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Abstract: With the evolution of the Internet of Things (IoT), edge computing technology is using to
process data rapidly increasing from various IoT devices efficiently. Edge computing offloading re-
duces data processing time and bandwidth usage by processing data in real-time on the device where
the data is generating or on a nearby server. Previous studies have proposed offloading between IoT
devices through local-edge collaboration from resource-constrained edge servers. However, they
did not consider nearby edge servers in the same layer with computing resources. Consequently,
quality of service (QoS) degrade due to restricted resources of edge computing and higher execution
latency due to congestion. To handle offloaded tasks in a rapidly changing dynamic environment,
finding an optimal target server is still challenging. Therefore, a new cooperative offloading method
to control edge computing resources is needed to allocate limited resources between distributed
edges efficiently. This paper suggests the LODO (linked-object dynamic offloading) algorithm that
provides an ideal balance between edges by considering the ready state or running state. LODO
algorithm carries out tasks in the list in the order of high correlation between data and tasks through
linked objects. Furthermore, dynamic offloading considers the running status of all cooperative
terminals and decides to schedule task distribution. That can decrease the average delayed time and
average power consumption of terminals. In addition, the resource shortage problem can settle by
reducing task processing using its distributions.

Keywords: edge computing; offloading computation; distributed collaboration; data processing;
dynamic offloading; IoT; gateways

1. Introduction

Nowadays, with the rapid evolution of technology and a vast number of Internet of
things (IoT) devices, including individual units, have improved processing ability (robust
computing environment) with various embedded sensors. Due to this progress, the IoT
devices can perform multiple functions (such as receiving/refining data from sensors in
real-time, transferring, processing, and storing) independently and without computing
resources in the server (external cloud) [1,2]. Edge computing has been proposed to process
existing integrated service platforms by moving computing tasks from cloud servers to
IoT devices. Edge computing is the workload of devices and offloads computational
tasks to nearby computing devices, significantly reducing processing latency [3]. Existing
high-latency and low-reliability cloud computing solutions are challenging to support time-
critical cloud/IoT services requirements in transmission data and task processing delay.
Edge computing is a centralized architecture where all nearby service requests are directed
to a ‘central’ edge server. However, since the computing power of edge servers is not
powerful as cloud-based servers, some issues such as resource limitations and computing
latency between multiple competing tasks still occur [4,5].
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Various approaches such as Mobile Cloud Computing (MCC) and Multiple Access
Edge Computing/Mobile Edge Computing (MEC) support complementary cloud com-
puting solutions using services adjacent to the edge network to cope with this disturbing
problem [6–8]. MCC offloading, which uses unlimited resources in a cloud for some tasks,
is the method to reduce loads of mobile devices. However, MCC has considerable disad-
vantages, such as low expandability, long propagation distance between the cloud server
and devices, excessive consumption of limited bandwidth, personal protection and security
problems [9]. Current MCC offloading methods cannot guarantee real-time data transfer
and task delay, making them unsuitable for latency-sensitive applications. On the other
hand, MEC is the offload concept of tasks collaboratively by leveraging both the MEC
server and the end device (such as a mobile phone). Due to the limited battery life of the
mobile device and the growing number of latency-sensitive applications, offloading tasks
come with additional overhead in terms of latency and power consumption [10,11]. This
problem was partially solved by dividing each task into local task and offload task. Local
tasks are processing on the end device, and offload tasks are performing on the MEC server.
However, computing resources can increase in some areas, which can exacerbate network
problems and even cause issues that affect task execution times.

In recent years, much research has proposed addressing the resource limitations and
computing latency issues by scheduling strategies of collaboration task offloading in an
edge computing environment. The computing resource on edge is mainly composed of
intelligent devices (note: intelligent devices (e.g., smart sensors and smartphones, can
access a network, resulting in a considerable amount of network data) are called edge
devices/end devices) and edge servers. For example, in [12–14], there is a job scheduling
algorithm that utilizes the resources of cloud servers to handle highly overload situations.
In [15], leverage resources in edge servers by offloading all computing-intensive tasks
of the edge device to the edge server. In this case, computing resources and storage of
devices are not utilized properly and wasted. In addition, multiple computation tasks or
many devices may access the edge server at the same time. As a result, the workload will
increase, long queues, and processing delays of tasks accordingly. In limited computational
resources, a multi-MEC system has been proposing by joint communication offloading
methods at the ends and edges [16–19]. However, due to the dynamic environment of
the computing system, it is not easy to achieve task offload performance. In addition, the
resource-rich IoT devices do not collaborate and are fully underutilized, resulting in a
waste of their computing resources.

