithm
is proposed for image segmentation that also uses PSO for tuning hyper-parameters of
deep CNNs.

In this study, we have proposed a dual-purpose PSO-based ensemble learning model
used for feature selection and optimization by tuning the hyper-parameters of the ensem-
ble model.

3. Proposed Methodology

In this section, we introduce our proposed methodology in detail. In Section 3.1, we
present the conceptual view of this research. Section 3.2 introduces the detailed architecture
of the system. This section is further divided into multiple subsections. Each subsection
sheds some light on individual modules of the overall architecture including the hybrid
ensemble model in detail with various subsections.
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3.1. Conceptual View

This section presents a basic conceptual flow and abstract view of this research work
in Figure 1. The simple idea is to manage the energy consumption of smart homes based
on their energy usage patterns and forecasting to reduce energy costs. Energy consumption
in a household depends on multiple factors, such as outdoor weather conditions, indoor
environment, number of appliances and their usage frequency, etc.
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Figure 1. Conceptual view of the system.

Therefore, outdoor parameters such as temperature, humidity, and weather conditions
are considered, along with indoor parameters and the overall energy consumption. The
data is trained to get the future energy consumption predictions and based on these
predictions we aim to manage the energy inside a house by generating different control
rules for various appliances.

3.2. Architectural View

This section presents the architectural details of the proposed model. The proposed
model integrates multiple modules, and each module plays a significant role in achieving
the desired objective. As shown in Figure 2, there are five primary modules such as data
module, a feature selection module, random sampling module, ensemble learning module,
and evaluation module.

The data module handles raw data, preprocesses it, and prepares a features list from
all the relevant parameters. The feature selection module is based on PSO that uses the
features list as input and returns an optimized set of features based on their respective
scores calculated using the Gaussian Mixture Model (GMM). The random sampling module
takes all the data based on essential and optimized elements and generates different random
samples of data. Each random sample is trained separately. The most crucial module is our
hybrid ensemble learning module, which again uses PSO for optimization by tuning the
hyper-parameters of all the models. The last module is the evaluation module that uses
different evaluation metrics to assess the performance of all the models.
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3.2.1. Data

The data is comprised of both indoor and outdoor parameters such as temperature
(indoor, outdoor), humidity (indoor, outdoor), weather, timestamp, dew point, energy
consumption, energy consumption cost, precipitation, user desired ranges of temperature
and humidity, etc. The timestamp column was decomposed into eight new columns such
as hour, year, month, quarter, day of year, day of month, day of week, and week of year.
We performed feature selection on a total of 20 columns in the input dataset. According
to fitness estimation in PSO algorithm, the total number of selected features were 10. The
selected features were indoor temperature, outdoor temperature, indoor humidity, outdoor
humidity, energy consumption, energy consumption cost, month, weather, dew point, and
precipitation. Figure 3 presents the fitness graph and feature size for our input dataset. We
have divided the dataset into 70% training data, 10% validation, and 20% test data for our
proposed model.
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3.2.2. PSO-Based Feature Selection

Feature selection is the method for choosing a subgroup of significant features to
construct a model. It aims to enhance the data quality by selecting the best features for the
model performance. The process of feature selection by using PSO is shown in Figure 4.
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We have used a variation of the binary particle swarm optimization (BPSO) algorithm,
which primarily is a binary version of PSO [42]. The primary functions are the same as
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PSO; in BPSO, both local best (pbest) and global best (gbest) solutions exist. Here, the
positions of the particles are stated in two terms, i.e., 0 (not selected) and 1 (preferred). The
position and velocity of a particle on d-dimensions at any given time t can be defined in
Equations (1) and (2).

xd
i (t + 1) = x1(t), x2(t), x3(t), . . . xd(t) xi E 0, 1 (1)

vd
i (t + 1) = wvd

i (t) + c1rand1

(
pbestd

i (t)− xd
i (t)

)
+ c2rand2

(
gbestd

i (t)− xd
i (t)

)
(2)

where xi is the position of a particle; vi is the velocity of the particle; acceleration factors
are represented as c1 and c2; rand1 and rand2 represents two random numbers in the range
[0,1]; d refers to the dimension in the search space, and t is the number of iterations.

For each particle, its velocity is updated and changed to probability. Additionally, the
position of the particle is updated based on its updated velocity. The position and velocity
of a particle can be updated by using Equations (3) and (4).

