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Abstract: Precision fertilization is a major constraint in consistently balancing the contradiction
between land resources, ecological environment, and population increase. Even more, it is a popular
technology used to maintain sustainable development. Nitrogen (N), phosphorus (P), and potassium
(K) are the main sources of nutrient income on farmland. The traditional fertilizer effect function
cannot meet the conditional agrochemical theory’s conditional extremes because the soil is influenced
by various factors and statistical errors in harvest and yield. In order to find more accurate scientific
ratios, it has been proposed a multi-strategy-based grey wolf optimization algorithm (SLEGWO) to
solve the fertilizer effect function in this paper, using the “3414” experimental field design scheme,
taking the experimental field in Nongan County, Jilin Province as the experimental site to obtain
experimental data, and using the residuals of the ternary fertilizer effect function of Nitrogen,
phosphorus, and potassium as the target function. The experimental results showed that the SLEGWO
algorithm could improve the fitting degree of the fertilizer effect equation and then reasonably
predict the accurate fertilizer application ratio and improve the yield. It is a more accurate precision
fertilization modeling method. It provides a new means to solve the problem of precision fertilizer
and soil testing and fertilization.

Keywords: grey wolf optimization algorithm; fertilizer effect function; nitrogen; phosphorus and
potassium; precision fertilization; multi-strategy mechanism

1. Introduction

The ecosystem formed by “crop-soil-fertilizer” seems to continue indefinitely, but in
each cycle, there is more or less natural loss, which needs to be replenished and controlled
by human factors to continue the cycle [1–6]. Since its introduction in the 1980s, precision
fertilization has been a significant constraint on balancing the contradiction between land re-
sources, ecology, and population growth and a key technology for maintaining sustainable
development [7–11]. Precision fertilization is based on soil testing, and field application
trials and a comprehensive grasp of crop fertilization patterns, soil supply properties, and
fertilizer effects are the primary means to ensure scientific fertilizer with yield increase,
improve product quality, and food security while reducing environmental pollution and
soil friendliness [12–14]. The growth of output depends on inputs, and crops need “food”
to satisfy their growth. Plants need chemical elements, water, and carbon dioxide to syn-
thesize organic matter under photosynthesis in sunlight, and fertilizers are essential “food”
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for crops [9–15]. The roots of crop growth are in the soil, and 60–70% of plant nutrients
are absorbed from the soil [16–22]. There are many types of fertilizers, including massive
elements (nitrogen, phosphorus, potassium), trace elements (calcium, magnesium, sulfur,
manganese, boron, iron, copper, molybdenum), and organic fertilizers [23–26]. Nitrogen
(N) is a constituent element of proteins, nucleic acids (DNA and RNA), and chlorophyll in
chloroplasts and other compounds in plants, which plays a significant role in plant growth
and development [27,28]. Phosphorus (P) is a constituent element of many compounds in
plants, such as nucleic acids (DNA and RNA), proteins, and enzymes, which promote plant
growth and enhances the cold and drought resistance of crops [29]. Potassium (K) can
promote photosynthesis so that cellular osmotic pressure can use water uptake and enhance
the plant’s ability to tolerate various adverse conditions [30–32]. When soil nutrient supply
is insufficient, it is supplemented by fertilizer application to balance fertilizer supply and
crop fertility requirements to reduce crop diseases and yield reduction of different degrees.
According to the data, the role of fertilizer in increasing crop yield accounts for 30% to
65% [33]. At the same time, the basic principles of fertilization in nutrient cycling and plant
nutrition follow the dominant principle, i.e., there is a synergistic change in the content
of individual nutrients, which means that if the nutrients in the soil are sufficient or the
blending ratio is imbalanced, if fertilizers are used blindly, it will not only cause waste of
fertilizers but also cause toxic effects on crops, resulting in food safety problems and even
yield reduction.

Since the relationship between crop nutrient requirements and output is highly com-
plex [34], the algebraic form of the fertilizer effect equation and the values of various
parameters will depend on many factors such as crop, fertilizer, soil type, and cultivation
techniques [35]. Fertilizer effect equation is also named nutrient equation; the main objec-
tive is to determine a suitable fertilizer effect equation based on the information from the
available field plot fertility trials to reflect exactly the quantitative relationship between
fertilizer application and output and to seek the amount of fertilizer applied to achieve
high yield, quality, and efficiency from this effect equation [36,37]. The fertilizer effect
equation is based on field experiments, and its specific method is to inverse design the
yields obtained from different treatments, apply the fertilizer effect equation to fit the crop
fertilization model, estimate the parameters of the equation, and test it with the regres-
sion equation and regression coefficients to determine the final fertilizer effect model. At
the same time, a comprehensive evaluation of the established model was carried out to
determine the maximum yield and the best economic ratios from the obtained fertilizer
effect equation and to determine the proper formula fertilizer application according to the
regional economic development objectives and the soil testing results [38].

Precision fertilization achieves a balanced fertilizer application on each operating unit,
depending on the soil and crop. Moreover, its main steps include scientific soil testing and
the determination of fertilizer recipes. It significantly improves the fertilizer utilization rate
and economic efficiency of fertilizer application and reduces the negative impact on the
environment. Precision fertilization is one of the vital elements of precision agriculture.
It can reduce the cost of agricultural production, effectively avoid wasting resources and
reduce environmental pollution caused by fertilizer and pest control without minimizing
production reduction. It also provides rational use of the material nutrients of crops and
ensures the production and quality of agricultural products. In practice, soil testing and
fertilization is a critical way to achieve precise fertilization.

As early as the 1840s, the founder of agricultural chemistry, Justus von Liebig, created
the famous “law of minimum nutrients”, and scholars from various countries began to
study the complex and close relationship between crop yield and fertilizer application,
which entered the era of metric fertilization [39]. In the mid-20th century, the fertilizer
effect function approach was widely promoted in India [40]. Domestic and foreign re-
searchers have also conducted a large number of model studies and applications. Zhang
et al. [41] proposed Monte Carlo modeling, which improved the fertilizer effect function
model list’s accuracy at the expense of time in exchange. Colwell et al. [42] proposed a
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regression coefficient averaging method. Chen et al. [43] proposed the dynamic cluster-
ing method. There are more than 10 types of fertilizer effect functions available, mainly
includes: linear equations [44], polynomial binomial [45], trigonometric polynomial [46],
Mee’s equation [47], Spearman’s equation [48], linear and platform function [49], quadratic
and platform function [50], inverse linear polynomial [51], quadratic polynomials [52],
0.5 polynomials [53], logarithmic conversion [54], and reduced yield inverse polynomi-
als [55], etc. The Mee’s and Spearman equations cannot reflect the diminishing returns after
overfertilization, and the applicability is only applicable to areas with low fertility. At the
same time, polynomials and inverse polynomials can show the law of diminishing returns
for overfertilization, which can further expand the applicability, but still cannot overcome
the problems of model setting bias and multicollinearity. Chen et al. [43] compared nitro-
gen and phosphorus polynomial fertilizer effect models of 0.5, 0.75, 1.5, and 2 times and
obtained that the applicability of different models differed and concluded that in irrigated
land, the quadratic polynomial could better respond to the fertilization efficiency of wheat.
In Cerrato and Blackmer’s study [56] of the linear and quadratic platform, polynomial
nitrogen fertilizer efficiency functions were compared, and the test results showed that the
quadratic model performed best in winter wheat, summer maize, and vegetable crops with
generalizability.