Since task offloading plays a critical role in edge-based service, edge must take full
advantage of IoT’s communication and computational resources. To this end, the edge
server needs a balance task scheduler that, according to the characteristics of the computing
task and device status, decides which tasks to offload to which IoT devices. Our previous
paper [20] suggested distributed collaboration for computing offloading architectures. The
architecture consists of a balanced collaboration system by assigning the master node,
the second node, and the action node individually to edge nodes which contribute to all
connected and communicable areas. It balanced computing resources through edge-to-
edge collaboration and minimized latency due to relatively unbalanced overloads. Based
on the [20] architecture, this paper proposes the LODO (Linked-object dynamic offloading)
algorithm. LODO focuses on reasonable use of the computation resources of the IoT devices
to processing computing tasks efficiently. The IoT devices are called edge nodes in the
LODO algorithm. The LODO algorithm receives the compute tasks offloaded by the edge
nodes and provides the hybrid state with offloading the tasks according to the resources
and state of all edge nodes. The offloading location of computing tasks is uncertain and
has various types; so are the compute resources status and performance gaps between
nodes. Considers both characteristics, the computing resources of edge nodes can be fully
balancing utilized. The main feature here is that the computing task can be reasonably
offloaded to different edge nodes by collaborative processing.

The main contributions of this article are summarized as follows:
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• We propose a Dynamic offloading method (DOM) with hybrid states that contains
the resource requirements of offloading tasks and real-time resource availability in-
formation of each edge node. According to the current computational task execution
state, the hybrid state is formed based on information related to all edge nodes (e.g.,
compute, storage, and network state). The edge computing reasonably offloaded the
task to suitable edge nodes according to the hybrid state.

• We propose a linked-object algorithm that, according to offloading task status, pro-
vides two cooperation offloading options. If the computing power of an edge node
cannot meet the task requirements, performing the task-linked option. When the
edge node’s memory/storage computing resource is not more available, executing the
data-linked option. Each of these options helps solve the problem of load imbalance
among computing nodes.

• We also investigate the application of forest fire that requires real-time sensing data
and various time-critical tasks. For example, real-time data (such as temperature,
humidity, wind, slope, and others) is necessary to predict the possibility of forest
fires moving to other areas and the diffusion speed. If the task processing time is
a large percentage of the total time, thus resulting in a processing delay of other
tasks. Moreover, the total service time may become unacceptable when performing
large tasks at the close but slow (low computing power) edge nodes. In this case, the
LODO algorithm can offload computation tasks to suitable edge node according to
the real-time computing resources status of the edge nodes.

The rest of this paper is organized as follows. Section 2 explains DOM (Dynamic
Offloading Method) by hybrid states is formulating. Section 3, introduces details of the
LODO properties approach for collaboration offloading. Scenario and results are presented
in Section 4. Section 5 presents the discussion. Finally, Section 6 concludes this.

2. Dynamic Offloading Method (DOM) with Hybrid States

Based on our previous paper [20], this section identifies the reason for loads accord-
ing to data-linked and task-linked, which are the major processes of an edge node. On
edge node have edge gateways, end devices, and schedulers. Edge gateways can provide
computing (CPU), storage (memory), bandwidth, and other system resources for edge com-
puting operations. It is essential to reasonably use these computing resources depending
on the offloading configuration to solve computation offloading efficiently. For example,
suppose the goal is to reduce the load for data-linked processing. In this case, memory
utilization is more important than CPU ratio, so utilizing the edge with more storage
resources is necessary. On the other hand, task-linked processing increases CPU usage;
it should use an edge with free computing resources. Using edge resources according to
processing status can increase edge resource utilization and reduce the average execution
time of computational tasks.

