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Abstract: In this article, we introduce a new discrete fractional transform for data sequences whose
size is a composite number. The main kernels of the introduced transform are small-size discrete
fractional Fourier transforms. Since the introduced transformation is not, in the generally known
sense, a classical discrete fractional transform, we call it discrete pseudo-fractional Fourier transform.
We also provide a generalization of this new transform, which depends on many fractional parameters.
A fast algorithm for computing the introduced transform is developed and described.

Keywords: signal and image processing; discrete fractional Fourier transform; Kronecker product

1. Introduction

Discrete fractional transforms are the generalizations of the conventional discrete
transforms with an additional fractional parameter. They have been introduced in the
1990s. Noteworthy discrete fractional transforms, such as the discrete fractional Fourier
transform (DFrFT) [1–3], discrete fractional Hartley transform [4], discrete fractional cosine
and sine transforms [5], discrete fractional Hadamard transform (DFrHT) [6] have been
defined. They are widely used in various fields of science and technology, including
image representation and compression [7], image encryption [8], digital watermarking [9],
adaptive filtering [10,11] and others. Among these transforms, the DFrFT has been applied
in most practical contexts. To date, several effective algorithms have been developed
to implement this transform [5,12,13]. In [14], the DFrFT was generalized, so that it
depends on many fractional parameters. It was named the multiple-parameter discrete
fractional Fourier transform (MPDFrFT). In our previous work [12], we have proposed
a fast algorithm for the DFrFT and MPDFrFT. However, even this algorithm was quite
computationally intensive. Therefore, our goal was to further reduce the complexity of
calculations while preserving the properties of fractionality. In this article, we present
a new discrete pseudo-fractional Fourier transform and its multiple-parameter version
as well as a fast algorithm to calculate them. A similar approach was proposed in our
previous work [15] but concerned with the use of DFrHT kernels. As a result of this
approach, a new orthogonal base was obtained and a fast algorithm for discrete transform
in this base was synthesized. This transform can be implemented using small-size discrete
fractional Fourier transforms, for which algorithms were described in [13]. The algorithm
of the proposed transform has a parallel, simple and modular structure, which makes it
convenient for hardware implementation.

2. Mathematical Background

The normalized discrete Fourier transform (DFT) matrix of order N is defined as follows:
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where wN = e−j 2π
N , j is the imaginary unit, and 1/

√
N is the normalizing factor. Since FN

is a unitary and symmetric matrix, it can be diagonalized, i.e., represented as a product [3]

FN = ZNΛNZ−1
N (2)

where ΛN is an N×N diagonal matrix, whose diagonal entries are the eigenvalues of
FN . ZN is the matrix whose columns are normalized mutually orthogonal eigenvectors
of the matrix FN (hence Z−1

N = ZT
N). The eigenvector z(k)N corresponds to the eigenvalue

λk. The matrix FN has only four different eigenvalues: 1,−1, j,−j and, for N ≥ 4, the
eigenvalues are degenerated and the set of eigenvectors is not unique [3]. For this reason,
a particular eigenvector set should be specified.

The discrete fractional Fourier transform (DFrFT) matrix is a power of the DFT matrix
with one real parameter a in the exponent. This parameter is usually a fraction, hence the
term fractional. The DFrFT matrix could be calculated from the eigenvalue decomposition
of DFT matrix [3]

Fa
N = ZNΛa

NZT
N (3)

For a = 0, the DFrFT matrix is equal to the identity matrix, and, for a = 1, it becomes
the ordinary DFT matrix. The definition (3) of DFrFT was first introduced by Pei and
Yeh [1,2]. They defined the DFrFT in terms of a particular set of eigenvectors, namely the
discrete counterpart of the set of Hermite–Gaussian functions. In our article, we assume
that the set of eigenvectors of the DFT matrix and their ordering were determined according
to the procedure described in [3]. These eigenvectors are not determined in an analytic
form. They can be calculated using numerical methods.

3. Definition of a New Transform

To determine a new transform matrix, we firstly represent the order of the transform
matrix N, which is assumed to be a composite number, as a product of positive integers
N = N1, N2, . . . , Nk, where k ≥ 2. The numbers N1, N2, . . . , NK may but need not to be
prime numbers.