In 2006, the Ministry of Agriculture (MOA) proposed the “3414” test scheme in the
national soil testing and fertilizer application work, which has the advantages of regression
to optimal design, fewer steps, and high efficiency, and can establish one-, two-, and
three-dimensional fertilizer effect functions and the code is intuitively comparable and
more suitable for field application. According to the Technical Specification for Soil Testing
and Fertilizer Application Project of the Ministry of Agriculture, the “3414” design scheme
for nitrogen, phosphorus, and potassium has been considered the best fertilizer effect
test scheme since it was proposed nearly 15 years ago, after nationwide promotion and
demonstration trials of the project. Fertilizer effect function theoretically puts forward the
law of the influence of various factors on plant growth, which connotes: “Various factors
constrain plant growth, and the range of variation of various factors is extensive, and
the ability of plants to adapt is limited, only when each factor is at a specific value, it is
considered to be the most suitable for plant growth, and this optimal value is, on the whole,
the most suitable for plant growth [57]. It can be said that there is only one hypersurface in
n-dimensional space composed between crop yield and each nutrient influencing factor. Its
characteristics correspond to a class of constrained optimization problems that are the main
problems solved by modern computational optimization methods. The swarm intelligence
optimization algorithm has an absolute advantage in solving optimization problems with
strong local exploitation capability and fast convergence.

Optimization methods have been classified using valid metrics on their originality,
source of inspiration, number of objectives, and evolutionary basis [58–67]. Due to their
stochastic nature and flexibility, they have been utilized to deal with feature space without
gradient info [68–71]. Most of these methods work based on switching the exploration
and exploitation phases using stochastic operations [62,72]. Most researchers try to boost
the efficacy based on balancing the initial cores of these methods [59,73–82]. The recent
efficient variants of swarm intelligence optimization algorithms are simulated annealing
algorithm (SA) [83,84], fruit fly optimization algorithm (FOA) [85,86], sine cosine algorithm
(SCA) [71,87–89], moth-flame optimization (MFO) [90,91], particle swarm optimization
(PSO) [92], whale optimizer (WOA) [93], different evolution (DE) [94], bat-inspired al-
gorithm (BA) [95], grey wolf optimization (GWO) [96–101], grasshopper optimization
algorithm (GOA) [102], Harris hawks optimization (HHO) (https://aliasgharheidari.
com/HHO.html, accessed on 28 August 2021) [81,103,104], genetic algorithm (GA) [105],
chaotic BA (CBA) [106], multi-verse optimizer (MVO) [107], cuckoo search via Lévy flights
(CS) [108], firefly algorithm (FA) [109], salp swarm algorithm (SSA) [110,111], gravita-
tional search algorithm (GSA) [112], ant colony optimization (ACO) [72,113,114], krill herd
algorithm (KHA) [115], artificial bee colony (ABC) [116]. Meanwhile, there are many corre-
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sponding improvement algorithms [70,117], such as enhanced comprehensive learning par-
ticle swarm optimization (GLOPSO) [118], chaotic moth-flame optimization (CMFO) [91],
hybridizing grey wolf optimization (HGWO) [119], balanced whale optimization algo-
rithm (BWOA) [120], double adaptive random spare reinforced whale optimization algo-
rithm (RDWOA) [121], chaotic mutative moth-flame-inspired optimizer (CLSGMFO) [122],
orthogonal learning sine cosine algorithm (OLSCA) [88], multi-strategy enhanced sine
cosine algorithm (MSCA) [123], enhanced whale optimizer with associative learning (BM-
WOA) [124], enhanced moth flame optimization (SMFO) [125], ant colony optimizer with
random spare strategy and chaotic intensification strategy (RCACO) [126], etc.

These methods are widely used to solve the field of agricultural engineering opti-
mization. Wang et al. [127] used a multi-objective chaotic particle swarm algorithm for
water-saving crop planning to develop sustainable agriculture and soil resources. Saranya
et al. [128] provided a crop plan optimization method using social spider optimization
algorithms. Wu et al. [129] proposed an improved chaotic genetic algorithm for optimal
reservoir scheduling. Amir Abbas et al. [130] proposed optimal route planning for farming
operations based on an ant colony algorithm. Chagwiza et al. [88] proposed a mixed
integer programming poultry feed ration optimization problem using the bat algorithm.
Qazi et al. [131] proposed to solve the agricultural product scheduling problem using an
improved particle swarm algorithm.

In this paper, we propose a multi-strategy improved grey wolf optimization (GWO) al-
gorithm (SLEGWO) using combined with SMA foraging (SMA), levy flight (LF), opposition-
based learning (OBL), and greedy strategy (GS) to enhance the GWO algorithm. Unlike
GWO, the command wolves are reduced, and only α and β wolves command the other
wolves for foraging. Firstly, the initial α wolves are using OBL to accelerate the conver-
gence to quality solutions. Secondly, the wolves are flown by LF and SMA mechanism to
avoid getting into local optimum, enhancing the search balance. Finally, GS is used to fast
convergence to the optimal solution. The proposed algorithm outperforms other competi-
tors on 30 Classical functions and the CEC2014 test set. The SLEGWO proposed solving
the nutrient equation coefficients and the highest yield (maximize fertilizer effect) in this
paper. The established model is evaluated and compared with other swarm intelligence
optimization algorithms using the decision coefficient R2. Experiments show that using
the SLEGWO is a new feasible method that can improve the accuracy of soil measurement,
better match the fertilizer application model, and ultimately provide a new computational
tool for scientific fertilizer application decisions.

The rest of the paper is organized as follows. Chapter 2 introduces the improved
multi-strategy grey wolf algorithm (SLEGWO). Chapter 3 compares the experiment of
SLEGWO on Classical functions and CEC2014. Chapter 4 presents the precision fertilization
dataset and the process and implementation of the 3414-fertilizer effect function model
combined with SLEGWO, experimental results, and model evaluation. Chapter 5 presents
a summary and future work.

2. Materials and Methods
2.1. GWO

Grey Wolf Optimizer (GWO) is a swarm intelligence optimization algorithm proposed
in 2014 [132], and its performance has been the subject of analysis in many works, from
clustering to global optimization [61,67,96,133–135]. The algorithm was inspired by the
prey hunting activity of grey wolves, which has strong convergence performance, few
parameters, and easy implementation. It has been widely concerned by scholars in recent
years, and it has been successfully applied to the fields of workshop schedule, parameter
optimization, image classification, etc. The GWO can be regarded as an improvement of
the firefly algorithm (FA). The firefly flies toward the individual due to itself, while the grey
wolf has more demanding conditions and advances toward the top three of the group. The
FA controls the search range by the step size, while the GWO directly defines the search
range parameter A and makes A linearly decreasing.
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The structure of the GWO is simple, but it is not easy to improve. Several improve-
ments only change the ratio of global search capability and local search capability, and the
combined capability does not change much.

In GWO, the initial population should be divided into a number of categories, includ-
ing alpha (α), beta (β), delta (δ), and omega (ω). The best wolves are considered α, β, and
δ to help other wolves (ω) explore more favorable solution spaces.

In GWO, the wolves can identify the location of prey and encircle the process. Mathe-
matically modeling this behavior, the equation is as follows.

→
D =

∣∣∣∣(→C ·→Xp (t)−
→
X(t)

)∣∣∣∣, (1)

→
X(t + 1) =

→
Xp(t)−

→
A·
→
D, (2)

where
→
A and

→
C are random coefficients; t is the number of iterations;

→
X(t) is the current

position vector of the grey wolf; and
→
Xp(t) is the position vector of the prey.

The calculation of
→
A and

→
C is shown below:

→
A = 2

→
a ·→r 1 −

→
a , (3)

→
C = 2

→
r 2, (4)

where
→
a is decreasing from 2 to 0 as the local optimum is continuously searched and as the

number of iterations increases;
→
r 1 and

→
r 2 are random numbers between [0, 1].