The resource range that can process in the edge node is definition 80% of CPU and 90%
of memory. We define this as the reference overload threshold. If one exceeds the existing
threshold range using a monitoring process, it determines the overload of data-linked and
task-linked. The ratio is classified as a task-linked overload with high CPU usage and
categorized as a data-linked overload with high memory usage (ref. Figure 1).

Depending on the hybrid state of the edge node, the dynamic offloading method
(DOM) defines an overload range that considers the correlation/relationship between data
and tasks. The following section describes whole activity states (hybrid states) through
discussion and formulation about overload issues according to data and task of an edge
node using DOM.
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Figure 1. The resource range for data-linked and task-linked.

2.1. Expression of Hybrid States on Edge Node

As shown in Figure 2, edge computing is a process of collaboration offloading by
monitoring the state of all edge nodes that change dynamically. Edge node consists of end
devices that receive, store, and preprocesses the sensing data, and edge gateways analyze
and outputs the results following the purpose of the domain. Since edge nodes have
different resources and characteristics, real-time monitoring is a requirement in an ever-
changing environment. In addition, there are different data and performance characteristics
during the analysis depending on the purpose of the domain, so the offload characteristics
may also differ. Representative offloading characteristics can classify into “offloading due
to data,” “offloading due to task,” or “offloading due to Data & Task,” and the offloading
range need determine according to each characteristic. According to the current offloading
execution state, the edge node must also provide suitable edge nodes.
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The hybrid state to reasonably use the computing resource, and computing task is
divide into three statuses, the “Activation status”, “Dynamic offloading status,” and “Slack
space.” The activation status means accurate assessment and incorporating the edge node
state consumption due to the offloaded tasks. Receiving data and computing processes
are the functions that derive an offloading task method to the due to data or/and task
according to the problem computing resource. Offloading data method is when the edge
node uses a memory value is more than 90%, and the task offload method is when the CPU
value is more than 80%.
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The dynamic offloading between edges nodes is one of the essential factors in de-
termining task range based on offloading task method. According to the task-method
attributes, the transmitting offloading state extract the range of data-linked or task-linked
offloading. Transmitting offloading state extracts the range of data-linked or task-linked
offloading according to the offloading method. The Receiving offloading state selects the
offloading range that can tolerate in the slack space of the cooperative edge node, excluding
10% memory and 20% CPU. Here the slack space means a value obtained by subtracting
activation status and dynamic offloading status from the hybrid state. This value can
describe the state of the edge node like a hybrid state, should have more than 10% memory
or 20% CPU basically to prevent overload.

The following Equation (1) computes the hybrid state of the edge node’s dynamic
active and slack space, depending on the data and task computation function. Equation (1)
indicates the total performance state of an edge node. Based on data and task, the hybrid
state is the sum of Equation (1a) the current performance (activation) state, Equation (1b)
the offloading state, and the slack space.

Hybrid state{CPU, Memory}
= Activation Status{Ci, Mi}+ Dynamic o f f loading Status{Ci, Mi}

+Slack Space{Ci, Mi},
(1)

Equation (1a) shows the current activation state, where Ci is CPU and Mi is Memory.
This definition is a sum of the data received by the process of edge node and the computing
process of data and tasks.

Activation status{CPU, Memory}
= Receiving Data Process{Ci, Mi}+ Data&Task Computation Process{Ci, Mi}

(1a)

Equation (1b) shows that the dynamic offloading state is defined as the sum of the
offloading state by overloads in the edge node and the collaboration offloading state for
other nodes.

Dynamic o f f loading Status{CPU, Memory}
= Transmission o f f loading Process{Ci, Mi}+Receiving o f f loading Process{Ci, Mi},

(1b)

2.2. Definition of Assigning an Offloading Range

To assign the offloading range, the group should divide as being data-linked or task-
linked. First, the offloading range based on memory is grouped in data connectivity and
minimizes its overlapped offloading. In this computation, let D = {d1, d2, . . . dn}, where
D is the set of edge gateway (device), and di is the i-th edge gateway (device). Equation
(2) means the energy E generated by moving data from edge node d1 to d2. The S(d1, d2)
is the total amount of data that must transmit between nodes; hence, the group’s energy
consumption based on data connectivity is proportional to the amount of data. Therefore,
the minimum range of transmitted energy is extracting by the amount of data after selecting
collaboration edge nodes.