Vupdate(vd
i (t+1)) =

1
1 + exp−vd

i (t + 1)
(3)

Pupdate (xd
i (t+1) =

{
0, i f random ≥ Vupdate(vd

i (t+1))

1, i f random < Vupdate(vd
i (t+1))

(4)

where, Vupdate(vd
i (t+1)) and Pupdate (xd

i (t+1) refer to updated velocity and position of a particle,
respectively; a random is a random number that has uniformly distributed values between
0 and 1.

The most vital role is played by pbest and gbest values that guide the particles
toward the global optimum. Equations (5) and (6) are used to update pbest and gbest
values, respectively.

pbesti(t + 1) =

 xd
i (t + 1), i f f

(
xd

i (t + 1)
)
< f

(
xd

i (t)
)

pbestd
i (t), i f f (xd

i (t + 1) ≥ f
(

xd
i (t)

) (5)

gbesti(t + 1) =
{

pbesti(t + 1), i f f (pbesti(t + 1)) < f (gbest(t))
gbest(t), i f f (pbesti(t + 1) ≥ f (gbest(t))

(6)

where x is the position (solution), pbest is the local best solution, gbest is the global best
solution, and f (.) is the fitness function defined as in Equation (7).

f (x) = α(1− p) + (1− α)(1− NsubsetFeatures
NtotalFeatures

) (7)

where α is a hyper-parameter that decides the tradeoff between the classifier performance
P, NsubsetFeatures refers to the size of features subset, while NtotalFeatures represents the total
number of features in the dataset. Accuracy, precision, or F-score can be used to evaluate the
classifier performance. We have used Gaussian Mixture Modeling for feature evaluation.

Inertia weight, being the most significant parameter in BPSO, handles exploitation
and exploration behavior. It is critically essential to achieve a balance between exploitation
and exploration. In the literature, several different types of inertia weight strategies are pro-
posed to improve PSO performance. Here, we use our previously proposed velocity-boost-
inertia-weight scheme in [43]. We start with a constant inertia weight valuev I IWc = 0.729,
and a velocity boost threshold (VBT) then, in each iteration, we observe the particle’s pbest,
till VBT. If there is no enhancement in the pbest, we assign a new inertia weight to update
the particles’ velocities. Based on previously proposed inertia weights in Equation (8) [44]
and Equation (9) [45], we define our new inertia weight in Equation (10).

Initial Inertia Weightconstant = I IWc = 0.7 (8)
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Random Inertia Weightconstant = RIW = 0.5 +
Rand()

2
(9)

New Inertia Weightconstant = NIW = I IWc +
Rand()

3
(10)

3.2.3. Random Sampling

We performed random sampling on our dataset to generate different samples of data
with different sizes. Random sampling was performed to improve the quality of input
data for training, as overfitting might happen when the training data is too large. We
experimented with different sample sizes and figured out the most optimal sample size for
our model. All these samples were separately used for training. For each random example,
we split the data into 70% training, 10% validation, and 20% test data.

We performed random sampling with the reservoir, which is a fast algorithm for
selecting a random sample of n records without replacement from a pool of N records,
where the value of N is unknown beforehand.

3.2.4. PSO Optimized Hybrid Ensemble Learning Model

The most critical objective of machine learning is to prepare a balanced model that
operates perfectly in all circumstances; however, real-life examples and situations are not
often ideal. Ensemble learning is the procedure of merging several models to achieve a
more comprehensive and better-supervised model. The fundamental idea of ensemble
learning is that if a specific weak regressor fails to provide accurate prediction, other
regressors can take care of it and improve the results.

We have experimented with a novel machine learning-based hybrid approach, com-
bining multiple combinations of various models such as CatBoost, XGBoost, LightBoost,
RandomForest, and GradientBoosting. Then, we randomly selected three different varieties
of these models for experiments.

(A) Hyper-parameter Tuning Using PSO

The hyper-parameters of these combination or hybrid models were optimized using
PSO. For any machine learning model with the highest performance, there is a dire need
to tune the system for any given problem at hand; otherwise, it will fail to achieve the
best performance. It is nearly impossible to adjust the system every time; therefore,
manually, automated hyper-parameters tuning diminishes the labor-intensive work for
experimenting with various machine learning model configurations. Hyper-parameter
tuning enhances the precision of ML algorithms and increases reproducibility. It plays a
vital role in producing more accurate results for any ML model [46]. Genetic Algorithms
(GA) and PSO are elementary and are discovered to be more efficient in exploring huge
hyper-parameter space [47]. However, PSO can obtain the same optimization level as GA
but usually with less cost in terms of generations. In Table 2, the critical hyper-parameters
for the base learner of ensemble selected are shown along with their value ranges.

Table 2. Hyper-parameters in an ensemble model.