A wolf usually leads the hunting process. In a wolf pack, α has the highest rank in the
pack. β ranks lower than α but higher than δ. in the algorithm, β and δ help α to determine
the position of the pack and direct theωwolves to hunt. So, the behavior is described by
the following equation:

→
Dα =

∣∣∣∣→C1·
→
Xα −

→
X
∣∣∣∣, (5)

→
Dβ =

∣∣∣∣→C2·
→
Xβ −

→
X
∣∣∣∣, (6)

→
Dδ =

∣∣∣∣→C3·
→
Xδ −

→
X
∣∣∣∣, (7)

→
X1 =

→
Xα −

→
A1·
(→

Dα

)
, (8)

→
X2 =

→
Xβ −

→
A2·
(→

Dβ

)
, (9)

→
X3 =

→
Xδ −

→
A3·
(→

Dδ

)
, (10)

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
, (11)

where
→
A1,

→
A2, and

→
A3 are random coefficient vectors, and the GWO algorithm uses the

random vectors A and C to coordinate the command to complete the hunt.
It can be seen that A and C are the keys to determine the exploration and detection

capability. The most effective way to avoid local optimum is by using the enhancement of
A and C. Although GWO has achieved wide application, it still suffers from stagnation in
local optimum and slow convergence when solving high-dimensional tasks.
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2.2. Opposition-Based Learning

Opposition-based learning (OBL) was proposed by Tizhoosh [136] in 2005, initially
using opposites and later using approximate opposites and inverse approximate opposites.
It is an improved mechanism widely used in evolutionary computation, which is designed
so that an outcome opposite to the estimate is treated as the best possible outcome. When
the GWO is initialized, a stochastic strategy is used. Then, in the process of random
allocation of prey and food, suppose there are two opposing wolves; one of them is
assumed to be the initial α wolf. The contrast learning is used, then the opposite one is
selected as the α wolf, and the two wolves are compared, and the better one has been
searched as the initial αwolf, which increases the accuracy of the selection of the αwolf
and thus improves the convergence speed. Then there are:

→
XOBL = LB + UB−

→
Xα + r3

(→
Xα −

→
X
)

, (12)

where
→
XOBL is the position of the opposite wolf in the search space, LB is the lower bound,

UB is the upper bound, and
→
Xα is the position of the αwolf. r3 is a random vector within

(0,1), and
→
X is the position vector of the initial random population.

2.3. Slime Mould Foraging

The slime mould algorithm (SMA), proposed by Li et al. (https://aliasgharheidari.
com/SMA.html, accessed on 28 August 2021) [137] in 2020, is inspired by the diffusion and
foraging behavior of slime mould, and mainly simulates the behavior and morphological
changes of slime mould during the foraging process without modeling their approach,
wrapping, and searching for food. SLEGWO mainly draws on SMA’s foraging process.
Firstly, it approaches the food according to the odor in the air; the higher the concentration
of food, the stronger the bio-oscillator wave, the faster the cytoplasmic flow, and the thicker
the mucilage venous tubules. A functional expression simulated this behavior with the
following position update equation:

−−−−→
X(t+1)

=


−−−→
Xb(t)

+ −→
vb
·
(
−→
W
· −−−→

XA(t)
− −−−→

XB(t)

)
, r < p

−→
vc
· −−→

X(t)
, r ≥ p

, (13)

where
→
vb ranges from [−a, a],

→
vc decreases linearly from 1 to 0. t denotes the current

number of iterations, −−−→
Xb(t)

denotes the position of the currently found individual with the

highest fitness value, −−→
X(t)

denotes the position of the slime,
→
W denotes the weight of the

slime, and −−−→
XA(t)

and −−−→
XB(t)

denote the two randomly selected individuals from the slime.

where the equation for p is given as follows:

p = tanh|S(i)− DF|, (14)

where i ∈ 1, 2, . . . , n, S(i) denotes the fitness value of−−→
X(t)

and DF is the currently obtained

best fitness value.
The equation for

→
vb is given as follows:

→
vb = [−a, a] (15)

a = arctanh
(
−
(

t
max_t

)
+ 1
)

(16)

https://aliasgharheidari.com/SMA.html
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The equation for
→
W is given by:

−−−−−−−−−−→
W(Smell Index(i))

=

 1 + r· log
(

bF−S(i)
bF−wF + 1

)
, condition

1− r· log
(

bF−S(i)
bF−wF + 1

)
, others

, (17)

Smell Index = sort(S), (18)

where condition denotes the top half of S(i) in the population, r denotes the random
number in [0, 1], bF is the best fitness value obtained in the current iteration, wF denotes
the worst fitness value obtained in the current iteration, and Smell Index denotes the sorted
sequence of fitness values (in the minimum value problem in ascending order).

→
XA and

→
XB denote two randomly selected best positions from the SMA, which are

used instead of the best positions of α and β wolf in SLEGWO. There are only α and β

wolves and no delta wolves in SLEGWO. The adaptive weights
→
W using SMA provide

dynamic perturbations that fall into local optima in the search for the best position of
→
X,

which can mitigate search stagnation and premature convergence:

→
DSMA =

∣∣∣∣2r4
→
XSMA −

→
X
∣∣∣∣, (19)

→
XSMA(t) =

→
XSMA −

→
A4·
→
DSMA, (20)

where
→
A4 is calculated as follows.

→
A4 = 2ar5

→
XSMA −

→
X, (21)

where
→
A4 is calculated in a similar way to

→
A1 and

→
A2 in GWO.

2.4. Levy Flight

Levy flight (LF), which is named after the French mathematician Paul Levy [138],
refers to a random walk with a heavy-tailed probability distribution of step lengths.

L(z) ∼ |z|−1−β, 0 < β ≤ 2, (22)

where z denotes the variable and β shows an important Levy index to adjust the stability,
and the β equation is updated with the following equation.

β = 2r
(

1− t
T

)
= ra2, (23)

where r is a random value within (0, 1), and LF is used to update the distance of α and β
wolves’ position. Then we have the following equation:

→
Dα =

∣∣∣∣→C1·
→
Xα −

→
X
∣∣∣∣, (24)

→
Dβ =

∣∣∣∣→C2·
→
Xβ −

→
X
∣∣∣∣, (25)

→
X1 =

→
Xα −

→
A1·
(→

Dα

)
, (26)

→
X2 =

→
Xβ −

→
A2·
(→

Dβ

)
. (27)
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New update positions of α and βwolves were obtained according to LF. SLEGWO’s
LF-based stochastic decreasing operator β was combined with the wolf’s equation of
motion to increase the chance of exploration and exploitation.

→
Xlevy(t) =

1
2

(→
X1 +

→
X1

)
+ rand(1, dim)

⊗
Levy(dim, β), (28)

where
→
Xlevy(t) is the position vector of the temporary wolf pack with the LF decision.

2.5. GS (Greedy Strategy)

According to the greedy strategy, the better positions
→
Xlevy(t) and

→
XSMA(t) among the

resulting better positions based on SMA and LF can be selected as the best position vector
of individuals in the next generation population according to the evaluation function.

→
XSMA(t), f

(→
XSMA(t)

)
<
→
Xlevy(t)

→
Xlevy(t), f

(→
Xlevy(t)

)
<
→
XSMA(t)

. (29)

This strategy helps SLEGWO to preserve the optimal solution and eliminate the
suboptimal solutions.

