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Abstract: The Bitcoin cryptocurrency is a worldwide prevalent virtualized digital currency concep-
tualized in 2008 as a distributed transactions system. Bitcoin transactions make use of peer-to-peer
network nodes without a third-party intermediary, and the transactions can be verified by the node.
Although Bitcoin networks have exhibited high efficiency in the financial transaction systems, their
payment transactions are vulnerable to several ransomware attacks. For that reason, investigators
have been working on developing ransomware payment identification techniques for bitcoin transac-
tions’ networks to prevent such harmful cyberattacks. In this paper, we propose a high performance
Bitcoin transaction predictive system that investigates the Bitcoin payment transactions to learn data
patterns that can recognize and classify ransomware payments for heterogeneous bitcoin networks.
Specifically, our system makes use of two supervised machine learning methods to learn the dis-
tinguishing patterns in Bitcoin payment transactions, namely, shallow neural networks (SNN) and
optimizable decision trees (ODT). To validate the effectiveness of our solution approach, we evaluate
our machine learning based predictive models on a recent Bitcoin transactions dataset in terms of
classification accuracy as a key performance indicator and other key evaluation metrics such as the
confusion matrix, positive predictive value, true positive rate, and the corresponding prediction
errors. As a result, our superlative experimental result was registered to the model-based decision
trees scoring 99.9% and 99.4% classification detection (two-class classifier) and accuracy (multiclass
classifier), respectively. Hence, the obtained model accuracy results are superior as they surpassed
many state-of-the-art models developed to identify ransomware payments in bitcoin transactions.

Keywords: bitcoin; cryptocurrency; ransomware; machine learning; cybersecurity

1. Introduction

The evolution of digitalization has resulted in massive users of the cryptocurrency
market space [1]. Many cryptocurrencies exist in the market, and Bitcoin has become the
most popular and the most valuable digital currency [2]. Bitcoin is a decentralized virtual
system that uses a peer-to-peer network and was firstly introduced in 2008 by Satoshi
Nakamoto [3]. In Bitcoin, the digital money is stored in virtual wallets and not owned or
administered by a central authority [4]. In general, cryptocurrency users can effortlessly
request payment transactions without user verification, and the payment addresses are
generated anonymously [5]. Therefore, Bitcoin payment transactions have been intensively
used around the globe [6]. In addition, Bitcoin transactions can be made between users
through network nodes without a third-party intermediary, and the transactions can be
verified by the nodes [7].

Bitcoin was built based on Blockchain technology, and this has brought several benefits
to the network communication of Bitcoin, such as improving security, decentralization, and
establishing trusted peer-to-peer networks [8]. However, the vast growth of Bitcoin users
requires more research and investigation on cybercrime threats. Furthermore, Bitcoin is
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vulnerable to cyberattacks, and the IP addresses of Bitcoin users can be easily leaked [9].
The anonymity of Bitcoin users increases users’ privacy; however, at the same time, it
increases the possibility of committing cyber-attacks [10]. Therefore, some Bitcoin users
rely on third-party tools to generate anonymous IP addresses such as VPNs and Tor [5].
However, this solution is not enough to enhance the security of Bitcoin users.

In general, any information security sector relies on the CIA triad, consisting of
confidentiality, integrity, and availability as a guide to maintain, govern, and regulate
security features, as shown in Figure 1 [11]. Thus, for example, confidentiality can be
threatened by a ransomware attack, integrity can be threatened by a false data injection
attack, and a DDoS attack is a threat to availability. However, this paper only addresses
ransomware attacks, which are a threat to the confidentiality of Bitcoin users.
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Ransomware is malware software that can lock users’ data or screens; therefore, the
users are blocked from accessing their own data. Ransomware decrypts the user data;
consequently, the user is no longer able to decrypt those data. In order to decrypt the
data, the user needs to pay ransom [1]. Ransomware is relatively a novel intrusion attack
targeting the cryptocurrency data of Bitcoin users [12]. It was reported that more than 500
existing ransomware families can target Bitcoin data; therefore, more research is needed
to identify and classify ransomware in order to prevent it [3]. Primarily, there are three
genders of ransomware based on their functionality, as represented in Figure 2. The first
type is crypto-ransomware, and in this type, the attacker encrypts the victim files and
asks the victim to pay a ransom. Crypto-ransomware is considered the most threatening
ransomware, and therefore it should be detected early [12]. The second type is locker-
ransomware, where the attacker locks the victim screen and asks for a ransom. Finally, the
third type is scareware, and in this type, the attacker only scares the victim and asks for a
ransom to be paid [12].

Encryption is a powerful technique widely used in network security to prevent user
data from unauthorized access. Basically, the message is encoded before sending and
decoded once it is received. Encryption has enhanced the security of Bitcoin, but unfortu-
nately, this technique can be misused by attackers. Therefore, attackers can block victim’s
files and extort ransom using ransomware [11].
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Figure 2. Types of Ransomware.

Therefore, it is essential to detect and identify the payment ransomware attack early
before its encryption function occurs to help minimize its risk. However, late detection of
ransomware increases the level of challenge of tackling the attack [13]. This paper proposes
a novel model to detect ransomware payments early for heterogeneous Bitcoin networks.
Basically, the Optimizable Decision Trees (Bootstrap Aggregation DT ensemble) method
and Shallow Neural Network based on multilayer Perceptron (MLP) are used to decide
whether the ransomware exists at the detection stage, and after that, they are used to classify
ransomware attacks into three ransomware attacks family, including Ransomware–Montreal
Family, Ransomware–Padua Family, and Ransomware–Princeton Family. To validate the
proposed model, we compared our proposed model with other models, and the comparison
result confirmed that our model competed with the existing models.