# Hyper-Parameters Range

1 Hidden layers size 0–15

2 alpha (L2 regularizer) 0.0001–0.1

3 Number of estimators 0.1–0.8

4 Random state 5–100

5 C(Regularization parameter) 1–100

6 γ (Gamma) 1–300

7 ε (tolerance) 0.01–30
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PSO requires several parameters to execute, and all the parameters’ values depend
upon the problem. In our case, we are aiming to find optimal deals for all the hyper-
parameters. PSO parameters, along with their respective values, are presented in Table 3.

Table 3. PSO parameters set and their corresponding values.

# Parameters Values

1 c1 (Local coefficient) 1.5

2 c2 (Global coefficient) 1.5

3 Inertia weight 0.7

4 No. of particles 8

5 Fitness criteria RMSE

The fitness function depends on the RMSE of the regressor, which should be mini-
mized. Hyper-parameters values are updated in such a way that solution advances toward
local best and global best. These hyper-parameter values are then used to update the
position of each particle. In each iteration of the algorithm, the fitness condition and the
termination condition are verified before calculating pbest and gbest values. As shown in
Table 3, RMSE is chosen as fitness criteria, and 200 iterations or RMSE difference among
previous iterations <0.3% is selected as the termination criteria. The fitter and finer particles
will have a minimum RMSE value for that configuration. The iterations are repeated till
the terminal condition is reached, i.e., when the difference of RMSE between two iterations
remains <0.3% or the number of iterations exceeds 200. Then the particle with the best
fitness value is chosen as the most desired solution.

The reasons for choosing PSO include:

• Being an increasingly popular meta-heuristic algorithm, PSO has a more robust global-
search ability.

• In most cases, PSO has substantially improved computational effectiveness.
• It is easier to implement as compared with other meta-heuristic algorithms.

(B) Learners for optimized-ensemble model

We have introduced all the models that we used for ensemble learning below.

(1) GradientBoosting

Decision trees-based Gradient Boosting Machine (GB) is a robust ensemble machine
learning algorithm. Boosting is the most conventional ensemble approach where each
model is added in sequence to the ensemble, and the later added model improvises the
performance of the former models. The first algorithm that could potentially perform
boosting is the AdaBoost algorithm, and Gradient Boosting is based on the generalization
of AdaBoosting to enhance its performance. It also aims to further improve performance by
bringing concepts of bootstrap aggregation, e.g., while fitting ensemble models, randomly
choosing the samples and features.

The key reason for selecting GB is it performs well, and it is one of the general boosting
algorithms. Later versions of GB such as XGBoost and LightBoost are powerful variations
of GB that can play a vital role in various complex predictive learning-based problems.

(2) CatBoost

Catboost is among the boosting algorithm family that includes XGBoost, LightGBM
algorithms. Just like these algorithms, CatBoost is also an open-source machine learning
library. It is an improvised implementation under the Gradient Boosting DT algorithm
technique. This technique is developed upon symmetric DT algorithm with various
advantages such as limited parameters involved, suitable for categorical and numerical
variables, generalization capability, higher prediction speed and accuracy, etc.
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The main reason to select CatBoost is that it is primarily used to handle challenges
associated with categorical variables proficiently. Additionally, it is a time-efficient model
as one requires spending little to no time on parameter adjustment as just with default
features. Without introducing lots of changes, high-quality results can still be obtained.

(3) XGBoost

Gradient Boosting (GB) is being used for both classification and regression-related
problems, and it belongs to an ensemble machine learning-based class of algorithms.
XGBoost aims for higher speed and better performance and implements Gradient Boosting
decision trees upon which ensemble models are constructed. The prediction errors of the
prior models are minimized by adding trees one by one to the ensemble model.

It has recently earned utmost popularity in applied machine learning, primarily for
structured data. Using Python, the implementation and model for XGBoost in scikit-learn
can easily be installed in your development environment.

(4) LightBoost

Like CatBoost and XGBoost, Light Gradient Boosted Machine, shortly known as
LightGBM, is among the boosting algorithm family. LightGBM is also an open-source
machine learning library and is an improvised implementation of the GB algorithm.

Here, feature selection is automatically added, and also a significant focus is paid
on boosting examples with higher gradients. It enables LightGBM with efficient training
by reducing the training time and enhance prediction outcomes. It is the reason for
selecting LightGBM for ensemble modeling. Besides that, it can work well with tabular
and structural data in classification and regression-based modeling tasks. LightGBM, along
with XGBoost algorithms, has undoubtedly accelerated the popularity of GB models.