2.6. Multi-Strategy Grey Wolf Optimizer (SLEGWO)

The proposed SLEGWO is based on an improvement of the GWO algorithm, reduced
from three types of leader wolves to two types of leader wolves for command hunting. A

random coefficient
→
A4 and a random coefficient p in the SMA strategy similar to GWO

is used for adjusting the execution strategy of SLEGWO. The integration of OBL can be
used to accelerate the selection of the α wolf’s high-quality solution in the initial stage, use
the foraging mechanism of SMA and LF to keep SLEGWO balanced in exploration and
detection performance, increase the possibility of jumping out of the local optimal solution
while improving both exploration and detection. Finally, the GS is used to improve the
quality of the optimal solution while accelerating the convergence speed. Figure 1 below
shows the SLEGWO flowchart.
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3. Experiments and Results for Benchmark Function

This chapter focuses on the comparison experiments between the proposed algorithm
and other algorithms. In this paper, 23 single-mode and multi-mode classical benchmark
functions and seven combined benchmark functions of CEC2014 are used to conduct
unified experiments, expressed in Appendix A Table A3, presenting the benchmark func-
tion. There are six classical algorithms: GWO [132], MVO [107], WOA [93], SCA [139],
SSA [110], MFO [140], and five improved grey wolf optimization algorithms: IGWO [100],
HGWO [119], MEGWO [141], CAGWO [96], and RWGWO [142] that are compared to
ensure the fairness of the experiments [143]. All experiments were coded on Matlab2018b.
All experiments were performed using the same computer with a 3.40 GHz Intel®Core i7
processor and 16GB RAM. The population size was set to 30, and the maximum number of
evaluations was set to 300,000. To make the experiments less affected by random conditions,
the Wilcoxon signed-rank test [144] and the Freidman test [145] were also used to check
the experimental results.

3.1. Benchmark Function Validation

The convergence curves of SLEGWO and other compared algorithms on unimodal,
multimodal, and combinatorial functions with the number of evaluations set to 300,000
times are shown in Figure 2. From the results of the convergence curves, it was evident
that the convergence is faster, and the convergence accuracy is better than other algorithms
on F8, F21, F27, F28, F29, and F30. It is better than other algorithms because the position-
based learning strategy is carried out in the initial stage, which converges toward more
high-quality solutions in the search space at the beginning of the population iteration.
It is better to avoid falling into the local optimum, so it can be seen that the strategy
used in this paper can effectively help converge to the optimal value quickly. Using the
foraging mechanism of SMA and LF to keep SLEGWO improving both exploration and
detection. Meanwhile, GS is helping to improve the quality of the optimal solution while
accelerating the convergence speed. In general, SLEGWO can quickly approach the global
optimal solution in the initial solution stage and converge extremely fast compared to
other algorithms.

3.2. Comparison with Competitive Algorithms

In this part, SLEGWO is compared with 10 competitors on F1–F30 in Table 1, which
contains the AVG and STD of the experimental results of SLEGWO and other algorithms.
The 10 competitive optimizers are GWO, MVO, WOA, SCA, SSA, MFO, IGWO, HGWO,
MEGWO, CAGWO, and RWGWO. Including AVG, STD, Table 2 shows the Mean, Rank,
and result of the Wilcoxon sign rank test of experimental results and the results of the
Freidman test.



Electronics 2021, 10, 2183 10 of 26

Figure 2. Convergence curves of SLEGWO and other competitors on F8, F21, F27, F28, F29, and F30.
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Table 1. The comparison of SLEGWO and other competitors in F1–F30.

Fun Item SLEGWO IGWO HGWO MEGWO CAGWO RWGWO GWO MVO WOA SCA SSA MFO

F1 AVG −1331.51 2.7 × 10−227 2.1 × 10−109 1.7 × 10−224 0 0 0 0.377589 0 67.30338 7.34 × 10−8 23,158.27
STD 2360.505 0 1.1 × 10−108 0 0 0 0 0.069891 0 129.9382 6.24 × 10−9 14,153.6

F2 AVG 7.34 × 10−8 1.8 × 10−155 8.99 × 10−57 6 × 10−169 0 5.5 × 10−199 1.4 × 10−195 155.4305 0 1.56 × 10−10 6.758953 171.437
STD 6.24 × 10−9 6.8 × 10−155 3.26 × 10−56 0 0 0 0 159.9712 0 8.28 × 10−10 3.344396 58.2167

F3 AVG 0 1.97 × 10−10 3.95 × 10−60 7.752124 0 0.004055 1.64 × 10−39 2654.797 113,898.4 91623 1693.51 121,429.3
STD 0 8.66 × 10−10 1.2 × 10−59 8.899336 0 0.016243 9 × 10−39 490.6424 65,149.74 25,312.9 693.5275 70,381.1

F4 AVG 1.64 × 10−39 26.53917 1.18 × 10−41 0.001197 0 1.14 × 10−12 1.42 × 10−46 11.58725 69.67589 68.89166 23.12652 93.5248
STD 9 × 10−39 10.05357 1.36 × 10−41 0.004828 0 4.66 × 10−12 7.76 × 10−46 3.949519 30.25219 5.572644 2.548403 1.72357

F5 AVG 0 93.94355 97.61669 74.7726 97.35178 95.96096 96.90633 302.6562 94.80001 4,343,512 133.4677 30,236,771
STD 0 0.156227 0.530452 34.0226 0.694438 0.895951 1.008211 423.8337 0.297515 6,348,072 71.87389 39,297,288

F6 AVG 97.61669 0.058413 14.83148 0 5.654709 2.478095 8.969564 0.400519 0.003117 245.7205 7.14 × 10−08 21,686.28
STD 0.530452 0.020347 0.987473 0 1.463226 0.660457 1.080796 0.059468 0.000823 711.4785 8.23 × 10−09 13,877.34

F7 AVG 0.00071 0.000509 3.77 × 10−6 0.000245 2.32 × 10−5 0.000734 0.000158 0.05959 0.000203 2.733715 0.1504 132.9684
STD 0.000299 0.000297 3.36 × 10−6 0.000188 1.85 × 10−5 0.000178 6.27 × 10−5 0.01153 0.000252 3.958237 0.031311 78.8043

F8 AVG 7.14 × 10−8 −21,283.8 −12457.6 −41,898.3 −7037.65 −30,495.8 −16,019.5 −25,055.5 −41,100.5 −8050.41 −24,731.5 −24,574.7
STD 8.23 × 10−9 1543.243 1104.052 7.4 × 10−12 678.0691 805.3699 2207.976 1544.938 1334.409 301.3053 1685.193 2796.393

F9 AVG 0.000203 0 0 3.79 × 10−14 0 0.573707 0 545.265 0 92.62241 204.2647 639.1003
STD 0.000252 0 0 6.89 × 10−14 0 1.809054 0 73.43741 0 72.46977 34.67572 79.74732

F10 AVG −16,019.5 19.96771 8.88 × 10−16 9.65 × 10−15 8.88 × 10−16 9.65 × 10−15 1.51 × 10−14 4.182003 3.02 × 10−15 18.62133 3.689958 19.91576
STD 2207.976 0.005099 0 3.58 × 10−15 0 3.06 × 10−15 1.62 × 10−15 6.099735 2 × 10−15 5.368344 1.345793 0.054933

F11 AVG 0 0 0 0 0 0.001574 0 0.443156 0 1.973343 0.005334 132.7391
STD 0 0 0 0 0 0.004495 0 0.054693 0 2.377727 0.008451 107.7275