The rest of the paper is organized as follows: in Section 2, a literature review is
represented. In Section 3, system modeling and configurations are discussed. Section 4
presents the results and discussion. Finally, in Section 5, we provide a conclusion of the
research work.

2. Literature Review

This section discusses the latest technologies used by researchers to mitigate the im-
pacts of ransomware attacks in cryptocurrency sectors. For instance, in [14], the authors
proposed a pre-encryption detection algorithm (PEDA) to detect crypto-ransomware early.
Detecting ransomware at an early stage means that the attack is detected before the be-
ginning of its encryption function. When the attack is detected by the PEDA, the victim
will be notified; therefore, sensitive data and files can be transferred to a new location
while the ransomware is cleared. The PEDA contains two phases. In Phase I, the learning
algorithm (LA) analyzes the Windows application programming interface (API) to identify
the ransomware attack. When the attack is identified, then, in Phase II, a signature is
generated and stored in the signature repository to be used later to detect ransomware in
Phase I. To verify the performance of the proposed LA, the authors compared the false
positive rate (FPR) of the LA with the other LAs, which are: EldeRan, Ensemble (NB and
RF), Random Forest (RF), and Naive Bayes (NB). According to the authors, the proposed
LA scored the lowest FPR result.

Deep learning approaches have been proposed by researchers to detect malware in
the Bitcoin system [8]. In this reference [15], the authors used Long-Short Term Memory
(LSTM) to detect ransomware. The LSTM was used to classify API sources to identify
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ransomware families based on their behavior. LSTM is a deep learning algorithm that
provides an accurate classification result. Furthermore, it overcomes the vanishing gradient
problem of classical Recurrent Neural Networks (RNN) [15]. Abbas Yazdinejad et al. [8]
also used LSTM to detect cryptocurrency malware on Windows Operating System. The
dataset used in this research consists of 200 legal cryptocurrency samples and 500 cryp-
tocurrency malware samples. To evaluate the work, the authors compare the performance
of the proposed method with K-Nearest Neighbor, Decision Tree, Random Forest, SVM,
Naïve Bayes, and Ada-Boost using the 10-fold cross-validation (CV) metric. According
to the authors, the LSTM detection accuracy reached 98%, exceeding the other detection
algorithms.

In this paper [16], the authors proposed NetConver, a machine learning approach to
analyze Windows ransomware in network traffic. NetConverse was used with Decision
Tree (J48), and according to the authors, it achieved a 97.1% accuracy rate based on the True
Positive Detection Rate (TPR) metric. The research experiment consists of three phases. In
phase I, the dataset was collected by capturing the malicious network traffic. In phase 1,
the authors focused only on Windows ransomware. The dataset has 9 ransomware families
divided into two ransomware classes: crypto-ransomware and locker- ransomware. In
phase II, the TShark software was used to extract features of the collected network traffic,
and there were five different features. Finally, in phase III, the authors compared the
proposed algorithm with five different classifier algorithms: Bayes Network, Random
Forest, Multilayer Perceptron, k-nearest neighbors (KNN), and Least Mean Squares Filter
(LMS) using TPR and FPR. According to the comparison result, the proposed algorithm
defeated the five classifier algorithms.

In [17], the authors proposed a novel detection technique to detect ransomware
attacks at an early stage based on dynamic pre-encryption boundary instead of fixed time
pre-encryption boundary. In a fixed time pre-encryption boundary, the pre-encryption
phase starts at a fixed time. However, in the dynamic pre-encryption boundary, the pre-
encryption phase is determined by DPBD-FE, which refers to Dynamic Pre-Encryption
Boundary Delineation and Feature Extraction. The fixed time pre-encryption boundary
involves that the encryption time for all samples starts simultaneously; however, some
malware could change its behavior which could decrease the detection accuracy. On the
other hand, the dynamic pre-encryption boundary takes the encryption time for all samples
at different times based on the cryptography-related APIs that occurs first. Therefore, the
dynamic pre-encryption boundary is considered more accurate than the fixed time pre-
encryption boundary.

Convolutional Neural Network (CNN) is a powerful deep learning tool that can be
used to classify malware samples. However, the malware samples need to be first converted
to grayscale images before the training process. Authors in [18] proposed a CNN model to
classify malware samples. Two datasets were used in this research, Microsoft and Malimg.
The Malimg dataset consists of 9339 malware samples that belong to 25 malware families.
The Microsoft dataset comprises 21,741 malware samples that belong to 9 malware families.
The CNN classification performed higher on the Microsoft dataset than the Malimg dataset.
Authors in [19] also used CNN to classify malware samples. However, the malware
samples were converted to color images this time. The authors used two datasets, Malimg,
which was also used in [18], and IoT–android mobile. The accuracy of the classification in
the Malimg dataset reached 98.82%, slightly better than [18], which was 98.52%. However,
the accuracy of CNN in the IoT–android mobile dataset was 97.35%.

In order to increase the accuracy of the CNN, authors in [20] used Markov images
with the CNN instead of gray images. Therefore, the malware samples were converted to
Markov images before training the CNN. This classification technique was applied to two
datasets, Drebin and Microsoft. The Microsoft dataset consists of 10,868 malware samples
that belong to 9 malware families, and the Drebin datasets consist of 4020 malware samples
that belong to 10 malware families. According to the authors, the average accuracy of
the proposed method achieved 97.364% in the Drebin dataset. Therefore, we can say that
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processing the dataset in different ways while using the same classifier method result in
various classification accuracy. This is evident since the authors in [18,19] and [20] used
the same method, which was CNN; however, different techniques of processing datasets
were applied. In [18], the malware samples were converted to grayscale images. In [19],
they were converted to color images, and in [20], converted to Markov images. Most
of the state-of-art solutions are usually developed to assess security triad of Blockchain
technology in public sector applications [21].