We define the fractional-like Fourier transform matrix in the following way:

F(a,N1,N2,...,NK)
N = Fa

NK
⊗ Fa

NK−1
⊗ . . .⊗ Fa

N1
(4)

where Fa
Nk

, k = 1, 2, . . . , K, are the discrete fractional Fourier transform matrices with
fractional parameter a, which are determined according to Equation (3), and ⊗means the
Kronecker product of matrices operation [16]. The definition (4) of the matrix F(a,N1,N2,...,NK)

depends on the way how N is decomposed into the product of integers. Now, we will
show that the matrix defined in this way satisfies most of the requirements imposed on
the fractional transform matrix, i.e., the unitarity and index additivity. However, it is not
reducible to the usual Fourier transform matrix when the fractional parameter a is equal to
one. At the beginning, we prove unitarity of the matrix F(a,N1,N2,...,NK)

N . The matrix Fa
Nk

as a
matrix of discrete fractional Fourier transform satisfies

(Fa
Nk
)−1 = (Fa

Nk
)∗ = F−a

Nk
(5)

where ∗ means conjugate transpose of a matrix.
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For the Kronecker product of any invertible matrices A and B, the following equality
is true [16]:

(A⊗ B)−1 = A−1 ⊗ B−1 (6)

Therefore, the matrix inverse to F(a,N1,N2,...,NK)
N has the form

(F(a,N1,N2,...,NK)
N )−1 = F−a

NK
⊗ F−a

NK−1
⊗ . . .⊗ F−a

N1
= F(−a,N1,N2,...,NK)

N (7)

In case of proving unitarity of the matrix F(a,N1,N2,...,NK)
N , the following property of the

Kronecker product of any matrices A and B should be used [16]:

(A⊗ B)∗ = A∗ ⊗ B∗ (8)

Using this property and Equations (5) and (7), we may write

(F(a,N1,N2,...,NK)
N )∗ = (Fa

NK
⊗ Fa

NK−1
⊗ . . .⊗ Fa

N1
)∗

= (Fa
NK

)∗⊗ (Fa
NK−1

)∗⊗ . . .⊗ (Fa
N1
)∗

= F−a
NK
⊗ F−a

NK−1
⊗ . . .⊗ F−a

N1
= (F(a,N1,N2,...,NK)

N )−1

Hence, the matrix F(a,N1,N2,...,NK)
N is unitary.

The next requirement for a fractional transform is index additivity, which means
that for any real fractional parameters a and b, the result of two successive transforms
with parameters a and b is the same as the result of one transform with parameter a+b.
To demonstrate that the defined transform matrix (4) satisfies this property, we can use
the appropriate property of the matrix Fa

Nk
again. This matrix, being a matrix of discrete

fractional transform, fulfills
Fb

Nk
Fa

Nk
= Fa+b

Nk
(9)

We will use this fact and the next property of the Kronecker product, which is true for
matrices A, B, C and D of such sizes that the matrix products AC and BD exist [16]

(A⊗ B)(C⊗D) = (AC)⊗ (BD) (10)

We obtain
F(b,N1,N2,...,NK)

N F(a,N1,N2,...,NK)
N

= (Fb
NK
⊗Fb

NK−1
⊗ . . .⊗Fb

N1
)(Fa

NK
⊗Fa

NK−1
⊗ . . .⊗Fa

N1
)

= (Fb
NK

Fa
NK

)⊗ (Fb
NK−1

Fa
NK−1

)⊗ . . .⊗ (Fb
N1

Fa
N1
)

= Fa+b
NK
⊗ Fa+b

NK−1
⊗ . . .⊗ Fa+b

N1
= F(a+b,N1,N2,...,NK)

N

Moreover, the defined matrix (4) is also symmetric, i.e.,

F(a,N1,N2,...,NK)
N = (F(a,N1,N2,...,NK)

N )T (11)

Its symmetry is caused by symmetry of the matrix Fa
Nk

.
Taking into account the above considerations, we can conclude that the defined matrix

has many properties in common with the DFrFT matrix. However, since this matrix
is not equal to the DFrFT matrix and does not fulfill all the requirements for fractional
transforms, we call it the discrete pseudo-fractional Fourier transform matrix and the
transform determined by it—the discrete pseudo-fractional Fourier transform (DPFrFT).
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4. Visualization of the DPFrFT

The DFrFT was specified for the input data vector, however, it is often used in image
processing. We chose this type of input data because it is suitable for transform visualization.
The two-dimensional transform of an image consists in determining one-dimensional
transforms of all columns and all rows of the matrix representing this image. In matrix
notation, it can be written as follows:

YN×M = FNXN×MFT
M (12)

where XN×M is the matrix representing an input image, FN and FM—matrices of one-
dimensional transforms, which operate on columns and rows of the input matrix, respec-
tively, and YN×M is the output matrix.