F12 AVG 8.88 × 10−16 0.010058 0.422108 4.71 × 10−33 0.090109 0.032334 0.209642 3.720577 4.46 × 10−5 5,621,433 10.17 68,877,889
STD 0 0.004419 0.019583 1.39 × 10−48 0.034777 0.004912 0.053209 0.981665 8.97 × 10−6 7,403,512 2.683234 1.34 × 108

F13 AVG −1.8 × 1020 8.335435 8.021308 1.35 × 10−32 5.733004 3.050118 5.68814 0.59167 0.016182 12,643,164 131.1453 1.78 × 108

STD 7.23 × 1020 0.234103 0.453929 5.57 × 10−48 2.340503 0.511731 0.386743 1.367509 0.029934 23,872,069 32.14261 2.51 × 108

F14 AVG 0.005334 0.998004 2.099489 1.776171 1.098259 0.998004 3.083372 0.998004 0.998004 0.998004 0.998004 2.015553
STD 0.008451 3.82 × 10−15 1.077885 2.961409 0.399314 1.68 × 10−13 3.929513 2.28 × 10−13 1.43 × 10−14 5.01 × 10−7 1.89 × 10−16 2.201543

F15 AVG 4.46 × 10−5 0.000369 0.000639 0.000338 0.000397 0.000491 0.005717 0.007869 0.000433 0.000493 0.000718 0.001625
STD 8.97 × 10−6 0.000232 0.001003 0.000167 6.18 × 10−5 0.000373 0.008986 0.009677 0.000285 0.00035 0.000412 0.003828

F16 AVG 5.68814 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163
STD 0.386743 3.14 × 10−13 1.95 × 10−6 5.42 × 10−16 3.55 × 10−9 1.78 × 10−11 3.69 × 10−11 2.79 × 10−9 1.42 × 10−14 2.22 × 10−6 5.71 × 10−16 6.78 × 10−16

F17 AVG 1.098259 0.397887 0.39789 0.397887 0.397887 0.397887 0.397887 0.397887 0.397887 0.397951 0.397887 0.397887
STD 0.399314 3.19 × 10−11 1.68 × 10−5 0 5.19 × 10−8 1.14 × 10−9 7.56 × 10−10 9.03 × 10−10 2.2 × 10−10 5.63 × 10−5 0 0

F18 AVG 0.000639 3 3 3 3 3 3 3 3 3 3 3
STD 0.001003 3.33 × 10−14 4.83 × 10−10 7.24 × 10−14 2.56 × 10−7 6.81 × 10−8 1.24 × 10−7 1.55 × 10−8 6.08 × 10−8 1.67 × 10−7 1.52 × 10−14 1.76 × 10−15

F19 AVG −2633.88 −3.86278 −3.85717 −3.86278 −3.86273 −3.86278 −3.86252 −3.86278 −3.86249 −3.85609 −3.86278 −3.86278
STD 2563.64 2.27 × 10−9 0.002676 2.68 × 10−15 0.000129 1.69 × 10−7 0.001439 1.34 × 10−8 0.001435 0.002877 1.58 × 10−15 2.71 × 10−15

F20 AVG −1.03163 −3.24669 −3.24217 −3.322 −3.30438 −3.25443 −3.25542 −3.24669 −3.22803 −2.86684 −3.21895 −3.2151
STD 5.71 × 10−16 0.058279 0.078321 1.33 × 10−15 0.041476 0.060094 0.080108 0.058277 0.135411 0.488199 0.041107 0.0595

F21 AVG 0.397887 −9.47954 −6.06721 −6.80354 −9.82978 −9.8147 −8.78442 −8.4645 −10.1532 −2.6484 −9.64796 −6.30772
STD 2.2 × 10−10 1.746857 1.351953 3.107006 1.230198 1.287595 2.309654 2.429039 5.8 × 10−7 2.331862 1.54164 3.330133

F22 AVG 3 −9.87278 −6.69993 −8.91454 −10.4025 −10.05 −10.2258 −9.34811 −10.4029 −4.45958 −10.2271 −8.1097
STD 1.24 × 10−7 1.617665 1.753764 2.543845 0.000625 1.343317 0.970431 2.145711 6.37 × 10−7 2.903878 0.962918 3.3411

F23 AVG −3.86273 −9.81849 −7.99209 −8.51432 −10.536 −10.5364 −10.5364 −9.27927 −10.5364 −6.15382 −10.0003 −7.32147
STD 0.000129 1.861635 2.182385 2.972819 0.000355 1.01 × 10−6 9.19 × 10−7 2.317731 1.06 × 10−6 1.932419 1.635722 3.562409

F24 AVG −3.24217 2600.009 2600 2763.339 2600 2600.036 2600.005 2807.984 2600.269 3019.457 2845.148 3248.063
STD 0.078321 0.005171 0 2.7789 8.85 × 10−5 0.007925 0.002116 8.478631 0.367461 85.82027 13.46129 177.5211
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Table 1. Cont.

Fun Item SLEGWO IGWO HGWO MEGWO CAGWO RWGWO GWO MVO WOA SCA SSA MFO

F25 AVG −10.1532 2700 2700 2756.081 2700 2753.5 2700 2743.85 2700 2871.156 2799.376 2810.309
STD 9.8 × 10−6 8.86 × 10−13 0 12.3697 0 13.33252 1.41 × 10−12 4.905463 3.16 × 10−13 96.24425 15.91985 48.23941

F26 AVG −9.64796 2718.352 2800 2783.706 2800 2812.046 2800 2800.153 2800 2886.275 2740.976 2887.716
STD 1.54164 95.04286 0 37.86236 0 58.59796 1.34 × 10−12 18.78098 4.14 × 10−13 241.4137 50.13788 143.6934

F27 AVG −10.4029 6011.265 6335.837 5323.321 4891.355 4228.536 5224.738 4720.318 7146.985 7161.302 5736.293 6105.338
STD 6.37 × 10−7 156.9779 94.23755 138.0383 208.3492 339.0886 208.0741 192.8484 233.3886 130.8646 215.1167 156.7122

F28 AVG −10.5364 12,575.68 3429.832 5495.977 8930.888 6662.108 10,987.61 7056.54 18,971.95 21,679.37 9192.939 8904.229
STD 9.19 × 10−7 1323.278 2354.285 101.0421 1093.201 751.9647 1203.031 1010.415 3389.128 1042.555 1143.594 1121.484

F29 AVG 2600 6.89 × 108 4.32 × 108 2,779,972 31,623,999 55,133.71 1.07 × 108 68,226.85 1.47 × 108 1.29 × 109 15,809,171 1.08 × 108

STD 8.85 × 10−5 2.9 × 108 2.73 × 108 15,188,473 17,205,306 15,912.48 66,312,410 24,482.82 54,849,254 1.47 × 108 86,214,993 15,590,444
F30 AVG 2700 1,410,898 2,722,919 14,405.74 2,974,286 32,396.81 3,481,516 216,133.7 4,213,191 26,017,432 284,733.1 4,135,673

STD 0 682,601.7 7,178,390 1356.606 886,199.6 6952.204 1,360,222 76,851.09 2,496,624 6,695,086 92,690.85 2,538,938
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Table 2. Comparison results of SLEGWO with 10 other competitors on classical function.