3. System Development and Specifications

This section provides an explanation of the employed dataset for the bitcoin payment
transactions over a heterogeneous network, a detailed description of the development
stages of the proposed machine learning-based classification system, and finally, it mentions
the simulation and experimental setup configurations for the system development and
validation processes.

3.1. Dataset of Bitcoin Transactions

Bitcoin is a distributed digital currency system that records transactions in a dis-
tributed archive called a Blockchain [22]. The Bitcoin transactions dataset [23] is used to
evaluate the performance of our system. This dataset contains address features on the
heterogeneous Bitcoin network to identify ransomware payments. The authors have traced,
downloaded, and analyzed the whole graph of Bitcoin transactions for ten consecutive
years (January 2009 to December 2018) [23]. They have extracted the daily transactions
on the network and formed the Bitcoin graph using a time interval of 24 hours. Since
ransomware values are usually above the B0.3, the authors have filtered any network edge
that transfers less than this threshold. Ransomware addresses are taken from three widely
adopted studies: Montreal, Princeton, and Padua. For full information about the creation
and preparation of this dataset, we refer the reader to the BitcoinHeist article [23]. However,
a sample Bitcoin transactions’ graph which has been used by the authors is provided in
Figure 3 below. In this figure, the authors consider a toy network of 10 addresses and
7 transactions where dashed edges indicate transaction outputs from earlier windows;
t1, t3, t4, and t5 are starter transactions. Coin amounts are shown on the edges, and the
transaction outputs are equal to transaction inputs, i.e., transaction fees are 0.
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As a result of their tracing model, they end up with a dataset of 2,916,697 records
(around 3 million records). Each record is attributed 10 features, including Bitcoin address
(categorical data), year (numerical data), day of the year (numerical data), the length
(numerical data), weight (numerical data), count (numerical data), looped (numerical data),
neighbors (numerical data), income (numerical data), Satoshi amount (numerical data), and
the label feature (numerical data), Category String. For the class label, the dataset considers
either the white transaction (normal) accumulating 2,875,284 of the total number of records,
or the ransomware transaction (anomaly) accumulating 41,413 records distributed into
three different ransomware families of 28 attacks. The statistical specifications of the dataset
are provided in Table 1, considering all class labels provided in the dataset. Based on the
table, the statistical distribution of records between families seems to be almost balanced,
with 13,163 Montreal Family, 12,402 Padua Family, and 15,848 Princeton Family.

3.2. System Modeling

The classification process is an intelligent task that predicts the class label of a given
data record by utilizing machine learning algorithms [24]. Machine learning algorithms
used to build predictive modeling to approximate the mapping for the target output based
on a number of features are called supervised machine learning models [25]. Bitcoin
transactions identification is a typical example of classification tasks that requires the
engagement of supervised machine learning algorithms to build a predictive model to
uncover anomalies (i.e., ransomware payments) and classify the bitcoin payments over
heterogeneous bitcoin networks. Like any financial system, bitcoin data is temporal in
nature, as transactions are time-stamped. Thus, several labeled historical market data can
be collected and afforded to train the bitcoin predictive model and test the accuracy of the
machine learning models in the bitcoin transactions system.

In this paper, we consider bitcoin transaction recognition as a transaction classifica-
tion problem to identify and classify the ransomware payments for heterogeneous bitcoin
networks. Specifically, we are concerned in experimentally examining and designing a
learning-based self-reliant classification scheme that learns and investigates the prescribed
features of bitcoin payment transactions to recognize trustworthy and ransomware pay-
ments for better-quality cryptocurrency practices and transactions. More precisely, our
system development is composed of five stages, as illustrated in Figure 4.
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Table 1. Bitcoin Transactions Dataset statistics.

Ransomware Family Ransomware Type Number of Records

Montreal Family

montrealAPT 11

montrealComradeCircle 1

montrealCryptConsole 7

montrealCryptoLocker 9315

montrealCryptoTorLocker2015 55

montrealCryptXXX 2419

montrealDMALocker 251

montrealDMALockerv3 354

montrealEDA2 6

montrealFlyper 9

montrealGlobe 32

montrealGlobeImposter 55

montrealGlobev3 34

montrealJigSaw 4

montrealNoobCrypt 483

montrealRazy 13

montrealSam 1

montrealSamSam 62

montrealVenusLocker 7

montrealWannaCry 28

montrealXLocker 1

montrealXLockerv5.0 7

montrealXTPLocker 8

Total_Montreal Family 13,163

Padua Family

paduaCryptoWall 12390

paduaJigsaw 2

paduaKeRanger 10

Total_ Padua Family 12,402

Princeton Family

princetonCerber 9223

princetonLocky 6625

Total_ Princeton Family 15,848

Total # of Ransomeware Paymenmt Records 41,413

3.2.1. Data Collection Stage

Data collection is a systematic process of gathering accurate observations in the
forms of records from a diversity of adequate sources to develop data analytics models
that can be used to address research questions, validate experimental outcomes, and
develop prediction models as well as draw insights to help decision-makers. Managing
and analyzing data have always offered the greatest benefits and the greatest challenges
for organizations of all sizes and across all industries.