(5) RandomForest

It is an ensemble machine learning algorithm and uses bagging as an ensemble ap-
proach and decision trees as individual models. The key reason for selecting Random Forest
is that it is most certainly an extremely popular and extensively applied machine learning
algorithm. Besides that, it can be widely applied and show effective performance outcomes
for classification and regression-based predictive modeling problems. Additionally, its
dependence on a fewer number of hyper-parameters makes it easy to use and implement.

(C) Predictions

We used all the random samples to train with three different combinations of op-
timized hybrid ensemble learning models. The prediction module generates separate
predictions for each model in an ensemble combination. The final projections are devel-
oped by taking an average of all the projections.

3.2.5. Evaluation

The last module of the proposed architecture is evaluation module that is responsible
for the assessment of the results and performance comparison. It uses different evaluation
metrics to assess the overall performance of the proposed model, such as root mean square
error (RMSE), mean square error (MSE), mean absolute error (MAE), accuracy (%), precision
(%), etc.

4. Implementation Setup

Here, we present a detailed overview of our implementation setup. For basic pro-
gramming logic, we used Python version 3.8.1. Python is a prevalent general-purpose
programming language and is widely used for developing desktop and web-based appli-
cations. The implementation is mainly done on Jubyter Lab IDE (Integrated Development
Environment) since Jupyter lab provides ease of implementation, better results visualiza-
tion, and high-level features to adapt to processing needs. The additional details of system
configuration are presented in Table 4.
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Table 4. Details of the implementation environment.

Components Specifications

Operating System Windows 10 Professional Edition
Processor Intel i5 9th Generation

Memory (RAM) 16 GB
Programming Language Python 3.8.1

IDE Jupyter (Conda 4.9.1)

5. Performance Evaluation

In this section, we compare the performance of our proposed model with existing
models. In Table 5, we consider individual models, optimized individual models, and
ensemble and optimized-ensemble models to evaluate them based on root mean square
error (RMSE), mean absolute error (MAE), and mean squared error (MSE). We have taken
different combinations of models for the ensemble approach. We have experimented with
models such as CatBoost, XGBoost, LightBoost, Random Forest, and Gradient Boosting.

Table 5. Evaluation results based on RMSE, MAE, and MSE for a different combination of models.

Techniques Models RMSE MAE MSE

Individual

CatBoost 27.89 25.76 789.34
XGBoost 25.62 23.44 651.88

LightBoost 26.33 24.90 883.92
Random Forest 24.54 20.76 671.58

Gradient Boosting 24.88 22.38 641.46

Optimized-
Individuals

CatBoost 27.01 25.12 700.67
XGBoost 24.94 23.40 619.81

LightBoost 25.68 22.39 804.48
Random Forest 23.47 18.91 632.45

Gradient Boosting 24.61 20.15 621.91

Ensemble

CatBoost, XGBoost, GradientBoost 18.42 17.11 342.76
CatBoost, LightBoost 20.96 18.78 480.61

RandomForest, CatBoost 21.55 19.62 520.77
RandomForest, XGBoost, CatBoost 16.81 15.28 389.51

CatBoost, XGBoost, LightBoost 11.73 10.53 291.27

Optimized-
Ensemble

CatBoost, XGBoost, GradientBoost 17.85 16.22 300.33
CatBoost, LightBoost 17.99 16.01 451.35

RandomForest, CatBoost 16.81 18.73 489.36
RandomForest, XGBoost, CatBoost 10.68 11.83 310.84

Proposed Model 6.05 5.76 161.37

It can be observed that the best results were achieved when we used optimized-
ensemble learning for predictions. Ensemble learning has performed better as compared
with the performance of individual models. With individual models, the RMSE range was
24–27, while ensemble models were reduced to the range of 11–22. A similar pattern can
be observed for optimized ensembles and optimized individual models.

RMSE measures the deviation in data points or prediction values from the regression
line of best fit or the original values. RMSE can be formulated as

RMSE =

√
n

n

∑
i=1

(σi − Pi)
2

where P is the prediction and σ is the observed or known values.
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MAE calculates the absolute average of all the errors. It refers to the average of
absolute values of each prediction error in the test data set considering every instance.
MAE is measured as

MAE =
1
n

n

∑
i=1
|σi − Pi|

MSE sums the squared residuals and measures the average deviation of the predicted
values from the observed values and can be formulated as

MSE =
1
n

n

∑
i=1

(σi − Pi)
2

In Table 6, we have presented the performance comparison of existing models with
our proposed model. We have evaluated the current and proposed model on two datasets.
Apart from our dataset, we also experimented with publicly available datasets to measure
our proposed model’s credibility [48]. We have considered both PSO and GA-based models
for comparison. As Tables 5 and 6 depict, our proposed model generated less error and
better performance than existing models on both datasets. The proposed model also
outperformed our previously proposed model ANN-PSO [7].