Since we chose the DFrFT as the starting point, we will compare the results of DFrFT
and DPFrFT transforms obtained for some images. The calculations and visualizations
have been made in the Matlab R2020b environment. Two well-known testing images—
“Lena” and “Boat”, of size 512 × 512 pixels, were chosen to compare the DFrFT and
DPFrFT transforms. In the case of DPFrFT, the number N = 512 was decomposed into the
product N1N2N3 = 16× 8× 4, so according to Equation (4), F(a,16,8,4)

512 = Fa
4⊗ Fa

8⊗ . . .⊗ Fa
16.

For the input 512× 512 matrix X512, the output Ya
512 of DFrFT is calculated according to

Equation (12)
Ya

512 = Fa
512X512(Fa

512)
T (13)

Analogously, the output of DPFrFT is calculated as follows:

Y(a,16,8,4)
512 = F(a,16,8,4)

512 X512(F
(a,16,8,4)
512 )T (14)

Before calculating each transform, the grayscale image, represented by the matrix
X512, is converted from the type uint8 into the type double, with values in the range [0, 1],
using the Matlab function im2double. Then, the transforms were performed on the rows
and columns of the input matrix, according to Equations (13) and (14), respectively. Since
the results are complex matrices, the modulus, the real part and the imaginary part of each
output will be presented. In order to visualize the outputs (the modulus, the real part and
the imaginary part), they should also be scaled to the range [0, 1]. Logarithmic scaling was
performed as follows:

Yscaled =
log2(1 + |Y|)

log2(1 + max(|Y|)) (15)

where Y can be the modulus, the real part, or the imaginary part of the output matrix of each
transform. Yscaled is the matrix Y scaled to the range [0, 1]. | · | denotes the absolute value
and max is the largest value in the matrix. In the end, each scaled matrix is converted from
the type double into the type uint8, using the Matlab function im2uint8, and visualized
using the Matlab function imshow. Figures 1–8 show the obtained images for the four
values of the fractional parameter a. In each figure, at the top, there is the original image.
In the middle, from left to right, there are the images of the modulus, the real part and
the imaginary part of its DFrFT, respectively. Analogously, in the bottom, there are the
modulus, the real part and the imaginary part of DPFrFT. It is easy to notice that an increase
in the fractional parameter a, both in the case of DFrFT and DPFrFT, makes the obtained
images less and less similar to the original image. In other words, they are becoming
more and more difficult to recognize. For the same value of the fractional parameter a in
DPFrFT images, the original image is more difficult to recognize than in DFrFT images,
which may indicate that DPFrFT is more useful for hiding/encrypting images than DFrFT.
Furthermore, it can be seen that in the DFrFT images, the large-scale elements of the
original image are more visible, while in the case of DPFrFT, the details are more visible.
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original

frac modulus frac real frac imaginary

pseudo modulus pseudo real pseudo imag

fractional parameter 0.1

Figure 1. Comparison of DFrFT and DPFrFT of the grayscale image “Lena” for fractional parameter
a = 0.1.

original

frac modulus frac real frac imaginary

pseudo modulus pseudo real pseudo imag

fractional parameter 0.1

Figure 2. Comparison of DFrFT and DPFrFT of the grayscale image “Boat” for fractional parameter
a = 0.1.
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original

frac modulus frac real frac imaginary

pseudo modulus pseudo real pseudo imag

fractional parameter 0.2

Figure 3. Comparison of DFrFT and DPFrFT of the grayscale image “Lena” for fractional parameter
a = 0.2.

original

frac modulus frac real frac imaginary

pseudo modulus pseudo real pseudo imag

fractional parameter 0.2

Figure 4. Comparison of DFrFT and DPFrFT of the grayscale image “Boat” for fractional parameter
a = 0.2.
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original

frac modulus frac real frac imaginary

pseudo modulus pseudo real pseudo imag

fractional parameter 0.3

Figure 5. Comparison of DFrFT and DPFrFT of the grayscale image “Lena” for fractional parameter
a = 0.3.

original

frac modulus frac real frac imaginary

pseudo modulus pseudo real pseudo imag

fractional parameter 0.3

Figure 6. Comparison of DFrFT and DPFrFT of the grayscale image “Boat” for fractional parameter
a = 0.3.
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original

frac modulus frac real frac imaginary

pseudo modulus pseudo real pseudo imag

fractional parameter 0.4

Figure 7. Comparison of DFrFT and DPFrFT of the grayscale image “Lena” for fractional parameter
a = 0.4.

original

frac modulus frac real frac imaginary

pseudo modulus pseudo real pseudo imag

fractional parameter 0.4

Figure 8. Comparison of DFrFT and DPFrFT of the grayscale image “Boat” for fractional parameter
a = 0.4.
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5. Multiple-Parameter Discrete Pseudo-Fractional Fourier Transform