In this paper, the data records for the bitcoin transactions dataset have been originally
assimilated and collected from the internet environment of several heterogeneous bitcoin
payments networks before getting arranged into systematically structured datasets. Specif-
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ically, the bitcoin transaction dataset has been downloaded and parsed from the entire
bitcoin transaction networks on a daily basis for 10 consecutive years (from 2009 January to
2018 December). As a result, ransomware addresses are taken from three widely adopted
studies, namely: the Montreal family, Princeton family, and Padua family, in addition to the
normal transactions. To gain more insight into the single bitcoin transaction, Figure 5 shows
the bitcoin payment transaction life-cycle from the transaction request to the transaction
response.
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3.2.2. Data Preprocessing Stage

This stage concerns applying a consecutive set of transformation processes over the
data records to bring them into a form that can be easily interpreted by the machine learning
techniques [26]. In other words, the features of the data can now be easily interpreted
by the algorithm. Specifically, Figure 6 illustrates the preprocessing stages performed at
this stage.
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• Data Import: this operation is the first operation of the predictive model. It is responsi-
ble for reading the original dataset of the CSV (Comma-Separated Values) file format
into MAT (MATLAB data units) as a matrix of the double data-type.

• Feature selection: this operation concerns selecting the most adequate attributes (i.e.,
variables or columns) and eliminating any inadequate attributes from the dataset of
the classification task at hand.

• Class Labeling: this operation concerns transforming the categorical (text) data records
of the class feature into numerical data records that can be fed and manipulated by
machine learning techniques. In the ODT model, the integer encoding technique was
used to encode the labels for the two-class model as (1) for the normal transaction and
(2) for an anomaly transaction, as well as for the multiclass model as (1) for the normal
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transaction, (2) for Montreal ransomware, (3) for Princeton ransomware, and (4) for
Padua ransomware. In the SNN model, one-hot encoding was used to encode the
labels for the two-class model as (01) for a normal transaction and (10) for an anomaly
transaction, as well as for the multiclass model as (0001) for normal transaction, (0010)
for Montreal ransomware, (0100) for Princeton ransomware, and (1000) for Padua
ransomware.

• Data Normalization: this operation concerns normalizing all integer quantities of
the dataset matrix into a range between 0 and 1 using min–max normalization [26].
Min–max normalization changes the values of numerical data in the dataset to be on a
common scale without losing any information.

• Records Shuffling: this operation concerns mixing up the dataset records while pre-
serving the logical relationships between dataset features. The shuffling algorithm is
performed randomly, and it helps in enhancing the classifier classification by avoiding
any biasing toward specific data labels into the dataset [24].

• Dataset Distribution: this operation concerns randomly dividing dataset targets into
three datasets as follows: Training dataset (70% of the original dataset) used for model
learning (training), Validation dataset (5% of the original dataset) used to validate the
model during the learning process, and Testing dataset (25% of the original dataset)
used to test the model prediction and calculate prediction accuracy (for detection and
classification).

3.2.3. Machine Learning Stage

The machine learning stage is the principal stage of this predictive model, where the
whole learning process for the data pattern takes place. Two supervised machine learning
mechanisms were utilized in this work to construct the classification models, namely,
shallow neural networks (SNNs) and optimizable decision trees (ODT).

Shallow Neural Network (SNN) is a feedforward multilayer Perceptron (MLP) neural
network that is widely used in pattern recognition and classification tasks in different
artificial intelligence and machine learning applications [27]. In SNN, data records ac-
quainted with the neural network pass through an individual hidden (processor) layer
to process the pattern recognition task and provide the output proration for each class
label at the output layer. Figure 7 illustrates the SNN model architecture developed in this
classification task. In this figure, we show only the model for the multiclass classification.
For the detection model, the only difference is to replace the output layer with two neurons
instead of four neurons to provide the probabilistic values for the two classes (normal
vs. anomaly). According to the figure, our SNN has 8 features that are provided by the
dataset to be fed at the input layer of the SNN and then processed at 50 neurons of the
hidden/processor layer in advance to compute the numerical probabilities for the 4 classes
at the output layer represented by the four neurons corresponding to the four labels.

Decision trees are a well-known supervised machine learning technique that are
widely used to perform classification tasks with high-performance classification accuracy.
The bagging classifier algorithm (also known as Bootstrap Aggregation Decision trees) [28]
is used mainly to decrease the discrepancy of a decision tree by generating a number
of subgroups of data records from training datasets that are selected randomly with
replacement. Then, every subgroup of data records is employed to train their decision
trees. Consequently, the process will result in an ensemble of different models. Finally, the
mean value of all the predictions from all decision trees is computed to produce one overall
robust decision. Since the ODT model has a vast amount of tree splits, it is not feasible to
be shown in a normal figure. Alternatively, we are illustrating the process flow in Figure 8
to show how the bagging decision tree classifier works in the classification tasks [29].
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3.2.4. Detection and Classification Stages

This stage concerns the final output layer of our predictive model, where two modes
of operations are used at the output layer of our predictive model, including:

• Detection Mode: Produce the output using a two-class classifier as a normal transac-
tion or anomaly transaction, using either an ensemble classifier for the ODT model or
a Sigmoid classifier for the SNN model.

• Classification Mode: Produce the output using a four-class classifier as a normal
transaction, Montreal ransomware, Padua ransomware, or Princeton ransomware,
using either an ensemble classifier for the ODT model or Softmax classifier for the
SNN model.

3.3. Development and Validation Environment

To implement and evaluate the proposed Bitcoin attacks detection and classification
models, the training and testing phases were performed on the Bitcoin Transactions 2020
dataset comprising the main ransomware attacks against heterogeneous bitcoin networks.
In addition to the two aforementioned machine learning models (i.e., SNN and ODT),
two classifier schemes were implemented; two classes (ransomware detection) or four
classes (ransomware classification). The models mentioned above have been developed
using MATLAB 2020b computing platform utilizing our high-performance commodity
machine operating with multiprocessing CPU system with multicore NVIDIA GPUs system.
Finally, to sum up, Table 2 provides a brief description of the experimental environment
configurations and considerations.