E(d1, d2) = ((w× S(d1, d2))÷ bandwidth)× Powerwi f i, (2)

Second, minimizing the optimum edge node’s performance time includes offloading
by grouping task connectivity based on CPU for the offloading range. Because of various
CPU capacities according to the slack space, each edge node has different processing speeds.
Therefore, it is essential to assign the offloading range because the total processing time
is dependent on how to use the CPU. Equation (3) shows the difference of processing
time between the existing node and the collaborating node of the group based on task
connectivity for offloading. The to(i) is the consumed time in an overloaded edge node, tc(i)
is the consumed time in a collaborated node. The w is a weighted factor that depends on
the slack space of the collaboration node. As long as the slack space increases, the weighted
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factor (w) also increases, so its consumed time becomes rapidly faster than the overload
edge. Therefore, the range with a maximum weighted factor must extract as the offloading
range by selecting the collaboration edge node.

tc(i) = to(i) ÷ w, (3)

Therefore, the defined Equation needs to compromise (CPU, Memory) in the range of
data and task. It aims to extract the range of minimizing consumption energy and final
time for offloading.

3. LODO (Linked-Object Dynamic Offloading) Algorithm

The LODO algorithm provides two cooperation offloading options depending on
the cause of the overload. In Section 2.1, the cause of overload according to the state of
an overloaded edge node through monitoring was definition. When a memory overload
problem occurs, executing the algorithm using the data-linked offload method described
in Section 3.1. If the cause of the overload is in the CPU, execute the task-linked offloading
option described in Section 3.2.

3.1. Data-Linked Algorithm

The Data-linked offloading (ref. Algorithm 1), which concerns data correlations,
improves the energy efficiency by choosing the data redundancy based on memory, the
range in minimizing energy during transmitting, and the collaboration node. Create a
collaboration data group based on the currently executed data. Figure 3 explains how to
create a group when performing offloading based on a scenario that allows Task1 to be
performing at the existing edge. Derivation of the task-based offloading range is the least
frequent of the remaining data, excluding the data used in Task1. It is possible to set the
task priority according to the existing domain and create a list expression task offloading
according to the criteria for the task and the data that is reducing due to offloading. For
example, offloading the least frequent Task8 reduces the number of data12 on existing edge
nodes. Offloading with Task7 to free up additional memory space will free up the amount
of data8. A list of expression tasks is an input to the algorithm’s data dependency groups.
The output categorizes the minor offloading group, the collaboration node, and the total
consumed memory.
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Amount of memory in Listj= ∑list[2]
i=1 gki ∗ DTki ∗ DSki, (4)

Amount of CPU in Listj= ∑list[2]
′i=1 gki ∗ DTki ∗ DSki ∗ CTki, (5)
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Each group’s memory and CPU usage can calculate via (Equation (4)) and (Equa-
tion (5)). gki is whether the i-th data used in the k-th task is used, and DTki is the data
type. DSki is the amount of sensing data that is instantaneously accumulated as a data
size. CTki is a ‘number of CPU cycles for 1-bit data’ value and is the CPU value used in
each task. The calculated Equations (4) and (5) values changes depending on the task
and data included in the corresponding list. Through the calculated value, the “possible
offloading list” is extracting by matching the CPU usage rate that is not larger than the
idle space of the collaboration edge node. In other words, depending on the cause of the
overload, if the memory is insufficient, the data relevance list that can secure the maximum
memory is selected in the offload range. The selected data relevance list becomes the “data
dependency group,” which is the input to the algorithm. The list of feasible groups is sort
by examining their executions in collaboration nodes, and the offloading is processed in
each node sequentially. If slack energy in the collaboration node is not enough, it could
skip out to the next node for offloading. The Data-centric Offloading stops in the case of
solving the overload issue. Otherwise, it keeps progressing to offloading.