Function Rank Mean +/−/=

SLEGWO 1 2.3883 -
IGWO 5 6.3138 23/4/3
HGWO 9 6.7872 23/3/4

MEGWO 2 4.175 22/5/3
CAGWO 6 6.3994 23/3/4
RWGWO 3 5.8144 26/4/0

GWO 7 6.575 25/4/1
MVO 10 7.7883 24/3/3
WOA 4 5.8527 21/6/3
SCA 12 10.8522 27/2/1
SSA 8 6.6794 25/5/0
MFO 11 8.3738 27/2/1

According to the results shown in Table 1, SLEGWO works best. SLEGWO is the
smallest on the average of 30 classical functions, which means that SLEGWO outperforms
other improved algorithms in most benchmark functions. In addition, Table 2 shows
the comparative results of the data analysis in Table 1 using the Wilcoxon signed-rank
test and the Freidman test. The Mean indicates the result obtained from the analysis
using the Freidman test, and the smaller the value of the Mean, the better the algorithm’s
performance. Meanwhile, where “+” represents that SLEGWO performs better than others,
“-” represents that SLEGWO performs worse than others, and “=” represents that the
performance of SLEGWO and others is equal. It can be seen that SLWGWO has the best
performance among the 30 benchmark functions. The second ranking is MEGWO; the
RWGWO, IGWO, CAGWO, and HGWO have relatively insignificant advantages. It can be
concluded that SLEGWO still performs better than the improved algorithms proposed in
recent years on most of the benchmark function

4. SLEGWO Precision Fertilization Model

For the various mineral nutrients required by plants, Nitrogen (N), phosphorus(P),
and potassium (K) play an important role in improving crop yields. The soil is both
the place for terrestrial plants to take root and a supplier of mineral nutrients, and it
bears the heavy burden of providing various nutrients. Therefore, crops N, P, and K are
all needed in high amounts in the soil and are usually available in agricultural soils in
sufficient quantities for crop uptake. These three nutrients are needed in relatively high
amounts and are the most deficient elements in the soil. Therefore, these three nutrients are
often supplemented by the artificial fertilizer application for crop uptake and utilization,
called the three elements of fertilizer. This chapter describes the process of implementing
the SLEGEO-based three-element NPK precision fertilization method, the experimental
environment, and the dataset.

4.1. SLEGWO and NPK Precision Fertilization Method

The flowchart of SLEGWO for a precise fertilizer model of NPK quadratic equation
according to the maize test field in Nong’an country, Jilin Province, China, is shown in
Figure 3. Using 3414 experimental schedules to obtain different yields of NPK at different
levels, SLEGWO processed the data to obtain the ternary quadratic nonlinear equation.
The polynomial coefficients of the equation are negative according to the constraints of the
rule of diminishing returns of N, P, and K, and the quadratic term coefficients respond to
the fact that an increase in N, P, and K at a certain level can increase the yield, but as the
amount of N, P and K input exceeds the demand, it is instead a reduction in yield. The
primary term coefficient responds to the parameter constraint of multiple conditions such
as yield increase effect, and the equation coefficients of the fertilizer effect function are
obtained by fitting using the swarm intelligence optimization method. Then, the maximum
value, that is, the maximum yield of the crop, is obtained from the function model of the
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obtained equation coefficients. Finally, the results of the derived model are evaluated using
the coefficient of determination R2.
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4.2. Experimental Environment

The following experiments are conducted under the Windows 10 operating system
using MATLAB R2018b, using hardware platform configuration Intel®Core i7 processor
3.40 GHz and 16GB RAM. To ensure the fairness of the experiments, all experiments are
conducted under the conditions of equal parameter settings, the population number N
is 30, the dimension of the objective function is 3, the maximum number of evaluations
Max_iteration is set as 50,000 and followed by 30 parallel runs.

4.3. Experimental Dataset

This paper used a maize test field in Nong’an County, Jilin Province [146] as the
experimental site. The “3414” method was used as a fertilizer effect field experiment,
where “3414” refers to 3 factors, 4 levels, and 14 different treatments of N, P, and K. Level
0 is no fertilizer application; level 2 is the optimal fertilizer application. Level 1 1 = level
2 ×0.5, level 3 = level 2 × 1.5 (over-fertilization). The area of each plot was 30 m2, no
replication, and randomized. The experiments were based on the regional soil nutrient
abundance index and the fertilizer nutrient application index to determine the relative
optimum fertilizer application. Level 2 for N, P2O5, K2O at 180 kg/hm2, 75 kg/hm2, and
90 kg/hm2 respectively. For fitting using the ternary quadratic fertilizer effect model [34],
the equations used were:

ŷ1 = b0 + b1x1 + b2x2 + b3x3 + b4x2
1 + b5x2

2 + b6x2
3 + b7x1x2 + b8x1x3 + b9x2x3, (30)

where ŷ1 is the predicted value of the fertilizer effect function model; b0 is the yield without
fertilizer application, and b1, b2, b3, . . . , b9 are the effect coefficients.

Table 3 below shows the fertilizer use and yield at each plot of the experiment, where
x1, x2, x3 are the fertilizer application amounts of N, P, and K, and y is the actual yield.
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Table 3. Dataset obtained from the test field (Kg/hm2).

Label Proportion N(x1) P2O5(x2) K2O(x3) Yield(y)

1 N0P0K0 0 0 0 5805
2 N0P2K2 0 75 75 7290
3 N1P2K2 90 75 75 8385
4 N2P0K2 180 0 75 6930
5 N2P1K2 180 37.5 75 8115
6 N2P2K2 180 75 75 9000
7 N2P3K2 180 112.5 75 8580
8 N2P2K0 180 75 0 7350
9 N2P2K1 180 75 37.5 8475

10 N2P2K3 180 75 112.5 8460
11 N3P2K2 270 75 75 8445
12 N1P1K2 90 37.5 75 7545
13 N1P2K1 90 75 37.5 7845
14 N2P1K1 180 37.5 37.5 7575

Based on the experimental data in Table 3, the experiments were conducted using the
“3414” field experiment design and data.

4.4. Solution of Equation Coefficients

The fertilizer effect model, an n-dimensional space composed between crop yield
y and the individual total nutrient influences x. According to the NPK fertilizer effect
function Equation (31):

Set X1 = x1, X2 = x2, . . . . . . X9 = x2x3. Then, the ternary quadratic polynomial
regression equation is change into a nine-element linear regression equation.

ŷ = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b6X6 + b7X7 + b8X8 + b9X9 (31)

The residual function in the least square method is used as the objective function.

Q = ∑N
i=1(yi − ŷi)

2 =,
N
∑

i=1
(yi − b0 + b1Xi1 + b2Xi2 + b3Xi3 + b4Xi4 + b5Xi5 + b6Xi6 + b7Xi7 + b8Xi8 + b9Xi9)

2,
(32)

where N is 14 and yi is the true yield in the dataset.
The residual function’s minimum value is obtained to obtain better results using a

shorter time. In the experiments of this section, the algorithm containing SLEGWO with
the original GWO is applied to find the fertilizer effect function. The upper and lower
bounds for the values of each coefficient are set as shown in Table 4.

Table 4. The upper and lower limits of each coefficient.

Coefficient b0 b1 b2 b3 b4 b5 b6 b7 b8 b9

Lower limit 4000 1 1 1 −50 −50 −50 0.01 0.01 0.01
Upper limit 7000 10 50 50 0 0 0 50 50 50

Table 5 shows the values of each coefficient in the fertilizer effect function using
SLEGWO, which has the better competitive performance in finding the minimum of the
residual function. Appendix A Table A1 shows the results of the coefficients of the fertilizer
equation by SLEGWO by random run 30 times.
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Table 5. Coefficients of fertilizer effect function obtained by different methods.