Table 2. Brief description of system development configurations and parameters.

Terms Explanation

Computing Platform
CPU Intel Core I9-9900 CPU, 8 cores, @4900 MHz

GPU: NVIDIA Quad P2000@1480 MHz @ 5 GB memory
Memory: 32 GB DDR4 @ 2666 MHz

ML Techniques SNN with 50 Hidden Neurons, 1 Neuron Output Layer.
ODT with 2,916,696 Splits via Gini-Diversity Index & 30 Learners.

Model Optimizers Conjugate Gradient Backpropagation for SNN [30].
Bayesian Gradient Optimization for ODT [31].

Loss investigation Cross-Entropy Loss Function for SNN [32].
Mean Squared Error Function for ODT [33].

Validation Strategy 5-Validation Checks and 5-Fold Cross Validation [34].
Data records Shuffling process is executed at each Epoch.

Epochs/Iterations/
Learning Rate

Learning Rate = 0.01
145 # Epochs for Detection Model via SNN

103 # Epochs for Classification Model via SNN
30 # Iterations for Detection Model via ODT

30 # Iterations for Classification Model via ODT

4. Results and Discussion

In this paper, we propose machine learning-based predictive models to automate
the detection and classification for bitcoin payment transactions in heterogeneous bitcoin
networks. The models have been trained and tested using a comprehensive, up-to-date,
and large dataset comprising 29 different types of bitcoin payment transactions grouped
into two categories (normal vs. anomaly) used for the detection model or four categories
(normal, Montreal, Padua, Princeton) for the classification model. In order to analyze the
effectiveness of the proposed predictive models, we have evaluated their performance using
several evaluation metrics to provide more insights about the performance of proposed
predictive models.
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To begin, Figure 9 illustrates the performance analysis trajectories for Figure 9a, the
SNN based detection system and Figure 9b, the SNN based classification system. The cross-
entropy loss/cost function has been investigated in both classifiers to track the status for
misclassification error for the validation/testing phases. Cross-entropy loss/cost function
functions are used to optimize the classification models during training, aiming to minimize
the loss function. Normally, the lower the loss, the better the model. Consequently, the
best validation performance for the detection system has been recorded at epoch 145
with a 0.0325 value of cross-entropy loss, while the best validation performance for the
classification system has been recorded at epoch 97 with a 0.0225 value of cross-entropy
loss. Therefore, both models performed as near-perfect models, since their cross-entropy
loss values are approaching 0 (≤0.1).
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Figure 9. Performance analysis trajectories using cross-entropy cost for (a) SNN based detection system and (b) SNN based
classification system.

In addition, Figure 10 illustrates the performance analysis trajectories: Figure 10a, the
ODT-based detection system and Figure 10b, the ODT-based classification system. The
mean square loss/cost function has been investigated in ODT classifiers to track the status
for minimum classification error during the 30 iterations of the learning process by tracking:
(a) The estimated minimum classification error, (b) The observed minimum classification
error, (c) The best point hyperparameters, and (d) The minimum error hyperparameters.
Consequently, the best validation performance for the detection system has been recorded
at iteration 19 with a 0.0012 value of minimum classification error, while the best validation
performance for the classification system has been recorded at iteration 29 with a 0.0055
value of minimum classification error. Therefore, both models performed as almost perfect
models since their minimum classification error values are almost 0 (≤0.01).

Moreover, Figure 11 illustrates the performance analysis using confusion matrix
records for (a) the ODT-based detection system and (b) the ODT-based classification system
(since ODT performed better, we show only the confusion matrix for ODT models). The
confusion matrix is a summarized table of the number of correct and incorrect predictions
yielded by the classification model for binary/multi-classification tasks [35]. Specifically,
the confusion matrix provides records for four performance indicator metrics for every
predicted class label: namely, the true positive record, which counts the number of samples
the model correctly predicts for the positive class; the true negative record, which counts
the number of samples the model correctly predicts for the negative class; a false positive
record, which counts the number of samples the model incorrectly predicts for the positive
class when the actual class is negative; and the false negative record, which counts the
number of samples the model incorrectly predicts for the negative class when the actual
class is positive [35]. Since the good classification model will normally generate confusion
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matrix results with large values across the diagonal and small values off the diagonal,
this shows that our predictive models are high performant models for both detection and
classification, especially for the models build using optimizable decision trees. Besides,
Figure 12 shows the organization we followed in our confusion matrices along with the
formulas used to calculate the corresponding metrics (Precision, Recall, Accuracy). Please
note that TP and FP correspond to the ransomware records (the minority class) while TN
and FN correspond to the normal records (the majority class).
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Furthermore, based on the results obtained for the confusion matrix, Table 3 summa-
rizes the model evaluation metrics [35] for (a) the ODT based detection system and (b) ODT
based classification system, in terms of:

• Error (ERR): The proportion of misclassified samples with respect to the total number
of samples.

• Accuracy (ACU): The proportion of correctly classified samples with respect to the
total number of samples.

• Precision (PRC): The proportion of true-positive samples with respect to the total
number of positive samples. For multi-class, we are considering the the weighted
mean of single-class measures where the weight is the fraction of samples.

• Recall (RCL): The proportion of true-positive samples with respect to the sum of
true-positive samples and false-negative samples. For multi-class, we are considering
the the weighted mean of single-class measures where the weight is the fraction
of samples.

• F1-Score metric (F1S): The proportion of the harmonic mean between precision and recall.
• Area Under the Curve (AUC): Proportion of area under the plot between the true

positive rate and false positive rate using different thresholds.
• Prediction Speed (SPD): Measured in (obs/sec), which refers to the number of observa-

tions processed per second. Its inverse would be the time taken for one prediction in
seconds (TPD).

