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Abstract: The continuous monitoring and recording of food intake amount without user intervention is
very useful in the prevention of obesity and metabolic diseases. I adopted a technique that automatically
recognizes food intake amount by combining the identification of food types through image recognition
and a technique that uses acoustic modality to recognize chewing events. The accuracy of using audio
signal to detect eating activity is seriously degraded in a noisy environment. To alleviate this problem,
contact sensing methods have conventionally been adopted, wherein sensors are attached to the
face or neck region to reduce external noise. Such sensing methods, however, cause dermatological
discomfort and a feeling of cosmetic unnaturalness for most users. In this study, a noise-robust and
non-contact sensing method was employed, wherein ultrasonic Doppler shifts were used to detect
chewing events. The experimental results showed that the mean absolute percentage errors (MAPEs)
of an ultrasonic-based method were comparable with those of the audio-based method (15.3 vs. 14.6)
when 30 food items were used for experiments. The food intake amounts were estimated for eight
subjects in several noisy environments (cafeterias, restaurants, and home dining rooms). For all
subjects, the estimation accuracy of the ultrasonic method was not degraded (the average MAPE was
15.02) even under noisy conditions. These results show that the proposed method has the potential
to replace the manual logging method.

Keywords: food intake estimation; chewing sound detection; food image recognition

1. Introduction

Increases in the prevalence of obesity and associated metabolic diseases is undesirable
in terms of a deterioration of individual life quality and an increase in social health care
costs. The development of an effective method for the monitoring of caloric intake is very
important in order to reduce the prevalence of people being overweight and/or obese [1].
The “manual logging” method, where the type and amount of foods are recorded by users
themselves, is known as a straightforward way of monitoring the intake of calories [2,3].
At present, there are many kinds of manual logging methods available in the form of
smartphone apps. Since it is cumbersome for most users to record the type of food each
mealtime, a method using a camera mounted on a smartphone to automatically recognize
types of food has also been developed [4]. Although high accuracy in the recognition of
food type helps to partially reduce user discomfort, there is a problem with the lack of
reliability due to human errors that include user laziness and erroneous record-keeping.
Such problems are mainly due to the fact that some user intervention is necessary for the
manual-logging methods.

Recent advances in sensor technology, signal processing techniques, detection, and
recognition algorithms make it possible to continuously monitor the intake of calories
with minimal user intervention [5–13]. Visual cues have been used for the classification
of food types and the estimation of food amount [14–20]. A classical pattern recognition
approach has also been adopted in visual-based food type recognition methods, where
segmentation, feature extraction, and classification were sequentially carried out on the
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incoming images. Convolutional neural networks (CNN) have successfully been applied
to various pattern recognition problems, and a CNN-based food recognition approach
has also been proposed [18]. In this approach, the relationship between the food image
and its food type is explained by a nonlinear mapping rule that is constructed using a
supervised learning algorithm. A higher level of recognition accuracy (typically, more
than 95% [17,18]) has been achieved via the visual modality, by comparison with the other
modalities (e.g., audio [8] and ultrasound [21]). It is known that the accuracy of the super-
vised learning-based classifier is more or less affected by the size of the training dataset.
Hence, the performance would further be improved by using several food image datasets
for food recognition, such as UEC-FOOD100 [22], FOOD-101 [23], VIREO Food-172 [24],
and other food image datasets [25,26]. The visual information has also been very useful
in estimating the amount of food for the measurement of caloric intake. In this approach,
the problem of measuring the amount of food is formulated as the volume estimation of
the food via the given food image. The single-view approach [15–19] is attractive in that it
can easily be applied to existing mobile devices (e.g., smartphones with a single camera [16])
without hardware modification. However, volume estimation using only a single view is very
challenging, and has resulted in inaccurate caloric estimates. Accordingly, the multi-view
approaches [20,27] that typically employ a stereo camera have generally been used for the
volume estimation of food. There are inherent limitations with the image-based caloric esti-
mation methods; first, the users must take a picture of the food eaten at every meal. Then,
the measurement of caloric intake is achieved based on the assumption that all the food in the
picture is eaten. Finally, food that is left behind creates a large error between the true caloric
intake and the measured caloric intake.

The act of eating can be described by a series of specific movements or gestures.
Based on this principle, the sequence of the signals derived from the motion sensors can be
represented by a well-known sequence model, such as a hidden Markov model (HMM) [28]
or via long short-term memory (LSTM) networks [29,30]. Food intake events were detected
with an accuracy of 80% for 10 subjects [29] when LSTM was adopted. Since motion sensors
are generally very small in size, motion-based methods have the advantage of being easily
applied to many wearable devices. The amount of food consumed is assumed to be highly
correlated with the number of the ingestive actions (chewing or swallowing). Hence, caloric
intake can be estimated by counting the number of chewing events or swallowing events
that are recognized using an ingestive motion recognizer. The caloric density, which is
essential for calculating caloric intake from the amount of food consumed, depends on
the type of food. Since it is very difficult to recognize the type of food using ingestive
motion, a high level of estimation accuracy in caloric intake cannot be achieved using only
motion-based approaches.