Method SLEGWO GWO

b0 5754.329 5751.6511
b1 7.0731 6.9660
b2 28.3594 29.4164
b3 12.8472 16.0958
b4 −0.0259 −0.0346
b5 −0.1853 −0.2085
b6 −0.154 −0.1927
b7 0.1131 0.0312
b8 0.0469 0.0642
b9 0.0841 0.0614

4.5. Model Evaluation and Yield Estimation
4.5.1. Model Evaluation

The coefficient of determination R2 s used to evaluate the model. The R2 can be used
to test how well the model fits the sample data and takes values between 0 and 1. The closer
the value of the R2 is to 1, the better the model fits. The models with higher coefficients of
determination are usually used in real-world problems. The formula for the coefficient of
determination R2 is shown below.

R2 = 1− ∑i(ŷi−yi)
2

∑i(yi−y)2 , (33)

where ŷi s the predicted value of the fertilizer effect function model; y is the average of the
actual yield; and yi is the actual yield.

Table 6 shows the values of the R2 for the two kinds of fertilizer effect function
models—SLEGWO and GWO.

Table 6. The coefficients of determination of fertilizer effect function models.

Method SLEGWO GWO

R2 0.9646 0.9645

Table 6 above shows that the fertilizer effect function obtained with SLEGWO is better
than GWO.

4.5.2. Yield Estimation

The SLEGWO was used to obtain the maximum fertilizer effect function models
yield of the crop. The objective function is the fertilizer effect residual function with
dimension 3, corresponding to the fertilizer effect function model of nitrogen, phosphorus,
and potassium fertilizer application, respectively. The upper and lower bounds for each
dimension are d1 ∈ [0, 300], d2 ∈ [0, 120], and d3 ∈ [0, 120], and the maximum number of
iterations of the algorithm is 50,000 with a population size of 30. Table 7 lists the maximum
crop yields and the corresponding NPK fertilizer applications according to SLEGWO and
the other six algorithm models. Appendix A Table A2 expresses the result of nitrogen,
phosphorus, potassium, and yield prediction by SLEGWO 30 times randomly.
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Table 7. Nitrogen, phosphorus, potassium fertilizer, and the corresponding maximum yield of different models.

(Kg/hm2) SLEGWO GWO ABC BA SSA PSO WOA

Nitrogen 251.1772 233.762 233.9363 233.9625 233.9363 233.937 233.9363
Phosphorus 107.2981 103.893 103.2966 103.2954 103.2966 103.2992 103.2966
Potassium 107.748 97.959 97.71588 97.71619 97.71588 97.718 97.71587
Maximum

yield 8947.845 8886.522 8877.856 8877.856 8877.856 8877.856 8877.856

The above experiments demonstrate the superiority of SLEGWO over other compar-
ative swarm intelligence optimization algorithms in solving the fertilizer effect function
model. Swarm intelligence optimization has the advantage of internal constructs encapsu-
lability and better portability than traditional methods and also has some advantages in
the maximum yield obtained. It can be seen that GWO works better compared to other
algorithms, so it is good to choose GWO as the improved base algorithm for the improved
algorithm. Other optimization algorithms have no apparent advantages.

5. Discussions

The performance of the proposed GWO-based method is not limited to yield estima-
tion, and it can also be tested based on other real-world applications, such as energy storage
planning and scheduling [147], service ecosystem [148,149], image editing [150–152], epi-
demic prevention and control [153,154], social recommendation and QoS-aware service
composition [155–157], active surveillance [158], large scale network analysis [159], spa-
tial analysis [160], crop evapotranspiration prediction [161], control engineering [162,163],
pedestrian dead reckoning [164] and evaluation of human lower limb motions [165]. The
SLEGWO proposed is based on the improved GWO multi-strategy optimization method
and it is applied to solve the fertilizer effect function, which is a new idea based on the tra-
ditional precision fertilizer application operation technology. It performs well in equation
coefficient solving fitting and maximum yield solving. Exploring the method of combining
swarm intelligence optimization algorithm with fertilizer effect function can help provide a
new solution for precision agriculture. Since there are many uncertainties in the agricultural
production process and the final criteria cannot be fully determined by a particular method,
the swarm intelligent optimization method can be used to present multiple possibilities of
validation results under multiple random conditions, which is more in line with the real
needs than traditional validation methods such as regression.

6. Conclusions

In this paper, a multi-strategy grey wolf optimization algorithm (SLEGWO) is pro-
posed. Using an opposition-based learning strategy increases the number of early high-
quality solutions, and the slime foraging and Levy flight strategies effectively avoid falling
into local optima and increase the algorithm’s ability to balance exploration and detection.
The greedy selection strategy speeds up the final convergence to the optimal solution
quickly. The SLEGWO algorithm outperforms other competing algorithms on both the clas-
sical function set and the CEC2014 function. Meanwhile, the SLEGWO algorithm applied
to optimize the model for solving the fertilizer effect function in the maize NPK “3414”
program obtained higher accuracy and more yield with good stability, which is an effective
method to optimize the model for accurate prediction fertilizer application. It improves
the scientific and scalability of the soil test and fertilizer application relationship model.
However, since the constraints of the engineering problem are determined by the actual
requirements and scenarios, the required constraints will increase when the algorithm is
applied in practice. Therefore, the experimental results as well as the actual constraints
may lead to deviations in the results but will not affect the application of the method.

In future research work, the SLEGWO algorithm will explore a library of pre-defined
fertilization models with multiple model fits to address the scientific fertilization manage-
ment needs of different regions and different needs. The SLEGWO algorithm will also be
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effectively used in more areas of agricultural engineering optimization problems, such
as supply chain optimization problems, to improve the thematic research on agricultural
engineering optimization problems and improve the yield and efficiency of agricultural
products to create a cleaner agricultural practice.
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Appendix A

Table A1. Results of the coefficients of the fertilizer equation by SLEGWO.

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 Q

5754.329 7.073107 28.35942 12.84725 0.011312 0.04699 0.084148 −0.02597 −0.18531 −0.15405 378,509.5
5700 6.622148 28.80353 12.33958 0.011401 0.013812 0.011282 −0.01882 −0.16126 −0.06424 691,006.4
5700 5.479195 28.01243 15.16322 0.011465 0.010854 0.01622 −0.01345 −0.15021 −0.09395 694,599.6

5762.077 6.904515 28.05115 10.47243 0.043093 0.010225 0.058764 −0.02449 −0.21705 −0.06216 610,291.9
5700 6.104488 28 15.02233 0.018366 0.011503 0.021621 −0.01745 −0.16983 −0.09064 624,800.3

5702.778 6.399281 28.16619 12.26713 0.030507 0.015354 0.010606 −0.0217 −0.17566 −0.06105 621,190.5
5701.892 7.79628 28 10.353 0.041675 0.013482 0.010371 −0.0292 −0.18804 −0.03855 672,781.8
5722.567 5.734792 28.15601 14.46746 0.01993 0.026555 0.027083 −0.01951 −0.16689 −0.10974 518,099.3

5700 5.491433 28 10 0.013663 0.01024 0.010007 −0.01364 −0.15612 −0.01992 869,026.9
5706.218 6.129533 28.06963 10 0.014334 0.011943 0.010116 −0.01638 −0.1582 −0.02933 789,519.8
5702.219 5.646291 28.3347 12.32205 0.010636 0.018197 0.011328 −0.01505 −0.15043 −0.06833 684,916.4
5705.509 6.583881 28 10.07989 0.027872 0.014446 0.013401 −0.02179 −0.1748 −0.03309 710,139.9
5706.647 9.097236 28 11.64792 0.017451 0.029039 0.084579 −0.03131 −0.1998 −0.12073 417,860.8