Table 3. Summary of performance indicator metrics obtained for all predictive models.

Classifier ERR
(%)

ACU
(%)

PRC
(%)

RCL
(%)

F1S
(%)

AUC
(%)

SPD
(obs/sec)

TPD
(µsec)

Two-Class 00.10 99.90 93.91 99.90 96.82 100.00 140,000 7.1

Muli-Class 00.60 99.40 99.40 99.30 99.35 100.00 96,000 10.4

The obtained results exhibit the extraordinary performance indicators of our predictive
models with greater figures obtained for the predictive models based ODT of both detection
(two-class) and classification (multiclass) systems scoring accuracy values of 99.9% and
99.4%, respectively, compared to the accuracy of the detection and classification systems
based SNN, which scored 98.6% and 98.4%, respectively.

Finally, to realize advanced observations of the advantage of the proposed ODT based
predictive model for bitcoin payment transactions, we contrast the classification accuracy
of our detection/classification models employing ODT with several other existing up-to-
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date machine learning-based bitcoin payment transactions detection/classification models
engaging different machine learning methods to detect and/or classify the ransomware
transactions in the bitcoin payments applications. The comparison is provided in Table 4
below. Since classification accuracy is the vital performance evaluator to indicate the
robustness of machine learning-based models, we have centered our comparison with the
model’s classification accuracy values that are reported in the literature. According to the
comparison table, the proposed model is competent and superior to provide detection and
classification for the ransomware payment transactions in heterogeneous bitcoin networks.

Table 4. Comparing our best accuracy results with other existing ML-based predictive models.

Research Classifier Type ML Model Accuracy

Yazdinejad et al. [8]/2020 Two-Class/Detection Long short-term
memory (LSTM) 98.0%

Alhawi et al. [16]/2018 Two-Class/Detection Decision Tree J48
Classifier 97.1%

Kolesnikova et al.
[36]/2021 Two-Class/Detection Convolutional Neural

Net (CNN) 97.1%

Lee et al. [37]/2020 Multi-Class/Classification Random Forest 84%

Burks et al. [38]/2017 Multi-Class/Classification Random Forest 95.7%

Our Model/2021 Two-Class/Detection ODT
Bagging 99.9%

Our Model/2021 Multi-Class/Classification ODT
Bagging 99.4%

5. Conclusions and Future Directions

A self-reliant and intelligent ransomware detection and predictive classification system
for bitcoin transactions in heterogeneous bitcoin networks has been developed, investi-
gated, and evaluated in this paper. The proposed system employs two supervised machine
learning methods to recognize data patterns in bitcoin payment transactions, namely,
shallow neural networks (SNN) and optimizable decision trees (ODT). The proposed pre-
dictive models have been evaluated using a recent, up-to-date and comprehensive bitcoin
transactions dataset (BitcoonHeist2020) via several performance evaluation metrics such
as classification accuracy, precision, and recall. Consequently, the validation testing of
model experimentation recorded 98.6% and 99.9% for the bitcoin transaction detection
accuracy (two-class classifier) as well as 98.4% and 99.4% bitcoin transaction classification
accuracy (multiclass classifier), using SNN and ODT, respectively. Our best-achieved accu-
racy results have transcended the accuracy results for several existing bitcoin transactions
predictive models. In the future, we will consider carrying out other important analysis
of the model quality measures, such as the area under Precision/Recall curve (Average
Precision), and precision/recall curve as a function of the threshold in our future ML
development, especially when we deal with an imbalanced dataset. Moreover, we will
consider analyzing the impact of hyper-parameters tuning on the predictive model results.

Author Contributions: Conceptualization, Q.A.A.-H.; methodology, Q.A.A.-H.; software, Q.A.A.-H.
and A.A.A.; validation, Q.A.A.-H. and A.A.A.; formal analysis, Q.A.A.-H. and A.A.A. investigation,
Q.A.A.-H. and A.A.A.; writing—original draft preparation, Q.A.A.-H. and A.A.A.; writing—review
and editing Q.A.A.-H. and A.A.A. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The BitcoinHeist 2020 dataset employed in this research can be re-
trieved from from UCI Machine Learning Repository at: https://archive.ics.uci.edu/ml/datasets/
BitcoinHeistRansomwareAddressDataset.

Conflicts of Interest: The authors declare no conflict of interest.

https://archive.ics.uci.edu/ml/datasets/BitcoinHeistRansomwareAddressDataset
https://archive.ics.uci.edu/ml/datasets/BitcoinHeistRansomwareAddressDataset


Electronics 2021, 10, 2113 16 of 17

References
1. Mohurle, S.; Patil, M. A brief study of Wannacry Threat: Ransomware Attack 2017. Int. J. Adv. Res. Comput. Sci. 2017, 8,

1938–1940.
2. Oosthoek, K.; Doerr, C. From Hodl to Heist: Analysis of Cyber Security Threats to Bitcoin Exchanges. In Proceedings of the 2020

IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Toronto, ON, Canada, 2–6 May 2020.
3. Paquet-Clouston, M.; Haslhofer, B.; Dupont, B. Ransomware payments in the Bitcoin ecosystem. J. Cybersecur. 2019, 5, tyz003.

[CrossRef]
4. Erfani, S.; Ahmadi, M. Bitcoin Security Reference Model: An Implementation Platform. In Proceedings of the 2019 International

Symposium on Signals, Circuits and Systems (ISSCS), Iasi, Romania, 11–12 July 2019.
5. Biryukov, A.; Pustogarov, I. Bitcoin over Tor isn’t A Good Idea. In Proceedings of the 2015 IEEE Symposium on Security and

Privacy, San Jose, CA, USA, 17–21 May 2015.
6. Akcora, C.; Li, Y.; Gel, Y.; Kantarcioglu, M. BitcoinHeist: Topological Data Analysis for Ransomware Prediction on the Bitcoin

Blockchain. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20) Special Track
on AI in FinTech, Yokohama, Japan, 11–17 July 2020.