Sound from eating foods is useful for recognizing the type of food being consumed and
chewing/swallowing events. The underlying principle is that chewing sounds vary depend-
ing on the shape, hardness, and moisture content of the food. Acoustic-based estimation of
the ingestive behaviors has been proposed by several researchers, and these can be grouped
into one of two broad categories: detection of chewing/swallowing [5,6,9–11,13,21,31] and
classification of food type [8,32]. Caloric intake can be estimated by using caloric density and
the amount of food consumed derived from a food-type recognizer and chewing/swallowing
events detector, respectively. An average absolute error of 3.0 calories per food-type was
obtained from the 10 subjects and four types of food using a neck-worn sensor equipped
with acoustic, proximity, and inertial sensors [33]. Although acoustic modality provides
useful clues for estimating food intake amount, there are some drawbacks associated with
the usage of the audio signal. Some degree of audible noise is always present in most eating
environments (e.g., cafeteria and restaurants). Therefore, performance degradation due to
background noise cannot be avoided in the audio-based methods. A contact-sensing method
was employed to alleviate this problem, in which external noise was shielded by attaching
the acoustic sensor to the skin of the neck (e.g., neck- or throat-microphones [7,33]) or placing
it inside the ear (e.g., in-ear microphone [12]). This approach can reduce noise effects to
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some extent, but the use of contact sensors can be uncomfortable for users and could exacer-
bate skin allergies. A Doppler-based approach has also been used to detect food ingestive
behaviors [21,32]. The underlying principle is that Doppler frequency shifts are caused by
movements of the chin and neck during meal time. The experimental results showed that
the accuracy of recognizing chewing and swallowing events is comparable to that of the
audio-based methods [21]. Moreover, the performance was not seriously degraded even
under severe noise conditions [32].

In this study, ultrasonic Doppler signals (UDS) were used to detect chewing events
during meal time, and the amount of food intake was estimated by using the number
of chewing events during intervals of swallowing. The usefulness of the UDS in terms
of detecting chew and swallow events was previously evaluated [21]. In the present
study, however, the feasibility tests were carried out using UDS to evaluate the accuracy
of estimations of food-intake amounts. Although a reasonable performance in terms of
food recognition accuracy (≥80%) was obtained via UDS alone [32], it was difficult to
discriminate the subtle differences between certain foods using only UDS. In this study,
visual information was used to identify food items, where food images were recognized
via CNN.

The remainder of this paper is organized as follows. An explanation of the developed
sensor is presented in Section 2. The overall procedure of the method used to estimate the
food amount is described in Section 3 which includes the audio-visual principle, feature
extraction, a method for detecting chewing/swallowing events, and classifications of the
types of food. The experimental results are given in Section 4. Finally, concluding remarks
and directions for future study are provided in Section 5.

2. Hybrid Ultrasonic and Visual Sensor Device

In this study, a sensor device was developed to detect jaw movements and sounds
associated with food ingestion. A photograph of the developed sensor device is shown
in Figure 1. There are four modules in the sensor device: a sine wave generator, an ultra-
sound speaker, a wide band microphone, and an analog signal-processing module that
appears in Figure 2. In a sine wave generator module, a square wave of 40 kHz is first
generated by ATtiny402 microprocessor [34] and a 5th-order Butterworth low-pass filter
(MAX7424CUA) [35] with a cutoff frequency of 40 kHz is then applied to obtain the 40 kHz
sine wave. Such a sine wave generator has several advantages over an analog oscillator:
a very stable frequency and the ability to change the frequency via software. The 40 kHz
sinusoidal signal was inputted to an MA40H1S-R [36] ultrasonic speaker.

Figure 1. Developed sensor device.
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Figure 2. Block diagram of the developed sensor device.

To record the sound and Doppler frequency shifts associated with food ingestion,
the SPM0687LR5H-1 microphone [37] was mounted towards the lower jaw. The sensitiv-
ity of the employed microphone is greater than −5 dB in a frequency that ranges from
0∼42 kHz, which is sufficient for the detection of ingestive behaviors. A low-pass filter
with a cutoff frequency of 2 kHz was employed to extract audio signals from the received
signal. Such a cutoff frequency seemed to produce a relatively high detection of ingestive
sounds. The experimental results, however, showed that setting the cutoff frequency as
lower than 2 kHz yielded lower performance in terms of detecting ingestive behaviors. The
ultrasonic components were obtained via band-pass filters (38∼42 kHz) and were demodu-
lated by the diode detector. Two signals (audio and demodulated) were amplified so that
the level of each was matched with the dynamic range of the subsequent analog-to-digital
convertor (ADC). With the exceptions of the microphone and speaker, all components were
assembled on a single printed circuit board and molded into epoxy resin to protect them
from outside elements. Note that although the developed sensor module outputted both
audio signals and UDS output, the audio signal was used only to compare the estimations
of food amounts.

A photograph of a subject equipped with the developed sensor device is shown in
Figure 3. In this photo, the wings of the sensor system are inserted into each collar and
fixed to the neck when the subject wears a shirt with a collar. Such a method prevented the
undesired displacement of the sensor device due to the movements of the neck and face
that were not related to food intake.

Examples of the recorded signals using the developed device are shown in Figures 4 and 5
with the sampling frequency set at 96 kHz. The example signals presented in these figures were
recorded under noise-free conditions, and, hence, it can be assumed that each location of the
prominent peaks from audio signals correspond to chewing instances. Cashew nuts are an
example of a hard-crunch food for which chewing patterns were clearly recognized in the audio
signal compared with a food such as pizza. The envelope of the received ultrasonic signal takes
a shape that is similar to the corresponding audio signal, and, hence, the demodulated ultrasonic
signal is easily matched with the corresponding audio signal. For pizza, the amplitudes of
the peaks were varied. This was because the chewing patterns depended on the hardness
of each part of the pizza. (e.g., the dough portion is harder than the center). In this case,
the positions of the peaks for the two signals (low-pass filtered audio signal and demodulated
signal) matched, regardless of the amplitudes of the peaks. Although only two examples of food
were presented, similar characteristics were commonly observed for other foods. This implies
that when demodulated ultrasonic signals are used to detect chewing events, the accuracy can
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be as good as that of a noise-free audio signal. It is also noteworthy that the shapes of the
demodulated signals remained similar to the noise-free audio signal when audible noises were
presented. This indicates that by using an ultrasonic signal, it is possible to achieve a high
degree of accuracy in the detection of ingestive behaviors, even under noisy conditions.