There are applications of DFrFT, such as image encryption, in which it is more prefer-
able when the transform has many fractional parameters [14]. Such a transform gives more
degrees of freedom when the signal is represented in the MPDFrFT domain, which makes
its correct decryption more difficult. It is also possible to generalize in this way the DPFrFT
matrix (4). Let us define the matrix

F(a1,a2,...,aK ,N1,N2,...,NK)
N = FaK

NK
⊗ FaK−1

NK−1
⊗ . . .⊗ Fa1

N1
(16)

where a1, a2, . . . , aK are some real fractional parameters. The transform to which the
matrix F(a1,a2,...,aK ,N1,N2,...,NK)

N corresponds we call the multiple-parameter discrete pseudo-

fractional Fourier transform (MPDPFrFT) and its output vector y(a1,a2,...,aK ,N1,N2,...,NK)
N for

the input vector xN is set out below

y(a1,a2,...,aK ,N1,N2,...,NK)
N = F(a1,a2,...,aK ,N1,N2,...,NK)

N xN (17)

The matrix F(a1,a2,...,aK ,N1,N2,...,NK)
N is invertible and its inverse matrix is equal to

(F(a1,a2,...,aK ,N1,N2,...,NK)
N )−1= F−aK

NK
⊗ F−aK−1

NK−1
⊗ . . .⊗ F−a1

N1

= F(−a1,−a2,...,−aK ,N1,N2,...,NK)
N (18)

As in the case of the DPFrFT matrix, it can be easily shown that the MPDPFrFT matrix
is unitary and satisfies index additivity. When all fractional parameters are equal to each
other then the MPDPFrFT reduces to ordinary DPFrFT, that is,

F(a1,a2,...,aK ,N1,N2,...,NK)
N = F(a,N1,N2,...,NK)

N (19)

for a1 = a2 = . . . = aK = a.

6. Fast Algorithm for the Multiple-Parameter Discrete Pseudo-Fractional
Fourier Transform

Only the algorithm for MPDPFrFT will be presented because an algorithm for the
ordinary DPFrFT is its special case in which all fractional parameters are equal to each other.

We use the Fundamental Tensor-Product Factorization Theorem, which was proven
in [17]. It states that the tensor product of any square matrices An1 , An2 , . . . , Ant , where Ani

is an ni × ni matrix, can be factorized as follows:

An1 ⊗An2 ⊗ . . .⊗Ant =
t

∏
i=1

(IN(i−1) ⊗Ani ⊗ I N
N(i)

) (20)

Moreover, the factorization is correct for any permutation of the factors (IN(i−1) ⊗
Ani ⊗ I N

N(i)
). In this equation, In is the identity matrix of order n, N(i) = n1n2 . . . ni,

N(0) = 1 and N = N(t), where t denotes the number of factors.
Using the mentioned theorem to the tensor product in Equation (16) and noticing that

in this case t = K and N = N(K), we obtain

FaK
NK
⊗ FaK−1

NK−1
⊗ . . .⊗ Fa1

N1
=

K

∏
i=1

(IN(i−1) ⊗ FaK−i+1
NK−i+1

⊗ I N
N(i)

) (21)

If we change the order of the factors from the last to the first, which we can do
according to the mentioned theorem, and introduce a new index j = K − i + 1, then
we have
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FaK
NK
⊗ FaK−1

NK−1
⊗ . . .⊗ Fa1

N1
=

K

∏
j=1

(I N
N(j)
⊗ F

aj
Nj
⊗ IN(j−1)) (22)

Since the left side of the above equality is equal to the matrix of MPDPFrFT, so when
we enter the designation

R(ak ,Nk ,k)
N = I N

N(k)
⊗ Fak

Nk
⊗ IN(k−1) (23)

for k = 1, 2, . . . , K, we may write

F(a1,a2,...,aK ,N1,N2,...,NK)
N = R(aK ,NK ,K)

N R(aK−1,NK−1,K−1)
N . . . R(a1,N1,1)

N (24)

so, we have the following matrix-vector procedure to calculate the output of MPDPFrFT

y(a1,a2,...,aK ,N1,N2,...,NK)
N = R(aK ,NK ,K)

N R(aK−1,NK−1,K−1)
N . . . R(a1,N1,1)

N xN (25)

For example, we consider the case of N=12=2× 2× 3. In this case K = 3, N1 = 2,
N2 = 2 and N3 = 3. In this case, the algorithm for computing the output vector is
represented by the following matrix-vector procedure:

y(a1,a2,a3,2,2,3)
12 = R(a3,3,3)