7. Rahouti, M.; Xiong, K.; Ghani, N. Bitcoin Concepts, Threats, and Machine-Learning Security Solutions. IEEE Access 2018, 6,
2169–3536. [CrossRef]

8. Yazdinejad, A.; HaddadPajouh, H.; Dehghantanha, A.; Parizi, R.M.; Srivastava, G.; Chen, M.-Y. Cryptocurrency malware hunting:
A deep Recurrent Neural Network approach. Appl. Soft Comput. J. 2020, 96, 106630. [CrossRef]

9. Zola, F.; Bruse, J.L.; Eguimendia, M.; Galar, M.; Urrutia, R.O. Bitcoin and Cybersecurity: Temporal Dissection of Blockchain Data
to Unveil Changes in Entity Behavioral Patterns. Appl. Sci. 2019, 9, 5003. [CrossRef]

10. Moser, M.; Bohme, R. The price of anonymity: Empirical evidence from a market for Bitcoin anonymization. Cybersecurity 2017, 3,
127–135. [CrossRef]

11. Monev, V. Defining and Applying Information Security Goals for Blockchain Technology. In Proceedings of the 2020 International
Conference on Information Technologies (InfoTech), Varna, Bulgaria, 17–18 September 2020; pp. 1–4. [CrossRef]

12. Kok, S.H.; Abdullah, A.; Jhanjhi, N.; Supramaniam, M. Prevention of Crypto-Ransomware Using a Pre-Encryption Detection
Algorithm. Computers 2019, 8, 79. [CrossRef]

13. Al-rimy, B.A.S.; Maarof, M.A.; Shaid, S.Z.M. Crypto-ransomware early detection model using novel incremental bagging with
enhanced semi-random subspace selection. Future Gener. Comput. Syst. 2019, 101, 476–491. [CrossRef]

14. Kok, S.; Abdullah, A.; Jhanjhi, N. Early detection of crypto-ransomware using pre-encryption detection algorithm. J. King Saud
Univ.-Comput. Inf. Sci. 2020, in press. [CrossRef]

15. Maniath, S.; Ashok, A.; Poornachandran, P.; Sujadevi, V.G.; AU, P.S.; Jan, S. Deep Learning LSTM Based Ransomware Detection.
In Proceedings of the 2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE), Noida, India,
26 October 2017.

16. Alhawi, O.M.K.; Baldwin, J.; Dehghantanha, A. Leveraging Machine Learning Techniques for Windows Ransomware Network
Traffic Detection. Cyber Threat. Intell. Adv. Inf. Secur. 2018, 70, 93–106.

17. Al-Rimy, B.A.S.; Maarof, M.A.; Alazab, M.; Alsolami, F.; Shaid, S.Z.M.; Ghaleb, F.A.; Al-Hadhrami, T.; Ali, A.M. A Pseudo
Feedback-Based Annotated TF-IDF Technique for Dynamic Crypto-Ransomware Pre-Encryption Boundary Delineation and
Features Extraction. IEEE Access 2020, 8, 140586–140598. [CrossRef]

18. Kalash, M.; Rochan, M.; Mohammed, N.; Bruce, N.D.B.; Wang, Y.; Iqbal, F. Malware Classification with Deep Convolutional
Neural Networks. In Proceedings of the 2018 9th IFIP International Conference on New Technologies, Mobility and Security
(NTMS), Paris, France, 26–28 February 2018.

19. Vasan, D.; Alazab, M.; Wassan, S.; Naeem, H.; Safaei, B.; Zheng, Q. IMCFN: Image-based malware classification using fine-tuned
convolutional neural network architecture. Comput. Netw. 2020, 171, 107138. [CrossRef]

20. Yuan, B.; Wang, J.; Liu, D.; Guo, W.; Wu, P.; Bao, X. Byte-level malware classification based on Markov images and deep learning.
Comput. Secur. 2020, 92, 101740. [CrossRef]

21. Warkentin, M.; Orgeron, C. Using the security triad to assess Blockchain technology in public sector applications. Int. J. Inf.
Manag. 2020, 52, 102090. [CrossRef]

22. Arunmozhi, M.; Rejikumar, G.; Marwaha, D. A literature review on Bitcoin: Transformation of crypto currency into a global
phenomenon. IEEE Eng. Manag. Rev. 2019, 47, 28–35.

23. Akcora, C.G.; Li, Y.; Gel, Y.R.; Kantarcioglu, M. BitcoinHeist: Topological data analysis for ransomware detection on the bitcoin
blockchain. arXiv 2019, arXiv:1906.07852.

24. Abu Al-Haija, Q.; Zein-Sabatto, S. An Efficient Deep-Learning-Based Detection and Classification System for Cyber-Attacks in
IoT Communication Networks. Electronics 2020, 9, 2152. [CrossRef]

25. Uddin, S.; Khan, A.; Hossain, M.E.; Moni, M.A. Comparing different supervised machine learning algorithms for disease
prediction. BMC Med. Inform. Decis. Mak. 2019, 19, 281. [CrossRef]

26. Abu Al-Haija, Q.; McCurry, C.D.; Zein-Sabatto, S. Intelligent Self-reliant Cyber-Attacks Detection and Classification System
for IoT Communication Using Deep Convolutional Neural Network. In Selected Papers from the 12th International Networking
Conference. INC 2020. Lecture Notes in Networks and Systems, Rhodes, Greece, 19–21 September 2020; Springer: Cham, Switzerland,
2021; Volume 180.