Table 6. Performance comparison with existing models.

Models Dataset RMSE MAE MSE

PSO-DLNN [49] Smart meter 18.73 20.86 650.74
Our Dataset 17.52 20.01 655.33

PSO-XGBoost [50] Smart meter 17.91 21.99 620.16
Our Dataset 18.66 19.71 590.42

LDA–GA–SVM [51] Smart meter 19.23 19.55 590.18
Our Dataset 15.48 20.79 660.63

ANN-PSO [7] Smart meter 9.23 11.79 367.49
Our Dataset 7.82 12.35 401.77

Proposed Model Smart meter 7.01 9.28 198.36
Our Dataset 6.05 5.76 161.37

Figure 5 also presents the graphical representation of our prediction model. Yellow de-
picts the actual energy consumption and green signifies the predicted energy consumption
values. We have displayed the results for two months for proper visualization.
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Prediction accuracy based on a different batch of random sampling sizes is presented
in Figure 5. As we can see from Figure 6, prediction accuracy is highest for a sampling size



Electronics 2021, 10, 2188 14 of 17

of 60%. We have demonstrated the prediction accuracy for our proposed ensemble model
with and without optimization.
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In Figure 7, we have plotted the precision or how close the predictions are to the
observed values for existing and our proposed model. As we can see, the precision for our
proposed model is the highest, achieving better accuracy.
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6. Discussion and Concluding Remarks

This paper presents a PSO-centered optimized-ensemble learning and feature selection-
based strategy for the energy consumption prediction of smart homes to enhance the
prediction outcome. The novelty of this study is in the proposed method based on random
sampling and a two-way use of PSO in feature selection and ensemble learning. It enables
each prediction model to analyze a different subset of data and generate comparatively
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highly accurate predictions than an individual model to fit all. Besides that, with inadequate
data sizes, the suggested approach is capable of achieving higher prediction outcomes.

The key contributions of this study can be concisely discussed in three parts. Firstly,
random sampling was performed on preprocessed data to enhance data quality. Different
subsets of data were trained on other models. The purpose of doing this was to figure out
an optimal sample size for training. We experimented with various randomly selected data
subsets, and it did impact the prediction results with comparatively higher accuracy and
lower prediction error. Secondly, according to PSO-based feature importance analysis and
selection, the impacts of the energy consumption forecast features were compared. Then
the selected features list was optimized, which provided help for the ensemble prediction
model. Thirdly, the model of energy consumption prediction was established based on
the optimized-ensemble learning. Experiments were performed to evaluate ensemble
model performance both with and without PSO optimization of hyper-parameters. Results
showed that the idea of using PSO for optimizing the ensemble model enhanced the
performance. The reliability of analysis results was verified by testing the model on
different publicly available datasets. Finally, the ensemble learning model consisting of five
other models, i.e., XGBoost, LightBoost, CatBoost, RandomForest, and Gradient Boosting,
was established for each data subset. We experimented with different combinations of
the models mentioned earlier to find which hybrid model works best for given data.
To evaluate the overall performance of the proposed model, we devised four different
techniques where we compared our proposed optimized-ensemble model with the other
three techniques. The first technique experiments individual models without any hybrid
or combination and PSO optimization. The second technique experiments with PSO
optimized individual models. The third technique considers different hybrids, such as a
hybrid of CatBoost, XGBoost, GradientBoost, etc. The fourth technique experiments with
our proposed optimized-ensemble model. The results are analyzed and compared based
on RMSE, MAE, and MSE values. Results showed that compared with other techniques,
the proposed method achieved the best prediction effects in each case.

Although our proposed optimized-ensemble learning algorithm has satisfactory en-
ergy prediction effectiveness, there is still much room for improvement. We plan to imple-
ment and experiment with other sampling techniques in our future work to see if there can
be any improvement in the prediction result. The energy consumption patterns of different
buildings and households might differ depending upon the individual needs; therefore,
the prediction results are also dependent on the underlying usage patterns. Hence, with
different circumstances and different usage patterns of various buildings, the proposed
model might face some limitations at run time. However, it can incorporate additional
features. When the research subject changes or a new running pattern appears, it cannot
be updated in time. Therefore, we aim to concentrate on pattern classification of energy
usage for different commercial or residential buildings under various environmental and
climatic conditions in the future. We aim to recognize and classify new patterns with
time automatically.
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