Figure 3. A photograph of a subject equipped with the developed sensor device.

Figure 4. An example of signals received from the sensor device when cashew nuts were eaten. Top:
The bandpass filtered signal. Middle: Demodulated signal. Bottom: Audio signal obtained by the
low-pass filter.
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Figure 5. An example of signals received from the sensor device when pizza was eaten. Top: The bandpass
filtered signal. Middle: Demodulated signal. Bottom: Audio signal obtained by the low-pass filter.

3. Dual-Modality Estimation of Food-Intake Amount

The proposed method of estimating food-intake amount is based on the assumptions
that (1) the amount of food consumed (or, equivalent caloric intake) is positively propor-
tional to the chewing counts before swallowing, (2) the relationship between the amount of
food consumed and chewing counts depends on the type of food.

Such assumptions were empirically validated in this study, where the relationship
between the number of chews and the food intake amount in mass (g) was analyzed for
nine types of food (boiled chicken breasts, mocha bread, fried chicken, potato chips, cashew
nuts, pizza, vegetable salad, rye bread, and plain yogurt). Ten subjects participated in
the experiment and were asked to press a buzzer button at every instance of chewing.
The subjects were also asked to press the buzzer button just before or after swallowing food.
The amount of food eaten was measured each time before it was eaten. In this way, a true
number of chewing events and swallowing instances were obtained and subsequently used
for regression analysis. The correlation coefficients of the foods used in the experiment are
presented in Table 1, which also includes the p-values, the root mean squared errors (RMSE)
and the mean percentage errors. The results from the validation test are comparable to
those of conventional image-based methods [27]. The relatively high correlation and low
amount of estimation error ensured the validity of the food-amount estimation method
when using the chewing counts. For pizza and vegetable salad, however, the number of
chewing events was not strongly correlated with the amount of food intake, which resulted
in a larger RMSE and a percentage error. The common characteristics of such foods is
that they are mixed with several ingredients. Similarly, the firmness of the mocha bread
depends on the outer and inner portions, and this is a possible explanation for the lower
correlation value of the mocha bread. Consequently, the usefulness of chewing counts for
the estimation of food-intake amount was confirmed by the validation test to some degree.
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Table 1. The correlation coefficients, p-values, root mean square errors (RMSEs), and average percentage errors between the
number of the chewing instances and food intake amount (g), for foods such as chicken breast (CH), mocha bread (MB), fried
chicken (FC), potato chips (PC), cashew nuts (CN), pizza (PZ), vegetable salad (VS), rye bread (WB), and plain yogurt (YG).

Food Kind CH MB FC PC CN PZ VS WB YG

Correlation coefficient 0.880 0.593 0.833 0.867 0.903 0.394 0.557 0.766 0.466

p-value 0.036 0.046 0.040 0.010 0.012 0.068 0.050 0.049 0.060

RMSE (g) 0.747 1.075 0.742 0.291 0.257 2.153 2.633 0.618 1.470

Average percentage error (%) 16.3 19.7 14.3 14.3 14.9 20.5 29.8 18.9 15.9

A block diagram of the proposed food intake estimation method is presented in Figure 6.
The major parts of the proposed estimation scheme include detection of food ingestion
behavior for chewing counts and recognition of food items. In the proposed method,
the detection of chewing/swallowing events and the identification of food items were
achieved using the UDS and visual modalities, respectively. A more detailed description of
each part is explained in the following subsection.

Figure 6. A block diagram of the proposed dual-modality food intake estimation method.

3.1. Detection of Food Ingestion Behaviors

The demodulated ultrasonic signal (from the sensor module) was first digitally sam-
pled at 8 kHz with 16-bit precision. In this study, the number of chewing events during a
swallow interval was practically estimated by counting the number of prominent peaks
in UDS signals. Although UDS signals are more robust against environmental noises
compared with audible signals, signals unrelated to food intake, which could be caused
by vocalization and heartbeat, were often observed in the demodulated ultrasonic signals.
The sampled signals revealed that the amplitudes of interference signals were generally
smaller than those of food-intake-related signals. Accordingly, it was necessary to distin-
guish whether the signals were related to food intake according to signal amplitude. To this
end, a soft clustering method was adopted, wherein the distribution of each group (food-
intake and others) was represented by a Gaussian function. Assuming that the conditional
probability density function of the feature, x, derived from UDS under each hypothesis
(H0: null, H1: food-intake), is represented as a Gaussian distribution, the observation
probability of x is given by
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p(x) =
2

∑
i=1

p(λi)
1

σi
√

2π
exp

{
− (x− µi)

2

2σ2
i

}
(1)

where λi, µi, and σi are the weight, mean, and standard deviation for the i-th Gaussian,
which can be estimated using an expectation-maximization (EM) algorithm [38]. The opti-
mum threshold was determined so that the overall misclassification errors were minimized,
given by the root of the following equation:

xth :
{

f (x) = Ax2 + Bx + C
}
|x=xth = 0 (2)

where

A = σ2
1 − σ2

2

B = 2(µ1σ2
2 − µ2σ2

1 )