Algorithm 1 Data-linked offloading

Input: Next Execution, Data Dependency Group Output: Offloading Group,
Collaboration Edge Node, TotalMemory

1 Step 1: Overload detection and determination of cause.
2 IF Status of EN = Out of memory problem ## result of activation state
3 NextExecution = Data-linkedOffloading
4 OffloadingApply = True
5 ELSE
6 OffloadingApply = False
7 Step 2) Calculate group capabilities based on data
8 FOR I = 1 to length(data dependency group)
9 gj = data dependency group
10 GroupList(Data_list, Total_memory) = gj
11 END FOR
12 Step 3) Perform offloading after extracting possible groups based on collaboration nodes
13 WHILE OffloadingApply
14 FOR j = 1 to k
15 IF g_j(Total_memory) ≤ Collaboration_EN(Slack Memory) − (100-threshold)
16 possiblelist = gj(Data_list, Total_memory
17 END FOR
18 DO max(possiblelist) offloading to Colaboration_EN
19 IF EN(slack_memory) ≤ threshold
20 OffloadingApply = False
21 RETURN {possible list, collaboration edge node, Total_memory, Total_energy}

3.2. Task-Linked Algorithm

The task-linked algorithm, which concerns task correlations, reduces the overall time
by selecting the most considerable CPU, the range in increasing energy efficiency during
processing, and the collaboration node (ref. Algorithm 2). Create collaboration groups
based on tasks to performing and data to be using. Figure 4 shows a subordinate system
consisting of 8 tasks. In this way, the application is complexly configuring. Some tasks
use the output value of each task as an input value. A dependency system is a workflow
made up of dependent tasks that interact between modules. Task2 creates data9, which
is the input value of Task3, Task6, Task7, and Task8. Based on task connectivity, Task3,
Task6, Task7, and Task8 cannot start execution until Task2 is executing and the output
is displayed.
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When performing tasks, an offloading group is creating in consideration of task
relevance. Groups that consider task relevance are composed of one or more tasks, as
shown in Figure 5.
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To select an offloading range is necessary to calculate the mobility of data generated
during offloading. Figure 6 illustrates the importance of task connectivity group-based
offloading through task mobility. In Case 1, Task3 and Task4 are offloading, and in Case2,
Task3 and Task6 are offloading. Task3 and Task4 use the result of Task2 together, and the
output of Task3 becomes the input of Task4 and proceeds sequentially. Also, since Task4’s
output is used by Task5 and Task6 simultaneously, the total number of movements is two
times. However, the input value of Task3 and Task6 is common to Task2, but Task6 requires
the output value of Task4 as an input value. Each output value is also using as an input
value for other tasks. Thus, the total number of moves is four. Even if the same amount of
data is using, the delay time increases as the total number of movements increases. Hence,
the available memory and CPU are calculating through Equations (4) and (5), appropriate
lists are extracting, and the group with the least mobility is select as the offloading range.
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A grouped list of task dependencies is the input to the algorithm. The task connectivity
list described above becomes the “task dependency group,” which is the input to the
algorithm. The output classifies the least offloading group, the collaboration node, and
the overall time. The list of feasible groups is sorting by examining their executions in
collaboration nodes, and the offloading is processed in each node sequentially. Offloading
continues until the overload problem is resolving, and if slack energy in the collaboration
node is not enough, it could skip out to the next node for offloading. Total output time
means the time until the end of offloading for a specific application and is calculated from
the number of moves and the amount of data.

Algorithm 2 Task-Linked offloading

Input: NextExecution, Task Dependency Group
Output: Offloading Group, Total Time(EndPoint)

1 Step 1) Overload detection and determination of the cause.
2 IF Status of EN = Out of CPU problem
3 NextExecution = Task-linkedOffloading
4 OffloadingApply = True
5 ELSE
6 OffloadingApply = False
7 Step 2) Calculate group capabilities based on task
8 FOR I = 1 to length(task dependency group)
9 gj = task dependency group
10 GroupList(Task_list, Total_CPU) = gj
11 END FOR
12 Step 3) Perform offloading after extracting possible groups based on collaboration nodes
13 WHILE OffloadingApply

FOR j = 1 to k
IF g_j(Total_Time) ≤ Collaboration_EN(Slack space) − (100-threshold)

possiblelist = gj(Task_list, Total_Time)
END FOR
DO max(possiblelist) offloading to Collaboration_EN

IF EN(slack_space) ≤ threshold
OffloadingApply = False

RETURN{possiblelist, collaboration edge node, Total_CPU, Total_time}

4. Scenario and Results

This section provides an experimental scenario and the LODO algorithm’s perfor-
mance that proposes in data-linked and task-linked algorithms. The performance of the
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algorithm is tested based on the variables and tasks used in the forest fires scenario and
the relationship between them. Based on the algorithm experiment results, the evaluation
scenario includes memory usage and execution time. Table 1 lists tasks and variables used
in forest fire response scenarios. In practice, the quantity and size of a variable can be the
same or different.