12 R(a2,2,2)
12 R(a1,2,1)

12 x12 (26)

where the corresponding matrices take the forms

R(a1,2,1)
12 = I6 ⊗ Fa1

2 ⊗ I1 = I6 ⊗ Fa1
2 (27)

R(a2,2,2)
12 = I3 ⊗ Fa2

2 ⊗ I2 (28)

and
R(a3,3,3)

12 = I1 ⊗ Fa3
3 ⊗ I4 = Fa3

3 ⊗ I4 (29)

where Fak
Nk

is the DFrFT matrix of order Nk with fractional parameter ak, so

Fa1
2 =

[
f (a1)
00 f (a1)

01

f (a1)
10 f (a1)

11

]
, Fa2

2 =

[
f (a2)
00 f (a2)

01

f (a2)
10 f (a2)

11

]
, Fa3

3 =

 f (a3)
00 f (a3)

01 f (a3)
02

f (a3)
10 f (a3)

11 f (a3)
12

f (a3)
20 f (a3)

21 f (a3)
22

 (30)

Figure 9 shows a data flow diagram of a fast algorithm for a 12-point MPDPFrFT.
The data flow diagram is oriented from left to right and straight lines represent data
transfer operations. In turn, the rectangles denote small-sized DFrFT kernels that
implement the multiplications of the matrices Fak

Nk
, k = 1, 2, 3, by the corresponding

input vectors.
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Figure 9. Data flow diagram of the algorithm of multiple-parameter discrete pseudo-fractional
Fourier transform for N = 12 = 2× 2× 3.

7. Computational Complexity

We will now estimate the total number of multiplications and additions of complex
numbers needed to compute the output of MPDPFrFT (or DPFrFT if a1 = a2 = . . . = aK =
a), for the complex-valued input vector xN , according to Equation (25). We assume that the
matrices R(ak ,Nk ,k)

N , k = 1, 2, . . . , K are factorized as in Equation (23) and the matrices Fak
Nk

have been prepared in advance for the selected fractional parameters ak, k = 1, 2, . . . , K.
The numbers of arithmetic operations depend on the method of factorization of the number
N into the product N1N2 . . . NK and on the algorithm used for the calculation of the
DFrFT for individual k. When performing the matrix-vector multiplication according
to Equation (25), from the right side to the left, we have K steps (corresponding to the
multiplication of the matrices R(ak ,Nk ,k)

N , k = 1, 2, . . . , K by a vector). At the step k, there are
N/Nk multiplications of the matrix Fak

Nk
by the corresponding subvectors needed. If we

carry out the multiplication of the latter matrix by the corresponding subvector in the
classical way, we have N2

k multiplications and Nk(Nk − 1) additions of complex numbers.
Hence, the total numbers of multiplications L× and additions L+ of complex numbers are
equal to

L×=
K

∑
k=1

=
N
Nk

N2
k = N

K

∑
k=1

Nk (31)

L+=
K

∑
k=1

N
Nk

Nk(Nk−1)=N
K

∑
k=1

(Nk−1) (32)

For the example shown in Figure 1, i.e., N = 12 = 2× 2× 3, the numbers of additions
and multiplications of complex numbers are equal to 84 and 48, respectively.

It is necessary to emphasize that the matrices Fak
Nk

, k = 1, 2, . . . , K have a special
structure; therefore, the numbers of arithmetic operations when calculating the matrix-
vector product of each of them by the vector can be further reduced by about a half [12,13].
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8. Conclusions

The paper describes a new type of discrete fractional-like transform called the discrete
pseudo-fractional Fourier transform. We also present a generalization of this transform,
called multiple-parameter discrete pseudo-fractional Fourier transform. Finally, we pro-
pose a fast algorithm for calculating this transform. A distinctive feature of this transform
and its algorithm is that while maintaining all the advantages of fractionality and multi-
parametricity, a significant reduction in computational complexity is achieved compared to
the true DFrFT [12]. In addition, the algorithm has a regular modular structure. Typical
cores of the algorithm are standard small-size DFrFTs, which allows them to be used as uni-
fied building blocks in software or hardware implementation [13]. This will simplify and
unify the process of developing programs and digital signal processors that implement the
considered algorithm. Matrices of the proposed transform are defined by the smaller size
DFrFT matrices. Taking into account the specific properties of the introduced transform,
one can predict its interesting applications. However, these questions are beyond the scope
of our article.
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MPDFrFT multiple-parameter discrete fractional Fourier transform
DFT discrete Fourier transform
DPFrFT discrete pseudo-fractional Fourier transform
MPDPFrFT multiple-parameter discrete pseudo-fractional Fourier transform
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