C = σ2
1 µ2

2 − σ2
2 µ2

1 + 4σ2
1 σ2

2 log
[σ2 · p(λ1)

σ1 · p(λ2)

]
A simple peak-picking method was adopted to obtain a set of candidate peaks (by

taking the local maxima). The final peaks were then chosen so that the amplitude of the peak
was not less than the optimum threshold. Counting of the number of chews was initiated and
terminated by swallowing events. Accordingly, a reliable estimation of swallowing events is
desirable to increase estimation accuracy. The specific patterns of muscle movements around
the neck associated with swallowing were represented by means of a hidden Markov model
(HMM). Hence, an HMM recognizer was employed to detect swallowing events. The HMM
features were heuristically determined so that the accuracy of swallowing detection was
maximized. The experimental results showed that the log-energy of each of the spectral bins,
ranging from 2∼50 Hz, yielded the highest accuracy of swallowing detection.

The relationship between chewing counts and the amount of food intake was repre-
sented by a linear regression model. Although the amount of food intake was expected to
be more accurately estimated by employing a nonlinear regression model (e.g., the multi-
layer perceptron), the experimental results showed that the accuracy of a linear model was
slightly superior to that of a nonlinear model. The average percentage error of a linear
model was 0.05 lower than that of a nonlinear model. The regression coefficients were
obtained differently from food items using training data. This requires the identification of
the food item currently being eaten. To this end, a visual modality was used to recognize
food items with relatively high accuracy.

3.2. Recognition of Food Items

To date, there are many image recognition schemes that can be applied to automatic
food recognition. Among them, a supervised learning approach that employs convolutional
neural networks (CNN) was adopted in this study. The architecture of the CNN, including
the number of layers and the kernel size of each layers was heuristically determined
using a validation dataset that was 10% of the entire learning dataset. The resultant CNN
was composed of two convolution/max pooling layers and a fully connected multi-layer
perceptron (MLP) with a recognition output, and is presented in Figure 7. The kernel sizes
of the 1st and the 2nd convolution layers were 11 × 11 and 7 × 7, respectively, while the
window sizes of the max pooling layers were commonly 4 × 4. I tested the performance
in terms of image classification accuracy according to different sizes of CNN input (input
image sizes). The result showed that sizes of 64 × 64 or 128 × 128 yielded the highest
classification accuracy. Lower resolution is more preferable when reducing computational
loads of the small-size real-time hardware system. Accordingly, all images from the camera
were reduced to 64 × 64 for input to the CNN.
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There were three fully connected layers in the proposed CNN, which corresponded
to input from the final convolution layer, and to hidden and output layers. The numbers
of nodes for each of the layers were determined using the validation dataset as 128, 112,
and 18, respectively. Note that the output nodes include a “no food” node, which is used
to discriminate whether the incoming image is a valid food image. A rectified activation
function was adopted for the the hidden layer. A soft-max function was employed for
the output layer. All parameters of both convolutional and fully connected layers were
initialized by random values. A back-propagation algorithm involved with the minimum
cross entropy (MCE) criterion was used in the training procedure. The learning gain η was
first set to 0.005 and changed to 0.001 after five epochs. A total of 100 epochs resulted in a
trained CNN with sufficient performance in terms of food recognition accuracy. A dropout
regularization with a keep probability of 0.75 was employed. Experimental results showed
that the accuracy of food classification was highly affected by the mini-batch size and the
decision of whether or not to apply a random batch shuffle. A high level of classification
accuracy was achieved by applying a relatively small mini-batch size (≤10) and a random
batch shuffle. It is also interesting to note that the overall architecture of the CNN used
in this study was simpler than others popularly used in image recognition tasks (e.g.,
ResNet-50, Inception-v3, Xception). This is mainly due to the smaller number of image
items being recognized (31 vs. 1000). A lower level of accuracy was often observed for a
test dataset when a relatively large number of convolution layers (≥3) was adopted.

Figure 7. Architecture of the proposed CNN for the classification of food type.

3.3. Estimating the Food Intake Amount

In this study, the amount of food consumed was given by a linear combination
of the chewing counts and the corresponding regression coefficients. The estimation
was determined by the amount ingested between swallows. The period between two
neighboring swallowing instances was referred to as “one food intake cycle” in this study.
For the n-th food intake cycle, sn, N(sn) denotes the chewing counts, and the estimated
amount of food consumed M̂(sn) is given by

M̂(sn) = c1N(sn) + c0 (3)

where c1, c0 represent the regression coefficients. Let M(sn), and F(sn) denote the true
amount of food consumed (in mass) and the index of food kind, respectively, and the
regression coefficients are obtained by

c(i)1 , c(i)0 = arg min
c1,c0

∑
sn∈Si

{M(sn)− M̂(sn)}2, 1 ≤ i ≤ N f (4)

where Si is the set of the food intake cycles when the i-th food is consumed, i.e.,
Si =

{
sn|F(sn) = i

}
and N f is the number of food types. To obtain the reference amount

of food consumed, the food was cut into edible amounts each time and the weight was
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measured. Then, the subjects participating in the experiments were asked to eat all the
given food pieces during one food intake cycle. Note that the regression coefficients were
obtained separately for each food. Such a food-by-food basis regression analysis is ben-
eficial for achieving a high level of estimation accuracy for each food. The drawback of
this approach, however, is that the performance is more or less affected by the recognition
accuracy of the adopted food classification scheme. The experimental results showed that
the overall errors in food amount estimation were not significantly increased unless the
classification accuracy was lower than 95%. Note that experimental results showed that
the regression coefficients varied from subject to subject, even for the same food. This
was because chewing sounds also varied depending on the person’s age, health, social
factors, and teeth condition. Accordingly, food intake estimation was implemented in a
subject-dependent way.