Table 1. Tasks for forest fire response and data types used.

Application Task Data Output

APP1.

Fire Probability
Prediction

Task 1.
Fire probability and

probability prediction

temperatures (data1), Forest fire
Probabilityhumidity (data2),

fuel (data3),
mount.terrain (data4),

weather (data5),
(data13)fuel (data3),

for geography (data6)

APP2.

Diffusion Range
Prediction

Task 2.
Diffusion rate

fuel (data3),
Diffusion ratemount.terrain (data4),

weather (data5),
(data9)for geography (data6)

Task 3.
Forest fire intensity diffusion rate (data9)

Fire intensity
(data10)

Task 4.
Flame height, fire intensity (data10) Fire type

Fire type prediction (data14)

Task 5.
Fire direction, temperatures (data1),

EndDiffusion area
prediction

humidity (data2),
for.geography (data6),

wind speed (data7),
fire intensity (data10)

APP3.

Diffusion
Location Prediction

Task 6.
Flame length

fire type (data14),
Flame length

(data11)
wind speed (data7),

diffusion rate (data9)

Task 7.
Non-combustible

material lift height
calculation

temperatures (data1),

Flame height
(data12)

humidity (data2),
mount.terrain (data4),
for.geography (data6),

wind speed (data7),
wind direction (data8),
diffusion rate (data9)

Task 8.
Distance for

non-combustible mater.
Fireworks Landing
Position Prediction

wind speed (data7),

End
wind direction (data8),
diffusion rate (data9),
flame length (data11),
flame height (data12)

Tasks are prioritized based on what is essential or should do first. Task 1 is the most
basic analysis that starts in the forest fire scenario, so it should be performing on the edge
node. In addition, the priority is high because it is performing in real-time. Before the
data processing process and algorithm apply, the offloading range list becomes a subset
of 127 for all tasks except for Task 1. As the number of tasks and variables increases, the
selectable range of offloading becomes more diverse.

In case of memory overload, a list extracted based on data association is using. Table 2
is a data correlation list that derives an offloading range that can quickly acquire memory
based on data.
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Table 2. Data-linked list.

Task Acquire Memory

Task8 data12
Task8, Task7 data12, data11, data8

Task8, Task7, Task5 Task6 data12, data11, data8, data7
Task8, Task7, Task3, Task6 data12, data11, data8, data9
Task8, Task7, Task4, Task5 data12, data11, data8, data10

In case of CPU overload, a list extracted based on task association is using. As with the
data center, except for Task 1, the connectivity between the remaining tasks creates a group
that reduces mobility between edges and secure CPU space. Table 3 is a task connectivity
list that derives an offloading range that reduces mobility while quickly obtaining CPU
space centered on tasks. Figure 7 shows the total number of moves and the task connectivity
list (red dots). In the figure, the ox is each group corresponding to the task connectivity list,
and oy is the number of moves that occur when offloading each group.

Table 3. Task-linked list.

Task Number of Moves

1

Task2 2
Task3 2
Task4 2
Task5 2
Task6 3
Task7 3
Task8 4

2

Task2-Task3 2
Task3-Task4 2
Task3-Task5 2
Task4-Task6 3
Task6-Task7 3
Task7-Task8 3

3

Task2-Task3-Task4 2
Task2-Task3-Task5 2
Task3-Task4-Task6 2
Task4-Task6-Task7 3
Task6-Task7-Task8 3

4

Task2-Task3-Task4-Task6 2
Task2-Task3-Task4-Task5 3
Task3-Task4-Task6-Task7 2
Task3-Task4-Task5-Task6 3
Task4-Task6-Task7-Task8 3
Task4-Task5-Task6-Task7 4