http://doi.org/10.1093/cybsec/tyz003
http://doi.org/10.1109/ACCESS.2018.2874539
http://doi.org/10.1016/j.asoc.2020.106630
http://doi.org/10.3390/app9235003
http://doi.org/10.1093/cybsec/tyx007
http://doi.org/10.1109/InfoTech49733.2020.9211073
http://doi.org/10.3390/computers8040079
http://doi.org/10.1016/j.future.2019.06.005
http://doi.org/10.1016/j.jksuci.2020.06.012
http://doi.org/10.1109/ACCESS.2020.3012674
http://doi.org/10.1016/j.comnet.2020.107138
http://doi.org/10.1016/j.cose.2020.101740
http://doi.org/10.1016/j.ijinfomgt.2020.102090
http://doi.org/10.3390/electronics9122152
http://doi.org/10.1186/s12911-019-1004-8


Electronics 2021, 10, 2113 17 of 17

27. Abu Al-Haija, Q.; Ishtaiwi, A. Multi-Class Classification of Firewall Log Files Using Shallow Neural Network for Network
Security Applications. In Proceedings of the International Conference on Soft Computing for Security Applications (ICSCS 2021), Omalur,
India, 10–11 June 2021; Springer—Advances in Intelligent Systems and Computing: Berlin, Germany, 2021.

28. Le, T.-T.-H.; Kang, H.; Kim, H. Household Appliance Classification Using Lower Odd-Numbered Harmonics and the Bagging
Decision Tree. IEEE Access 2020, 8, 55937–55952. [CrossRef]

29. Patel, A. Bagging—Ensemble Meta Algorithm for Reducing Variance. Medium Towards Data Sci. 2019. Available online:
https://medium.com/ml-research-lab/bagging-ensemble-meta-algorithm-for-reducing-variance-c98fffa5489f (accessed on
13 February 2020).

30. Upadhyay, P.K.; Pandita, A.; Joshi, N. Scaled Conjugate Gradient Backpropagation based SLA Violation Prediction in Cloud
Computing. In Proceedings of the 2019 International Conference on Computational Intelligence and Knowledge Economy
(ICCIKE), Dubai, United Arab Emirates, 11–12 December 2019; pp. 203–208. [CrossRef]

31. Wu, J.; Poloczek, M.; Wilson, A.G.; Frazier, P.I. Bayesian Optimization with Gradients. arXiv 2018, arXiv:1703.04389.
32. Koech, K.E. Cross-Entropy Loss Function. Medium Towards Data Sci. 2020. Available online: https://towardsdatascience.com/

cross-entropy-loss-function-f38c4ec8643e?gi=6f67c309e920 (accessed on 13 February 2020).
33. Zhang, N.; Shen, S.-L.; Zhou, A.; Xu, Y.-S. Investigation on Performance of Neural Networks Using Quadratic Relative Error Cost

Function. IEEE Access 2019, 7, 106642–106652. [CrossRef]
34. Gupta, P. Cross-Validation in Machine Learning. Medium Towards Data Sci. 2017. Available online: https://towardsdatascience.

com/cross-validation-in-machine-learning-72924a69872f (accessed on 13 February 2020).
35. Al-Haija, Q.A.; Smadi, M.; Al-Bataineh, O.M. Identifying Phasic Dopamine Releases Using DarkNet-19 Convolutional Neural

Network. In Proceedings of the 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Toronto,
ON, Canada, 21–24 April 2021; pp. 1–5. [CrossRef]

36. Kolesnikova, K.; Mezentseva, O.; Mukatayev, T. Analysis of Bitcoin Transactions to Detect Illegal Transactions Using Convolutional
Neural Networks. In Proceedings of the 2021 IEEE International Conference on Smart Information Systems and Technologies
(SIST), Nur-Sultan, Kazakhstan, 28–30 April 2021; pp. 1–6. [CrossRef]

37. Lee, C.; Maharjan, S.; Ko, K.; Woo, J.; Hong, J.W.K. Machine Learning Based Bitcoin Address Classification. In Blockchain and
Trustworthy Systems. BlockSys 2020. Communications in Computer and Information Science; Zheng, Z., Dai, H.N., Fu, X., Chen, B., Eds.;
Springer: Singapore, 2020; Volume 1267. [CrossRef]

38. Burks, L.S.; Cox, A.E.; Lakkaraju, K.; Boyd, M.J.; Chan, E. Bitcoin Address Classification (No. SAND2017-8407C); Sandia National
Lab.(SNL-NM): Albuquerque, NM, USA, 2017.

http://doi.org/10.1109/ACCESS.2020.2981969
https://medium.com/ml-research-lab/bagging-ensemble-meta-algorithm-for-reducing-variance-c98fffa5489f
http://doi.org/10.1109/ICCIKE47802.2019.9004240
https://towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e?gi=6f67c309e920
https://towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e?gi=6f67c309e920
http://doi.org/10.1109/ACCESS.2019.2930520
https://towardsdatascience.com/cross-validation-in-machine-learning-72924a69872f
https://towardsdatascience.com/cross-validation-in-machine-learning-72924a69872f
http://doi.org/10.1109/IEMTRONICS52119.2021.9422617
http://doi.org/10.1109/SIST50301.2021.9465983
http://doi.org/10.1007/978-981-15-9213-3_40

	Introduction 
	Literature Review 
	System Development and Specifications 
	Dataset of Bitcoin Transactions 
	System Modeling 
	Data Collection Stage 
	Data Preprocessing Stage 
	Machine Learning Stage 
	Detection and Classification Stages 

	Development and Validation Environment 

	Results and Discussion 
	Conclusions and Future Directions 
	References