The entire process of food intake estimation was designed to minimize user interven-
tion and could be implemented using a small microprocessor board (Resberry pi zero W).
An image was captured every 1.5 s. The captured image was inputted to the CNN. Detec-
tion of chewing and swallowing was simultaneously carried out on the incoming UDS.
If swallowing was detected, the last 10 captured images were used to determine whether
the period between the previous and current swallowing instances was a valid food-intake
cycle. This was based on the assumption that food intake was completed (by swallowing)
within 15 s of the food being exposed to the camera. If multiple food items were detected
during this period, the recognition result nearest to the current swallowing instance was
selected as the current food item. A period of 15 s was heuristically determined, which was
a good compromise between the performance and the necessary memory size.

4. Experimental Results
4.1. Experimental Setup

Eight healthy subjects (5 males and 3 female with ages ranging from 20 to 52 years)
participated in the evaluation tests. The average body mass index (BMI) of the subjects was
23.2 kg/m2. The subjects had no medical complications that would have interfered with
normal food intake. The food items were selected by considering the preferences of the
subjects and by striking a balance between healthy and unhealthy foods, which included
chicken breasts, mocha bread, fried chicken, potato chips, cashew nuts, pizza, vegetable
salads, rye bread, plain yogurt, fried potatoes, strawberries, bananas, rice cakes, chocolate,
ramen noodles (Korean style), fried rice, almonds, chocolate bars, dumplings, hot dogs,
jelly, jerky, beef steak, spaghetti, sweet red-bean porridge, dried sweet potatoes, cereal
(with milk), sandwiches, tangerines, and fried eggs. Such food items covered the various
physical properties of everyday foods, such as hardness, cruchiness, and moisture content.
The portions of the food served to each subject were divided into amounts they could
easily chew and swallow. Accordingly, the subjects were requested to swallow only once if
possible, but were allowed to swallow twice if necessary.

For all subjects, the total amount of food eaten was limited to alleviate the effect of
subject fatigue and problems caused by the excessive intake of certain foods. This was
achieved by dividing all acquisition times for each subject into five sessions, each of which
consisted of seven sub-sessions. In each sub-session, the subjects were asked to eat certain
foods repeatedly. One of 30 food items was selected in each sub-session. The number
of repetitions for each session was determined according to the types of food and the
eating patterns of the subjects. The subjects were allowed to drink water or cola between
the sub-sessions, but the samples recorded for these moments were removed prior to the
evaluation test. The average number of food intake cycles per food item was 25, and,
hence, the average number of total food intake cycles was 25 × 30 = 750 per subject.
The properties of the dataset are summarized in Table 2, where the values were obtained
by averaging the results for all subjects.
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Table 2. Dataset properties per food item.

Food Item Total Duration (s) Avg. Duration (s) Total Weight (g) Avg. Weight (g)

chicken breast 540.0 21.6 52.4 2.1
mocha bread 540.0 20.0 127.2 4.7
fried chicken 634.4 26.4 126.1 5.3
potato chips 450.8 18.0 69.0 2.8
cashew nuts 388.0 14.4 26.3 1.0

pizza 950.0 30.6 370.4 11.9
vegetable salad 633.5 25.3 228.4 9.1

rye bread 703.8 28.2 72.9 2.9
yogurt 140.2 5.6 241.3 9.7

fried potato 388.2 15.5 84.8 3.4
strawberry 202.7 8.4 209.9 8.7

banana 309.8 12.4 285.5 11.4
rice cake 483.7 18.6 164.2 6.3
chocolate 247.9 9.9 18.7 0.7

ramen 530.2 19.6 208.8 7.7
fried rice 580.5 23.2 257.3 10.3
fried egg 295.5 12.3 68.1 2.8
almond 436.6 17.5 85.4 3.4

chocolate bar 343.5 12.7 251.0 9.3
dumpling 254.2 10.2 279.5 11.2

hot dog 411.0 16.4 171.8 6.9
jelly 357.2 14.3 33.7 1.3
jerky 533.1 21.3 247.2 9.9

spaghetti 471.4 18.9 90.3 3.6
beefsteak 592.7 22.8 313.7 12.1

sweet red-bean porridge 417.0 16.0 276.9 10.7
dried sweet potato 313.8 12.1 57.6 2.2
cereal (with milk) 287.2 11.5 100.9 4.0

sandwiches 499.2 18.5 55.9 2.1
tangerine 446.7 17.9 106.2 4.2

Total 13,382.7 17.4 4681.4 6.1

In training the HMM parameters for swallowing detection, a typical left-to-right model
was used. The distribution of the features was modelled using mixtures of diagonal Gaus-
sians. The number of states for HMM was determined heuristically, at five. The number of
Gaussians was determined in the same way, at three. The HMM parameters were derived
from the training set (500 swallowing events). The longitudinal pharyngeal muscles are
known to condense and expand the pharynx as well as help elevate the pharynx and
larynx during swallowing. Accordingly, the surface electromyogram (sEMG) signals were
acquired from the neck skin close to the inferior pharyngeal constrictors. The ground-truth
swallowing events were obtained from the prominent peaks of the low-pass filtered sEMG
signals. The instances of each of the swallowing events were annotated as “reference
swallowing instances” to train the HMM.