5700 6.230138 28.20619 16.21636 0.01431 0.017633 0.012196 −0.0188 −0.15939 −0.11188 601,844.3
5700 6.056048 28.09793 15.94561 0.01156 0.026461 0.011424 −0.01904 −0.15303 −0.1178 559,427.1
5700 5.962434 28.48493 12.06434 0.014213 0.014852 0.019599 −0.01578 −0.15955 −0.07186 668,617.9
5700 6.039274 28.24675 13.39305 0.018857 0.025993 0.031801 −0.01911 −0.1691 −0.10307 527,288.7
5700 7.682415 28.18741 15.40904 0.011728 0.014294 0.012234 −0.02345 −0.15898 −0.10619 648,384.1

5708.004 7.300888 28.02038 12.34074 0.018653 0.017688 0.054421 −0.02195 −0.18414 −0.09667 525,116.4
5700 5.160513 28.02297 17.15531 0.021925 0.011809 0.028064 −0.01411 −0.17268 −0.11936 607,321.7

5745.965 5.06117 28.71811 13.78617 0.018855 0.040242 0.010975 −0.01961 −0.15702 −0.1131 501,225.8
5700 6.710944 28.35967 10.03877 0.01648 0.01436 0.010426 −0.02064 −0.16293 −0.03089 754,172.2

5710.19 5.57907 29.88454 10.89311 0.014254 0.023855 0.019157 −0.01607 −0.17357 −0.06818 645,510.9
5700.825 6.813902 28.2746 13.72604 0.011531 0.015544 0.049297 −0.01864 −0.1753 −0.10555 565,872.4

5700 6.327866 28 10.05013 0.012763 0.010402 0.012482 −0.01699 −0.15877 −0.02423 821,978.9
5700 5.86649 28 17.78831 0.031923 0.011352 0.016264 −0.01981 −0.1828 −0.11598 555,851.4
5700 5.574536 28 17.92274 0.012501 0.015183 0.012418 −0.01497 −0.15486 −0.12827 645,713.3
5700 5.270098 28.57715 10 0.01283 0.010091 0.011834 −0.01221 −0.16169 −0.02151 879,075.7
5700 5.828422 28 10.0153 0.015201 0.010711 0.016403 −0.01491 −0.16125 −0.02815 807,022.9

5711.885 5.173948 28.43892 10 0.024884 0.011094 0.010503 −0.0152 −0.17553 −0.01453 873,579

https://aliasgharheidari.com
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Table A2. Nitrogen, phosphorus, potassium, and yield prediction by SLEGWO.

N P K Y *

266.2026 108.4913 112.874 8948.987
261.4381 109.8989 109.8989 8949.758
254.7399 110.5993 110.5992 8949.103
265.0755 109.474 109.474 8948.769
258.5937 111.184 111.1842 8949.649
259.9413 108.8042 108.525 8949.043
256.7255 107.7489 107.748 8948.295
258.9043 109.2919 109.2919 8949.622
257.1843 109.6504 109.6164 8949.652
262.3832 109.6065 109.6096 8949.502
260.405 107.2981 109.1784 8948.779

265.1687 107.8935 112.7555 8948.779
258.2416 110.0589 110.0589 8949.828
265.092 107.9177 110.0326 8948.638
262.595 110.314 110.2932 8949.73

263.7118 108.1379 112.1662 8949.365
257.9559 109.4389 109.4389 8949.663
257.3209 110.5453 110.5434 8949.69
254.3663 110.1731 107.8439 8947.991
259.3602 110.6875 111.2366 8949.964
258.8103 110.2831 110.2883 8949.879
263.7813 109.837 109.837 8949.352
259.555 108.0039 108.0016 8948.47
260.736 110.7611 110.7606 8949.894

260.8581 109.1714 109.0368 8949.347
261.2375 111.0092 111.0274 8949.847
261.1015 107.9926 108.0165 8948.245
251.8526 107.7699 108.3058 8947.845
261.6727 109.2414 109.1431 8949.313
251.1772 109.3376 108.6273 8947.898

* Y is the predicted yield.

Table A3. Benchmark function.

ID. Function Equation Range fmin

23 classical functions

F1 f1(x) =
n
∑

i=1
x2

i [−100,100] 0

F2 f2(x) =
n
∑

i=1
|xi |+

n
∏
i=1
|xi | [−10,10] 0

F3 f3(x) =
n
∑

i=1

(
i

∑
j−1

xj

)2

[−100,100] 0

F4 f4(x) = maxi{|xi |, 1 ≤ i ≤ n } [−100,100] 0

F5 f5(x) =
n−1
∑

i=1
[100

(
xi+1 − x2

i
)2

+ (xi − 1)2] [−30,30] 0

F6 f6(x) =
n
∑

i=1
([xi + 0.5])2 [−100,100] 0

F7 f7(x) =
n
∑

i=1
ix4

i + random[0, 1) [−1.28,1.28] 0

F8 f8(x) =
n
∑

i=1
−xi sin

(√
|xi |
)

[−500,500] −418.9829 × n

F9 f9(x) =
n
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
]

[−5.12,5.12] 0
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Table A3. Cont.

ID. Function Equation Range fmin

23 classical functions

F10 f10(x) = −20 exp

{
−0.2

√
1
n

n
∑

i=1
xi

}
− exp

{
1
n

n
∑

i=1
cos(2πxi)

}
+ 20 + e [−32,32] 0

F11 f11(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1 [−600,600] 0

F12

f12(x) = π
n

{
10 sin(ay1) +

n−1
∑

i=1
(yi − 1)2[1 + 10 sin2(πyi+1)

]
+ (yn − 1)2 +

n
∑

i=1
µ(xi , 10, 100, 4)

}
yi = 1 + xi+1

4

µ(xi , a, k, m) =

 k(xi − a)m xi > a
0 −a < xi < a
k(−xi − a)m xi < −a

[−50,50] 0

F13
f13(x) =

0.1
{

sin2(3πxi) +
n
∑

i=1
(xi − 1)2[1 + sin2(3πxi + 1)

]
+ (xn − 1)2[1 + sin2(2πxn)

]
+

n
∑

i=1
µ(xi , 5, 100, 4) [−50,50] 0

F14 f14(x) =

(
1

500 +
25
∑

j=1

1
j+∑2

i=1(xi−aij)
6

)−1

[−65,65] 1

F15 f15(x) =
11
∑

i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
[−5,5] 0.00030

F16 f16(x) = 4x2
1 − 2.1x4

i +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 [−5,5] −1.0316

F17 f17(x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cos x1 + 10 [−5,5] 0.398

F18
f18(x) =

[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2
)]
×[

30 + (2x1 − 3x2)
2 ×

(
18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2
)] [−2,2] 3

F19 f19(x) = −
4
∑

i=1
ci exp

(
−

3
∑

j=1
aij
(
xj−pij

)2

)
[1,3] −3.86

F20 f20(x) = −
4
∑

i=1
ci exp

(
−

6
∑

j=1
aij
(
xj−pij

)2

)
[0,1] −3.32

F21 f21(x) = −
5
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1
[0,10] −10.1532

F22 f22(x) = −
7
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1
[0,10] −10.4028

F23 f23(x) = −
10
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1
[0,10] −10.5363

CEC’14 Test Functions

F24 Composition Function 1 (N = 5) [−100, 100] 2300

F25 Composition Function 2 (N = 3) [−100, 100] 2400

F26 Composition Function 3 (N = 3) [−100, 100] 2500

F27 Composition Function 4 (N = 5) [−100, 100] 2600

F28 Composition Function 5 (N = 5) [−100, 100] 2700

F29 Composition Function 6 (N = 5) [−100, 100] 2800

F30 Composition Function 7 (N = 3) [−100, 100] 2900

F31 Composition Function 8 (N = 3) [−100, 100] 3000
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