5
Task2-Task3-Task4-Task5-Task6 3
Task3-Task4-Task5-Task6-Task7 3
Task4-Task5-Task6-Task7-Task8 4

6
Task2-Task3-Task4-Task5-Task6-Task7 3
Task3-Task4-Task5-Task6-Task7-Task8 3

7 Task2-Task3-Task4-Task5-Task6-Task7-Task8 3

Table 4 compares the range to which offloading is applying within the range of
possible collaboration usage (Memory, CPU 70%) and the entire range based on the lists in
Tables 2 and 3. “Offloading Transmission” is the memory size calculated based on the data
included in the offloading group. “Offloading performance” is a value calculated based
on the number of CPU cycles for 1-bit data, and the value varies depending on the data
used in the task and the function of the task. With “Data-linked algorithm groups,” the
average data movement is 1,574,156 (Kb), which offloads more data than before applying
the algorithm, but the average memory securing is 8.15%, which is faster than before
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applying the algorithm. Suppose the “task-oriented algorithm group” is used. In that case,
the offloading task group sends a smaller amount than before applying the algorithm at an
average of 4.19 (GHz). It is possible to secure free space faster, and the average number of
moves is an average of 2.63 Cycles enable fast processing.
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Table 4. Data & Task algorithm performance evaluation.

All Group Data-Linked
Algorithm Group

Task-Linked
Algorithm Group

Offloading
Transmission (Memory) 1,199,392 (Kb) 1,574,156 (Kb) 921,015.1 (Kb)

Offloading
Performance(CPU) 5.72 (GHz) 8.67 (GHz) 4.19 (GHz)

Percentage of
memory available 45,332.69 (3.78%) 212,775.5 (8.15%) 30,394.8 (3.30%)

The average number
of moves 3.72 3.55 2.63

5. Discussion

Spatial dependence has two meanings. The first is that the data generated by one
sensor is not used in only one task or app and is can use in multiple spaces. For example,
diffusion direction data is generating by combining wind, slope, and temperature data
with circumstances such as earthquakes affecting different regions at time intervals. The
second is task dependencies. Task dependencies include the order of tasks as well as data
correlation between tasks. In refs. [21,22], the data dependency, the output of the task
located in Area A, can be entered in Area B.

They should process several tasks, such as knowing the types of forest fires, predicting
how the wind changes, and identifying how ignition materials are distributing in fire areas
by season, temperature, humidity. Additionally, some cases have data with two or more
tasks used simultaneously or including complicatedly mixed order of tasks. For example,
to determine the diffusion range with the location of forest fires. However, as the accurate
diffusion range and location could identifying many tasks in various areas could be linked
and applied to each other. In other words, multiple tasks do not follow in a series of
workflows but are spread in many branches or entangled like spider webs.

However, most offloading does consider only a series of processing in [23] and does
not include correlations and interactions of data and tasks. One or more outputs can be
applying to the next task after starting four different tasks simultaneously, or new input
that changes the result executed already. Because output data transferred from a server to a
local device is much smaller than input data, the time overhead of a backhaul link could be
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ignorant [24,25]. This is considered only a series of dynamic applications, not static tasks.
If one output data can be the input of many tasks, the increase of task number cause to
increase both redundant data and output data; hence the overhead due to another delay
and energy consumption from a transmission cannot be disregarded.

Correlations of data and tasks have to consider for dividing tasks of granularity and
dependency in various circumstances. Therefore, we proposed a collaboration LODO
algorithm that determines idle space and offloads data and tasks based on spatial depen-
dencies.

6. Conclusions

This paper considers collaboration edge computing in offloading with an edge node
that can collaborate with tasks. We proposed an energy-efficient LODO algorithm to extract
the scope and offload of collaboration nodes to save energy and reduce execution time at
the edge nodes. Formulated hybrid states in an edge node could predict overloads through
monitoring and applied in the LODO algorithm. Furthermore, in selecting an offload range
by considering data correlations and task connectivity, the LODO algorithm reduces data
redundancy and delays and minimizes energy consumptions during offloading. Therefore,
a collaboration offloading model based on the LODO algorithm minimizes the energy of
the entire edge node so that it is more efficient to execute within a short time.
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