The food images were captured before the subjects ate the foods, and were not cap-
tured during the meal. The average number of captured images for each food type was
877. For each food, various images were captured, which accounted for the view angle,
the ambient light conditions, the food location, the types of trays, and the amount of
food consumed. There are several food image datasets for food recognition such as UEC-
FOOD100 [22], FOOD-101 [23], and VIREO Food-172 [24]. The food items employed in this
study are also found in such datasets, which allowed for their use in the training of the
image classifier. Although the food images captured from the camera used in this study
were sometimes different from the food images in the datasets, the inclusion of the food im-
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age datasets in the training data were helpful for reliable food recognition. Therefore, 30%
of the training/evaluation images were borrowed from the above-mentioned food image
datasets. The ratio between the training data for learning CNN and test data for evaluation
was set at 7:3. The validation dataset was randomly selected from the training dataset,
which was used to determine the configuration of CNN. The set of the non-food images
was composed of everyday images including people, animals, furniture, and landscapes.

The experimental results showed that the food classification accuracy of the visual-
only estimator was 99.02% for 30 food items. The confusion matrix was shown in Table 3,
obtained from a total of 7894 test images. Due to its high classification accuracy, it can be
observed that diagonal components are prominent and other components are almost zero.
Such results demonstrated that the overall performance was not seriously affected by the
usage of recognized food items instead of true food items.

Table 3. The confusion matrix for 30 food items and 7894 food images. (pz:pizza, rb:rye bread, bn:banana, ch:milk chocolate,
fp:fried potato, pc:potato chips, cn:cashew nuts, sb:strawberry, mb:mochabread, vs:vegetable salad, yg:yogurt, ck:chicken
breast, fr:fried rice, fe:fried egg, rc:rice cake, rn:ramen noodle, fc:fried chicken, al:almond, cb:chocolate bar, cm:cereal with
milk, dp:dumpling, hd:hotdog, je:jelly, jk:jerky, og:orange, rb:red-bean porridge, sw:sandwiches, sp:spaghetti, bs:beefsteak,
ds:dried sweet potato).

Predicted
pz rb bn ch fp pc cn sb mb vs yg ck fr fe rc rn fc al cb cm dp hd je jk og rb sw sp bs ds

A
ct

ua
l

pz 298 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rb 0 297 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0
bn 0 0 300 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0
ch 0 0 0 312 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0
fp 0 0 1 0 297 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
pc 0 0 0 0 0 299 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
cn 0 0 0 0 0 0 299 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
sb 0 2 0 0 0 0 0 298 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
mb 0 1 0 0 0 0 0 0 299 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
vs 0 0 0 0 0 1 0 0 0 298 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
yg 0 0 0 0 0 0 0 0 0 0 312 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ck 0 0 0 0 0 0 0 0 0 0 0 299 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
fr 1 0 0 0 1 0 0 0 0 0 0 0 295 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
fe 0 0 0 0 0 0 0 0 0 0 0 0 0 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0
fc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 360 0 0 0 0 0 0 0 0 0 0 0 0 0
al 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 138 0 0 0 0 1 33 6 0 0 0 1 0
cb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 180 0 0 0 0 0 0 0 0 0 0 0
cm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 180 0 0 0 0 0 0 0 0 0 0
dp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43 8 120 0 0 0 0 0 0 0 0 9
hd 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 171 0 0 0 0 4 0 0 5
je 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 432 0 0 0 0 0 0 0
jk 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 178 0 0 0 0 0 0
og 0 0 0 2 0 0 0 2 0 0 4 0 0 0 0 0 0 1 0 0 0 0 0 0 169 0 0 2 0 0
rb 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 3 0 174 0 0 0 0
sw 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 178 0 0 1
sp 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 296 0 0
bs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 179 0
ds 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 180

4.2. Estimation Results of Food Intake Amount for Each of the Modalities

The estimations for food intake amounts were first evaluated for each modality (audio,
ultrasound, and vision). The mean absolute percentage error [20] (MAPE) in mass was
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used as an evaluation metric. Eventually, the calories can be computed by the estimated
weight and the nutrition facts for each food. For the k-th food item, the MAPE is given by

MAPEk =
1

Nk

Nk

∑
n=1

|Mk(sn)− M̂k(sn)|
Mk(sn)

(5)

where Mk(sn) and M̂k(sn) are the true and estimated weights for the n-th food intake
cycle, respectively. Nk is the total number of samples for the k-th food. Both the audio and
ultrasonic modalities estimated food intake amount by using the type of food that was
recognized by the CNN-based classifier. Note that audio modality method used audible
frequency range signal to detect chewing and swallowing instances, while demodulated
ultrasonic signals were used in the ultrasonic modality method. The MAPEs for each
modality are presented in Table 4, where the results were obtained under noise-free en-
vironments. The average MAPE of the ultrasonic modality estimator was comparable to
that of the audio-modality estimator. Although for all subjects, the average MAPEs of the
ultrasonic-modality estimator were commonly lower than those of the audio-modality
estimator, the differences were not significant for all subjects. This was also confirmed by a
significance test (a two-way ANOVA test), in which the p-value of the factor “modality”
was 0.3023 (d f = 1). Such results were somewhat expected, since it has been experimen-
tally confirmed that the ultrasonic signals can be approximated as a modulated version
of the corresponding audio signals. Visual inspection revealed that some details of the
audio signals (mainly corresponding to the high-frequency components) were lost in the
demodulated ultrasonic signals. This resulted in slight differences in terms of the MAPE
from the audio-modality estimator.

The performance of the visual-modality estimator was also evaluated for comparison.
A regression CNN was employed to estimate food amount [18,19]. The structure of the
CNN was heuristically determined to minimize the overall MAPE for the test data set.
The food images were captured using the same camera as that used for the audio- and
ultrasonic-modality estimator. In the original studies [18,19], the caloric content of the
foods was estimated, but the present study estimated the weights (amounts) of the foods.
For each food, the average number of acquired images and the number of different amounts
(in weight) was 1270 and 25, respectively. The average MAPE appears at the bottom of
Table 4. The MAPE of the video-only estimator was higher than that of other estimators.
These results indicate that although food types were correctly classified using the trained
CNN, there is a limit to estimating the amount of food intake by visual information alone.
That result shows that the average MAPE of the video-only estimator was somewhat lower
than that in previous studies. (e.g., 8.2% in [20]). In the present study, however, the results
were obtained from a single image (not a stereo image), and experiments were carried out
on a wide variety of food amounts. Consequently, it is apparent that the collaborative use
of audio and visual information (the types of food and the number of chewing events are
estimated by using visual and audio information, respectively) is very helpful in achieving
high accuracy in the estimations of food amount.

Table 4. The MAPEs for each modality and each subject (sub-1∼8).

Modality sub-1 sub-2 sub-3 sub-4 sub-5 sub-6 sub-7 sub-8 Average

Audio + visual 13.5 15.2 13.8 14.7 15.9 14.3 15.5 15.8 14.6

Ultrasonic + visual 13.9 15.5 14.8 15.1 16.0 15.2 15.8 16.2 15.3

Visual only 19.45
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4.3. Estimation Results of Food Intake Amount for Each Food Item

Accuracy in estimating the food amounts was investigated for each food. The results
are summarized in Figure 8. There was no clear difference in the MAPEs of the audio-
and ultrasonic-modality estimator. This was confirmed by the fact that the correlation
and the root mean squared error (RMSE) between the two MAPEs were 0.9727 and 1.14,
respectively. For a total of 27 food items, the percentage error of the ultrasonic estimator
was less than 10%. Such results indicate that, for various types of food, ultrasonic Doppler
signals are as useful as audio signals in estimating the amount of consumed food.

The differences in the MAPEs between the specific food groups were also investi-
gated. First, all food items used in the experiments were split into healthy and unhealthy
food groups according to diet guidelines recommended by the world health organization
(WHO) [39,40]. The accuracy of food intake estimation was then evaluated for two groups
(healthy foods: bananas, chicken breast, cashew nuts, strawberries, vegetable salad, rye
bread, yogurt, dried sweet potatoes, tangerines, and almonds, and, unhealthy foods: choco-
late, fried potatoes, mocha bread, fried chicken, potato chips, pizza, ramen, dumplings,
chocolate bar, and beefsteak). The average MAPEs for the healthy and unhealthy food
groups were 15.62 and 14.23, respectively, when the audio-modality estimator was employed.
Similar results were obtained when using the ultrasonic-modality estimator (16.17 and 15.04
for healthy and unhealthy, respectively). Considering that the average MAPE for the audio-
modality estimator was 14.6 for all foods, the estimation accuracy for food amount was
slightly reduced when the healthy foods were eaten. However, the 2-way ANOVA test
showed that there was no significant difference between the two groups. Hence, the dual-
modality (visual + audio or visual + ultrasonic)-based estimation method for food intake
amount worked reasonably well for both healthy and unhealthy foods.

A similar trend was also observed when evaluation was separately carried out on
hard/soft food groups. The hard food group includes chocolate, potato chips, cashew nuts,
chocolate bars, cereal, almonds, and jerky. Fried eggs, fried rice, mocha bread, rice cakes, ra-
men, strawberries, vegetable salad, yogurt, sweet red-bean portage, spaghetti, dumplings,
and jelly are included in the soft food group. The average MAPEs for the two groups
were 14.09 (hard group) and 13.80 (soft group), respectively, when the audio-modality
estimator was employed. Similar results were observed for the ultrasonic-modality esti-
mation method where the average MAPEs were 14.98 (hard group) and 14.19 (soft group),
respectively. Visual inspection of both audio waveforms and ultrasonic waveforms showed
that the chewing pattern was less consistent over time when relatively hard foods were
eaten. For example, the amplitude of the waveform was high at the beginning of chewing,
then decreased over time. The decreasing rate of the amplitude was varied according to
the amount of food, initial chewing force, and a subject’s teeth condition. This resulted
in changing the number of chewing events during a constant time interval. The inhomo-
geneity of food is another reason for performance degradation, clearly observed for pizza,
chocolate bars, and sandwiches. In the case of such foods, there was a significant change in
the number of chews, even for the same amount, which depended on the local properties
(solidity, moisture content, and ingredients). A possible solution, alleviating this problem,
is to use local visual information and recognize the local properties of foods.

A 2-way ANOVA test was performed to investigate the major factors affecting the
performance of food intake estimation. In this experiment, the factors affecting the MAPEs
included the subject (d f = 4) and the type of food (d f = 29). The results showed that the
p-values for each factor were 0.002 (the type of food) and 0.654 (subject). This indicated
that MAPEs are strongly affected by the type of food, while the variation in MAPEs for
subjects was not significant. Such results were obtained when using the ultrasonic-modality
estimator. Similar results were observed for the audio-modality estimator. These results
were mainly due to the usage of the subject-dependent estimation rules.
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Figure 8. The MAPEs for each modality and each food item.
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4.4. The Accuracy of Food Intake Amount Estimation under Noisy Environments

Thus far, all presented results were obtained under a noise-free environment. However,
there are many kinds of interference in most meal situations. Such factors should be consid-
ered for practical application. For this section, the possibility of using the ultrasonic-based
estimation method was investigated under actual meal situations. The noisy audio signals
were obtained by digitally adding the noise signals to the clean audio signal. Note that envi-
ronmental noises were mainly observed in the auditory frequency band and were very rarely
found near the ultrasonic band used in this study. Hence, noise signals were only added to
audio signals. The SNR was controlled by changing the scale factor of the noise signal before
addition. The noise signals were separately recorded using the developed sensor in various
eating environments that included cafeterias, restaurants, and home dining rooms.

To investigate the range of the signal-to-noise ratio (SNR) for most eating environ-
ments, the average levels of chewing sounds and noise signals were computed. Two food
items (cashew nuts and bananas) were chosen since the difference in amplitude between
the chewing sounds of the two foods was relatively large. Thus, a wider range of SNR was
obtained by using these two foods. SNRs were computed by using chewing sounds from
two subjects (subject-1 and subject-2) and the noise signals acquired from three different
cafeterias, two different restaurants, and each subject’s home dining room. A wide variety
of environmental interferences (conversation, sounds caused by the use of cutlery such as
spoons, forks, chopsticks, etc., and sounds from music and TV) were allowed for recording
noise signals.

Examples of the SNRs measured for the various eating situations are presented in
Table 5. For the same environment, the SNR varied slightly from subject to subject, since
the level of the chewing sounds varied slightly according to the subject. The overall SNRs
of cashew nuts were higher than that those of bananas. This was because the level of
chewing sounds is relatively high when chewing cashew nuts. Compared with cafeterias
and restaurants, the noise levels from the home dining rooms were relatively small. Ac-
cording to such results, the SNRs of ∞ (noise-free), −5.25 dB, −17.5 dB, and −19 dB were
selected for the subsequent experiments. These SNRs were the most common values under
each environment.

Table 5. An example of the measured SNR (in dB) for the various eating environments, for the two
subjects (sub-1 and sub-2) and for the two food items (cashew nuts and banana).

Food Item Subject Cafe-1 Cafe-2 Rest-1 Rest-2 Rest-3 Home

Cashew nuts
sub-1 −10.09 −14.31 −14.49 −15.98 −16.42 −2.70

sub-2 −9.21 −13.36 −12.90 −14.66 −14.61 −1.16

Banana
sub-1 −12.65 −16.87 −17.05 −18.54 −18.98 −5.26

sub-2 −11.98 −16.12 −15.67 −17.43 −17.32 −3.93

The MAPEs of the clean audio signal, noisy audio signal, and ultrasonic signal are
shown in Table 6. All results presented in this table were obtained by averaging all food
items. The evaluation was carried out on the five subjects (subject 1–5). As expected,
the performance of food amount estimation was generally degraded as the SNR decreased
when the audio modality was used. The 2-way ANOVA test showed no clear difference in
the MAPEs between a noisy signal at −5.25 dB SNR and an ultrasonic signal (p = 0.575).
For low SNRs (−17.5 and −19 dB), however, significant differences were observed between
the two modalities (audio/ultrasound) (p = 0.018 and p = 0.011, for −17.5 dB and −19 dB,
respectively). The average MAPE for ultrasonic signals was slightly lower than that of the
audio signal in the case of a noise-free and relatively high SNR (−5.25 dB). These results
verified that the ultrasonic signal was as useful for food amount estimation as the noise-free
audio signal. Moreover, a good performance for the ultrasonic signal was maintained even
under noisy environments. The major reason for the noise-robustness of the ultrasonic
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signal against environmental noise is that the frequency range of the background noise did
not overlap with that of the ultrasonic signal (38∼42 kHz).

Table 6. The MAPEs of the clean audio signal, noisy audio signal, and ultrasonic signal. All results
were obtained by averaging all food items.

sub-1 sub-2 sub-3 sub-4 sub-5 Avg.

Clean audio 13.5 15.2 13.8 14.7 15.9 14.62
Noisy audio (SNR = −5.25 dB) 13.7 15.2 14.5 14.8 15.5 14.74
Noisy audio (SNR = −17.5 dB) 15.2 17.5 16.3 17.6 17.1 16.74
Noisy audio (SNR = −19.0 dB) 15.4 17.8 16.6 17.0 17.2 16.80

Ultrasound 13.9 15.5 14.6 15.1 16.0 15.02

5. Conclusions

Automatic tracking of the types and amounts of consumed foods is very helpful for
individuals who are engaged in a diet program. There are many techniques that are useful
in the implementation of an automatic diet tracking system. In this study, acoustic and
visual information was cooporatively used to automatically estimate food intake amount.
It was assumed that specific patterns of ultrasonic Doppler would be observed when
chewing foods. Hence, chewing events were detected using the ultrasonic signals received
from the eating person’s mouth region. The amount of consumed food was computed
via linear regression analysis between the chewing count and the amount of food intake.
Evaluation tests were carried out on 30 food items, commonly eaten in daily life, in order
to verify the effectiveness of the proposed method. The results showed that the ultrasonic
signal was a good alternative to the audio signal. Moreover, the performance of this food
amount estimation method was maintained even in noisy environments. Since there are
many kinds of ambient interferences in real-world environments, ultrasonic-based methods
would be a good choice for practical use.

Although the sensor device developed was light and small in size, the wearing of the
device can sometimes cause discomfort to users. The usage of wireless data transmission
and further reducing size of the sensor/camera modules are a possible solution for this
problem. Increasing the number of food items would be desirable to extend the usability of
the proposed method. Our future study will focus on this issue.
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